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Abstract

An admission control algorithm for a multimedia server is responsible for determining if a new request can be accepted
without violating the QoS requirements of the existing requests in the system. Most admission control algorithms treat every
request uniformly and hence optimize the system performance by maximizing the number of admitted and served requests.
In practice, requests might have different levels of importance to the system. Requests offering high contribution or reward
to the system performance deserve priority treatment. Failure of accepting a high-priority request would incur high penalty
to the system.

A novel threshold-based admission control algorithm with negotiation for two priority classes of requests is proposed in our
previous study. The server capacity is divided into three partitions based on the threshold values: one for each class of requests
and one common pool shared by two classes of requests. Reward and penalty are adopted in the proposed system model.
High-priority requests are associated with higher values of reward as well as penalty than low-priority ones. In this paper, given
the characteristics of the system workload, the proposed analytical models aim to finds the best partitions, optimizing the system
performance based on the objective function of the total reward minus the total penalty. The negotiation mechanism reduces the
QoS requirements of several low-priority clients, by cutting out a small fraction of the assigned server capacity, to accept a new
high-priority client and to achieve a higher net earning value. Stochastic Petri-Net model is used to find the optimal threshold
values and two analytical methods are developed to find sub-optimal settings. The experiment results show that the sub-optimal
solutions found by the proposed analytical methods are very close to optimal ones. The methods enable the algorithm to dynam-
ically adjust the threshold values, based on the characteristics of the system workload, to achieve higher system performance.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Delivering multimedia streams with QoS requirements to viewers is one crucial issue in designing
a multimedia system. The server of such a system requires admission control policy to guarantee the
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delivery of on-demand multimedia streams. Upon the arrival of a new request, the server decides if the
request can be admitted based on the availability of the server capacity. QoS guarantee of continuous
multimedia stream delivery is met, once it is admitted. One mechanism to admission control is based on
the reservation scheme [6,16]. The reservation scheme allocates a fraction of the server capacity (e.g.
CPU time and network bandwidth) for a new request based on certain criteria. The reserved capacity
is used to retrieve a specified number of disk blocks, to perform multimedia data processing, and to
transmit data on the allocated channel. The allocated server capacity is reserved for the specific request
until it leaves the system. A new request may be rejected if no available resource is left to serve the
request. In such a case, the system incurs loss due to the rejected requests. As described above, an
efficient admission control policy is essential to maximize the system performance and to reduce the loss
rate.

In literature, various admission control algorithms have been proposed. The deterministic approach
derives a formula of the maximum number of admitted requests under the worst-case load[1]. The
requests are assured of their QoS requirements throughout their existence in the system. A system using
such a deterministic approach might be under-utilized, since the admission control policy is based on the
worst-case scenarios. The deterministic approach represents one extreme of the spectrum in the admission
control algorithms, while the observation-based approach stands for the other extreme[5]. The latter
approach is based on the prediction from the measurements of the resource usage status[2–5,7,10,12,13]
and provides predictive service guarantee to clients, not absolute guarantee. The basic idea of such an
observation-based algorithm is to aggressively accept a request as long as the acceptance of the request
does not violate the service guarantee of the existent requests. The statistical approach[5] assumes that
the average data access time does not change significantly, and it admits new clients as long as the server
can meet the statistical estimation of the total data rate. In the paper[2], the proposed adaptive admission
control algorithm admits new clients based on the extrapolation from the past measurements of the storage
server performance.

The above research does not consider different priorities of client requests. Most research[11] tries to
admit as many requests as possible without considering the importance of each request. We observe that, in
some systems, clients might offer high value of reward and should be given to priority services. Similarly,
the system pays high penalty if it rejects a high-priority request. Different priorities are associated with
different values of reward and penalty. The admission control policy for such a system attempts to
maximize the net earning (the total reward minus the total penalty) in order to optimize the system
performance.

A class of threshold-based admission control algorithms, based on the above cost model, is proposed
in our previous study[6]. The server capacity is partitioned into several partitions based on the threshold
values: one for each class of requests and possibly one common pool shared by all classes. Requests of a
specific priority are granted as long as the current load for the priority class is below the corresponding
threshold. The server capacity from the common pool can only be used if the priority class requests have
used up all the corresponding reserved partition of the server capacity. The admission control algorithm
reaches an optimal objective value by dynamically adjusting the threshold values—server partitions,
based on the characteristics of the system workload.

We further observe that the system could reach a higher objective value by lowering the service quality
of admitted low-priority clients, so as to make room for new arrival of high-priority clients. Such an
observation is exploiting the human perceptual tolerance[5] in which few media blocks may be discarded
or delayed in a continuous playback process without significantly affecting the perceived quality.
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1.1. Main contribution of the paper

The proposed negotiation mechanism reduces the QoS of several low-priority clients, by cutting out a
small fraction of the assigned server capacity, to accept a new high-priority client and to achieve a higher
net earning value. According to the simulation results, it can be seen that the negotiation mechanism is
able to achieve a higher value of system performance.

In this paper, we propose performance analysis models for the mechanism. The analytical models can
be used to dynamically determine the optimal setting of threshold values in real time upon the change of
system load, in which the system workload is characterized by: (1) the arrival rate; (2) service rate; (3)
reward rate; (4) penalty rate of each client. In this paper, the proposed analytical models are compared to
the Stochastic Petri-Net (SPN) model, which takes exponential time (in terms of the number of states in
the SPN model) to find optimal solutions. From the experimental results, it can be seen that the proposed
analytical models find sub-optimal solutions that are very close to the optimal ones.

The rest of the paper is organized as follows. InSection 2, the description of the dynamic threshold-based
algorithm with negotiation is given. The definition of the objective function is also defined there. In
Section 3, the proposed analytical model is developed.Section 4describes the numerical experiment
results that are obtained from the analytical model and the Stochastic Petri-Net Package (SPNP) model.
Finally, conclusions are drawn inSection 5.

2. System model

The server prioritizes client requests into different priority classes according to their importance to the
system. The server adopts the reservation scheme in which a fraction of server capacity is allocated to
a client throughout the existence of the request. Throughout the paper, we use the terms of “client” and
“request” inter-exchangeably. The server capacity is divided into several partitions. One partition for each
class of requests and possibly one common pool shared by multiple classes. Upon the arrival of a new
client, the server checks the remaining capacity for the specific priority class of clients. If the remaining
capacity is enough to serve a new request, it will be accepted; otherwise, a negotiation process may take
place to determine if it can be accepted.

For the sake of explanation, we consider a system with two priority classes of requests here. Each class
of requests is characterized by its arrival/departure rates and its reward/penalty values. Requests which
provide high reward and penalty values[14,15]are considered as high-priority ones. Let the inter-arrival
times of the high-priority and low-priority clients be exponentially distributed with the average times
of 1/λh and 1/λl , respectively. The inter-departure times of the high-priority and low-priority clients are
exponentially distributed with the same service time of 1/µ. The proposed method is capable of handling
different service times. However, we use the same service time for simplicity. Let the reward rate of
high-priority and low-priority clients bevh andvl , respectively, withvh ≥ vl , and the penalties beqh and
ql , respectively, withqh ≥ ql .

A server containsN capacity slots divided into three partitions:nh, nl andnm, wherenm = N −nh −nl .
Capacity ofnh slots (referred as the high partition hereafter) is reserved for high-priority clients;nl slots
(referred as the low partition hereafter) for low-priority clients; whilenm, slots (referred as the common
pool partition hereafter) are shared by all priority classes. We assume that all classes of clients have the
same QoS requirements. Each capacity slot serves one client request initially, while the servicing of the
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low-priority clients could be degraded afterwards, if necessary. When a new client enters the system,
the server checks the remaining capacity for the specific priority class. It is accepted if one such slot
exists. Otherwise, the server checks the common pool. In other word, a new client can be assigned to the
common pool only if the corresponding partition of the server capacity has no vacancy. A negotiation
process starts if all slots in the common pool are occupied and the new coming request is a high-priority
one.

The negotiation process reduces the QoS level of the low-priority requests in the common pool so
as to make room for new arrival of high-priority requests. Each timeα low-priority clients are chosen
for degradation. Each such client is degraded by 1/α and contributes 1/α capacity slot. As a result, they
make one slot in total. The total reward value of these degraded clients is(α − 1)vl , which isvl less than
the original total reward value contributed by them (i.e.αvl ) before degradation. A low-priority client is
only degraded once. The degraded clients can be resumed to the normal QoS level upon the departure
of a high-priority client. Note that no performance gain can be obtained if the negotiation process makes
room for a new low-priority request. As stated above, the system gains extra value ofvh − vl from the
negotiation process, for each newly admitted high-priority request.

Our objective function is the same as our performance index—the totalpay-off rate, which is defined as
the average amount of net earning received by the server per time unit. Let the system on average serve,
per time unit,Nh: high-priority clients,Nl : low-priority ones,Dl : degraded low-priority ones, and reject,
Mh: high-priority ones, andMl : low-priority ones per time unit. The total pay-off rate can be obtained by
the reward rate minus the penalty rate:

Nhvh + Nlvl + Dlvl
α − 1

α − Mhqh − Mlql
. (1)

The considered problem is formalized as finding an optimal set of threshold values under which the above
objective function is maximized.Table 1summarizes the notations used in the paper.

Table 1
Notations

λh Arrival rate of high-priority clients
λl Arrival rate of low-priority clients
µ Departure rate of clients
vh Reward of a high-priority client if the client is serviced successfully
vl Reward of a low-priority client if the client is serviced successfully
qh Penalty of a high-priority client if the client is rejected on admission
ql Penalty of a low-priority client if the client is rejected on admission
N Total number of server capacity slots for servicing clients
nh Number of slots reserved for high-priority clients only, 0≤ nh ≤ N

nl Number of slots reserved for low-priority clients only, 0≤ nl ≤ N and alsonh + nl ≥ 0
nm Number of slots that can be used to service either types of clients,nm = N − nh − nl

Nh Number of high-priority clients served in the system per time unit, namely, the throughput of the high-priority clients
Nl Number of low-priority clients served in the system per time unit, namely, the throughput of the low-priority clients
Mh Number of high-priority clients rejected by the system per time unit
Ml Number of low-priority clients rejected by the system per time unit
Dl Number of degraded low-priority clients per time unit
α Number of low-priority clients to be degraded to accommodate a new high-priority client
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3. Finding the threshold setting

3.1. Two analytical methods

Consider a system with the threshold values (nh, nl , nm). The arrival–departure process of high-priority
clients served by the high partition of thenh slots can be modeled as aM/M/nh/nh queuing system.
Similarly, the process of low-priority clients using the low partition of thenl slots can be modeled as a
M/M/nl /nl queuing system. Therefore, the reward rates of the high- and low-priority clients served by the
high and low partition are

nh∑
i=1

iµvh
(1/i!)(λh/µ)i∑nh
j=0(1/j !)(λh/µ)j

, (2)

and
nl∑

i=1

iµvl
(1/i!)(λl/µ)i∑nl
j=0(1/j !)(λl/µ)j

. (3)

Clients enter the common pool partition, only when there is no vacant slot in the corresponding partition.
Therefore, the arrival rate of high- (low-) priority clients entering the common pool partition can be
approximated asϕh (ϕ l ). Namely

ϕh = λh × probability of havingnh clients= λh
(1/nh!)(λh/µ)nh∑nh
j=0(1/j !)(λh/µ)j

, (4)

ϕl = λl × probability of havingnl clients= λl
(1/nl !)(λl/µ)nl∑nl
j=0(1/j !)(λl/µ)j

. (5)

Let the probability that there arei high-priority clients andj low-priority clients served by the common
pool partition beP(i, j). The probability distribution ofP(i, j) can be approximated by the technique
of reduced Markov chain[9]. In Eq. (6), the first term at the right-hand side indicates the probability of
havingi high-priority clients, and the second term indicates the probability of havingj low-priority client,
giveni high-priority clients in the common pool partition

P(i, j) = (1/i!)(ϕh/µ)i∑nm
k=0(1/k!)(ϕh/µ)k

(1/j !)(ϕl/µ)j∑nm−i
k=0 (1/k!)(ϕl/µ)k

. (6)

Hence, the reward rate of the common pool partition is approximated as

nm∑
i=0

nm−i∑
j=0

P(i, j)(iµvh + jµvl). (7)

Consider a state(i, j) in which i + j = nm. Upon arrival of new high-priority clients, the negotiation
process takes place to degrade thej low-priority clients to make room for the new high-priority arrivals. It
can be seen that at mostΩ(i)(= �(nm− i)/α	) slots can be squeezed out for the new high-priority clients.
Sincenm ≥ i ≥ 0, it can be seen that�nm/α	 ≥ Ω(i) ≥ 0. Note thatΩ(i) is defined as the number
of slots that can be squeezed out for the arrival of new high-priority customers wheni high-priority and
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nm − i low-priority customers reside in the common pool. While the probability distribution of state
(i, nm − i), namelyP(i, nm − i) in Eq. (6), is sensitive to the relative arrival and service rates of high-
and low-priority customers,Ω(i) is not a function of arrival rates. Two methods are developed in the
following to approximate the pay-off rate obtained by negotiation.

3.1.1. Method 1
The arrival–departure process of high-priority clients, under a negotiation process, can be modeled as

a M/M/Ω(i)/Ω(i) queuing system. The arrival rate isΛ(i) = ϕhP(i, nm − i), wherei is the number of
high-priority clients in the common pool partition before negotiation is performed. We can see thatΛ(i)
strongly depends on the value ofP(i, nm − i) as shown inEq. (6). SinceP(i, nm − i) depends on the arrival
rates and service rates of high- and low-priority clients, so doesΛ(i). Each time a new high-priority client
is admitted,α low-priority clients are degraded and the penalty for the degradation isvl . Note that the
model is no longer valid after a high-priority client is admitted into the shared pool. It is because that
the new arrival rateΛ(i) = ϕhP( ) is changed fromϕhP(i, nm − i) to ϕhP(i + 1, nm − i). However, to
simplify the approximation computation, we assume the queuing model ofM/M/Ω(i)/Ω(i) is still valid
during the whole negotiation process. The penalty rates of high-priority and low-priority clients are

nm∑
i=0

Λ(i)qh
(1/Ω(i)!)(Λ(i)/µ)Ω(i)∑Ω(i)

j=0 (1/j !)(Λ(i)/µ)j
, (8)

and
nm∑
i=0

P(i, nm − i)ϕlql . (9)

The reward rate of negotiation is

nm∑
i=0

[
Ω(i)∑
κ=0

kµ(vh − vl)
(1/k!)(Λ(i)/µ)k∑Ω(i)
j=0 (1/j !)(Λ(i)/µ)j

]
. (10)

The overall pay-off rate can be approximated as(2) + (3) + (7) + (10) − (8) − (9).

3.1.2. Method 2
Another approach to modeling the negotiation process is to calculate the pay-off rate for eachP(i,

nm − i). The negotiation process is modeled as aM/M/Ω(i)/Ω(i) queuing system with the arrival rate of
ϕh. The penalty rate of high-priority clients can be expressed byEq. (8), whereΛ(i) is replaced withϕh.
Similarly, the reward rate of high-priority clients can be expressed byEq. (10), whereΛ(i) is replaced
with ϕh. The pay-off rate of high-priority clients in the system with negotiation is

nm∑
i=0

P(i, nm − i)

[
Ω(i)∑
k=0

kµ(vh − vl)
(1/k!)(ϕh/µ)k∑Ω(i)
j=0 (1/j !)(ϕh/µ)j

− ϕhqh
(1/Ω(i)!)(ϕh/µ)Ω(i)∑Ω(i)

j=0 (1/j !)(ϕh/µ)j

]
. (11)

CombiningEqs. (2), (3), (7), (9) and (11), the overall pay-off rate of a system using the dynamic threshold
admission control with negotiation can be approximated as(2) + (3) + (7) + (11) − (9).
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Table 2
Algorithm for finding the sub-optimal threshold setting

Partition(W) {
Max pay = −1;
Fornh = 0 to N do

Fornl = 0 toN − nh do
nm = N − nh − nl ;
pay = M1(W, nh, nl , nm);
if pay > Max pay then

Max pay = pay;
Assign (nh, nl , nm) as optimal threshold setting;

End for
End for
Return the optimal threshold setting;

}

3.2. Applying the analytical methods

The system pay-off rate with the threshold values (nh, nl , nm) can be approximated by the two proposed
methods, Method 1 and Method 2, inSection 3.1. Given a system workload, the two methods can be
applied to find the sub-optimal threshold, as shown inTable 2. LetW be the system workload characterized
by (N, λh, λl , µ, vh, vl , qh, ql , α). We can see that sub-routinePartition(W) calls Method 1/Method 2
(M1/M2 for short) iteratively until the maximum value is found. The input parameters to Methods 1
and 2 are the system workloadW and the threshold values (nh, nl , nm). Since the time complexity of
Partition(W) is in polynomial time, finding the sub-optimal threshold setting can be performed in real
time, upon the dynamic change of system workload.

4. Simulations

4.1. SPN model

Another approach to computing the value of the pay-off rate for a system is to use the SPNP[8], given
a set of input parameters. The SPNP is a modeling tool developed in the Duke University for solving the
SPN models. The SPN model of a system can be described in the C-based SPN Language (CSPL) of the
SPNP. The steady-state solution of the SPN model can be solved by writing the SPNP output functions.
Interested readers are suggested to study the SPNP manual[8] for further details.

The SPN model of the dynamic threshold scheme with negotiation (NEG) is illustrated inFigs. 1
and 2. The places RH, RL, and RS indicate the available capacity slots in the three partitions, the high,
low, and common pool partitions, and have initiallynh, nl , andαnm tokens, respectively. In this model,
one token represents one capacity slot and there areN tokens in the system. H and L represent the number
of the high- and low-priority clients served by the high and low partition, respectively. SH and SL denote
the number of the high- and low-priority clients served by the common pool partition, respectively. H,
L, SH, and SL is set to zero initially. The place, SLL, indicates the number of degraded low-priority
clients and is initialized to 0. One token in the high and low partitions represents one capacity slot in the
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Fig. 1. The interpretation of places, transitions, and arcs of the SPN model for the NEG.
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Fig. 2. The SPN model of the NEG.

system, whileα tokens in the common pool partition represents one slot. Therefore, a client served by the
common pool partition consumesα tokens by the transition T1 or T2, and returnsα tokens to RS by T3
or T4 when leaving. When a negotiation process occurs,α low-priority clients (totallyα′ tokens) from SL
are degraded. Each loses a token and they contributeα tokens in total. A new high-priority client is then
able to be admitted and enters the place SH by the transition T6. The degraded low-priority clients (with
totalα(α − 1) tokens) enter the place SLL by T6. A degraded client may leave the system and returns its
tokens by T5. Degraded clients are resumed to the normal service level by T7, if RS contains available
resource (i.e., tokens released by other clients). The interpretation of the places, arcs, and transitions is
given inFig. 1. Note that the three SPN sub-models for the high/low/common partitions are synchronized
via the enabling functions and the markings of the places, as shown inFig. 1.

The interpretation of key transitions inFig. 1is given as follows. Transition T1 with rateλh is enabled
when the number of marking in the place RH is zero. It indicates that a high-priority client enters the
common pool if the high partition is fully occupied. Therefore, the net arrival rate of high-priority clients
to the common pool can be approximated byλh × probability (high partition is full), which is equivalent
to the terms inEq. (4). Similar relation can be observed among transition T2,λl , andEq. (5). Interested
readers may refer toFig. 1andSection 3for further details.

The system pay-off rate with the threshold values (nh, nl , nm) can be exactly computed by using the SPN
model. Therefore, given a system workload, the SPN model can be applied to find the optimal threshold.
The algorithm for using the SPN model to find the optimal setting is similar to the one shown inTable 2,
and it is omitted herein. However, the time complexity of using the SPN model is in exponential time. It
is infeasible to apply the SPN model to the dynamic workload change environment.
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4.2. Numerical results

Consider an example of building an on-demand multimedia system on CATV network[17]. The system
delivers the multimedia services via the hybrid fiber coaxial (HFC) access network. Clients with different
priority levels enter the system via QoS manager. The main responsibility of the QoS manager is admission
control and dynamic resource (i.e. network bandwidth and/or server storage) allocation. An array of 64
disks each with a storage capacity of 1 GB can be implemented in the server, as indicated from the
experiment results[6].

Continuous media blocks with 512 KB each of a video stream are randomly stored on the disk. The
playback rate is assumed to be 30 frames/s per client request. For such physical configuration, the maxi-
mum number of clients that concurrently exist in the system was found to be near 16 if strict deterministic
admission control is performed. The number of clients could be up to 32 if video compression is applied.
According to our cost model, high-priority clients contribute higher reward and incur higher penalty if
rejected. Workload characteristics of such a system are changeable such that a static admission control
algorithm is infeasible and unable to adapt to the run time changes.

Admission control with NEG can be implemented in a multimedia system as stated above. One challenge
facing the NEG algorithm is dynamic partitioning of the system resource as workload changes. An optimal
setting of the threshold values for any workload conditions shall be found so as to maximize the system
pay-off rate. One way to dynamic partitioning is to identify the possible workload conditions before the
system is up for service. Time complexity is the main concern of solving the SPN model by the SPNP.
The experiments are run on a SUN Ultra-1 model 140 machine equipped with a 143 MHz UltraSPARC
processor, 32 MB memory, and 2.1 GB FAST SCSI-2 hard disk. On average, it takes 94 and 6678 s (i.e.
approximately 1 h and 50 min) to find out the optimal settings, forN = 16 and 32, respectively. For such
a reason, the optimal threshold values are obtained from the SPNP tool before run time, for each identified
workload. The optimal settings are maintained in a table such that the QoS manager is capable of looking
up the table to accordingly re-configure the resource partition at run time, upon a workload change. The
limitation of such an approach is the contents of the look-up table. In an event of a sudden change that
was not identified before hand, the SPNP-approach is unable to respond in real time. Consequently, the
SPNP-approach falls apart.

On the other hand, the analytical approaches are capable of finding sub-optimal solutions in real
time, as workload changes. The optimal threshold values found by Methods 1 and 2 could be different
from those by the SPNP. Let the optimal settings found by the SPNP, Method 1, and Method 2 bex1,
x2, andx3 respectively, given a workload condition. Note thatx2 (or x3) being the optimal setting of
Method 1 (or 2) means that the pay-off value ofx2 (or x3) calculated by the method is the maximum.
However, it is not true in the real case. The true pay-off rate ofx2 should be the one obtained by solving
the SPN model when the partition is specified according to the values inx2. Therefore, the maximum
pay-off values by Methods 1 and 2 are calculated by mapping their optimal threshold values to the
SPNP.

Experiment results are illustrated inFigs. 3 and 4. The combined threshold settings along with the
pay-off rates are also shown inTables 3 and 4. They demonstrate that the system performance (pay-off
rate) by the analytical methods is very close to that by the SPNP. Method 2 (short for M2 in the figures)
performs slightly better than Method 1 (short for M1 in the figures). ForN = 16, the average perfor-
mance difference between the SPNP and M1 is 3.88%, while that between the SPNP and M2 is 2.83%.
ForN = 32, the difference between the SPNP and M1 is 4.53% on average, while that between the SPNP
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Fig. 3. Experimental results forN = 16.

Fig. 4. Experimental results forN = 32.



12 S.-T. Cheng et al. / Performance Evaluation 52 (2003) 1–13

Table 3
The actual threshold and the pay-off rate forN = 16 cases

N = 16 Pay-off rate Threshold setting (nh, nl , nm)

SPNP Method 1 Method 2 SPNP Method 1 Method 2

A = 5, 10, 1, 2, 1, 2, 1 16.06934 15.84194 15.95887 0, 0, 16 0, 4, 12 1, 0, 15
B = 10, 10, 1, 2, 1, 2, 1 18.13524 18.13524 16.66035 0, 0, 16 0, 0, 16 8, 0, 8
C = 15, 10, 1, 2, 1, 2, 1 14.34474 13.70442 11.32386 0, 0, 16 8, 0, 8 16, 0, 0
D = 5, 10, 1, 5, 1, 2, 1 34.31614 30.64462 31.04892 8, 0, 8 0, 4, 12 0, 0, 16
E = 10, 10, 1, 5, 1, 2, 1 49.63583 46.17084 49.45205 8, 0, 8 0, 0, 16 7, 0, 9
F = 15, 10, 1, 5, 1, 2, 1 50.67544 49.60181 50.48349 10, 0, 6 0, 0, 16 12, 0, 4
G = 5, 10, 1, 10, 1, 2, 1 56.01489 53.39420 56.01489 0, 0, 16 0, 4, 12 0, 0, 16
H = 10, 10, 1, 10, 1, 2, 1 92.89684 92.89684 92.50624 0, 0, 16 0, 0, 16 6, 0, 10
I = 15, 10, 1, 10, 1, 2, 1 113.97154 108.36357 110.00581 16, 0, 0 0, 0, 16 11, 0, 5

Table 4
The actual threshold and the pay-off rate forN = 32 cases

N = 32 Pay-off rate Threshold setting (nh, nl , nm)

SPNP Method 1 Method 2 SPNP Method 1 Method 2

A = 10, 20, 1, 2, 1, 2, 1 34.66556 34.34261 34.32542 0, 0, 32 0, 12, 20 4, 5, 23
B = 20, 20, 1, 2, 1, 2, 1 40.25709 40.25709 37.91433 0, 0, 32 0, 0, 32 16, 0, 16
C = 30, 20, 1, 2, 1, 2, 1 34.17334 33.06303 28.44801 0, 0, 32 18, 0, 14 32, 0, 0
D = 10, 20, 1, 5, 1, 2, 1 73.46047 63.98188 64.66544 15, 4, 13 0, 13, 19 0, 0, 32
E = 20, 20, 1, 5, 1, 2, 1 111.13932 98.54519 110.64375 17, 0, 15 0, 1, 31 15, 0, 17
F = 30, 20, 1, 5, 1, 2, 1 112.34387 110.45593 112.13882 24, 0, 8 0, 0, 32 26, 0, 6
G = 10, 20, 1, 10, 1, 2, 1 114.66524 107.16476 114.66524 0, 0, 32 0, 14, 18 0, 0, 32
H = 20, 20, 1, 10, 1, 2, 1 197.30296 194.27755 196.17262 0, 0, 32 0, 1, 31 13, 0, 19
I = 30, 20, 1, 10, 1, 2, 1 245.34383 237.59357 240.41279 32, 0, 0 0, 0, 32 24, 0, 8

and M2 is 2.48%. The performance differences between the SPNP and the approximation methods are
within a reasonable range.

5. Conclusions

In this paper, we have investigated the admission control problem for the systems with two classes
of client requests and the analytical model. In the cost model, each class of request has its reward and
penalty to the system. High-priority requests are associated with high reward and penalty values. We
have proposed an admission control algorithm with negotiation mechanism and evaluate its performance.
Negotiation attempts to accept high-priority requests under heavy and over loaded systems, lowering the
service requirements of some low-priority requests. The SPN model is used to find optimal solutions and
the analytical approaches are developed to find sub-optimal ones. The results show that the sub-optimal
solutions found by the proposed analytical methods are very close to optimal ones. Therefore, a multimedia
server can exploit the proposed performance-evaluation methods to dynamically adjust threshold values
based on the characteristics of the workload in order to achieve high system performance.
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Some future research areas include: (a) extending negotiation to a system with multiple priority
classes; (b) changing the mandatory negotiation mechanism to a voluntary degradation one, in which
the low-priority clients have options either to keep their QoS levels or to accept the degradation in an
altruism fashion.
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