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Summary & Conclusions — This paper uses two modeling tools
to analyze the reliability of real-time expert systems: 1) a stochastic
Petri net (SPN) for computing the conditional response time
distribution given that a fixed number of expert system Match-
Select-Act cycles are executed, and 2) a simulation search tree for
computing the distribution of expert system Match-Select-Act cycles
for formulating a control strategy in response to external events.
By modeling the intrinsic Match-Select-Act cycle of expert systems
and associating rewards rates with markings of the SPN, the
response time distribution for the expert system to reach a deci-
sion can be computed as a function of design parameters, thereby
facilitating the assessment of reliability of expert systems in the
presence of real-time constraints. The utility of the reliability model
is illustrated with an expert system characterized by a set of design
conditions under a real-time constraint. This reliability model allows
the system designers to: 1) experiment with a range of selected
parameter values, and 2) observe their effects on system reliability.

1. INTRODUCTION

Acronyms & Abbreviations

A* a particular heuristic-based, conflict-resolution
algorithm [1, 27]

Al artificial intelligence

SPN  stochastic Petri Net.

An embedded rule-based expert system is characterized by
its intrinsic Match-Select-Act [29] execution cycle in which it
responds to an external event (eg, a sensor event which inputs
facts) by first matching arriving facts against the Lh.s. condi-
tion elements of the rules comprising the expert system (match
phase), then selecting a rule to fire among the rules that are
instantiated (select phase), and finally executing the r.h.s. ac-
tions of the selected rule (act phase). Firing a rule can generate
more new facts, causing the Match-Select-Act cycle to activate
again. This process continues until some newly generated facts
meet the termination condition, at which point the expert system
has reached a decision and the sequence of rules fired on the
solution path is the formulated strategy in response to the ex-
ternal event.

Previous studies regarding the Match-Select-Act cycle have
centered on the performance analysis of each separate phase.
Furthermore, these studies are conducted independently.

For the match phase, the emphasis is on performance im-
provement due to using certain matching algorithms {21, 24,
28] such as the Rete [11] and Treat [20] algorithms. The basic
principle behind these matching algorithms is that, instead of
matching all the facts in the working memory against the r.h.s.
condition elements of all the rules in the rule set, only the rules
that are actually affected by newly generated facts in each cy-
cle are evaluated, thereby speeding-up the match phase per cy-
cle. Expert system compilers based on these matching
algorithms have been implemented for OPS5 production system
programs [10, 15, 21). These studies: 1) focused on the (se-
quential or parallel) speed-up of the match phase [21] without
considering the select phase, or 2) simply assumed that a static
conflict-resolution policy has been used (eg, the salient feature
in CLIPS [12] or the top-rule first policy [14]).

For the select phase, one research area is aimed at reduc-
ing the number of expert system cycles for reaching a decision
by using a heuristic-based algorithm to resolve conflicts regar-
ding which rule or group of rules should be fired, typically by
modifying an existing conflict-resolution strategy of an expert
system shell such as OPS5 [6, 17] or AF [8, 13]. A related
research area focuses on obtaining the average number of nodes
expanded (and thus the average number of cycles executed) by
a heuristic-based, conflict-resolution algorithm such as A* [1,
27], assuming that the time required to expand a node in an
expert system inference tree Or graph is constant. The assump-
tion that ‘the cycle time less the time for the select phase’ (time
for matching & acting) is constant is not appropriate for expert
systems. Also, the average time-complexity analysis is not useful
for system reliability assessment because it cannot account for
the variation of the system response time.

For the act phase, the performance gain due to parallel rule
firing has been investigated [15, 16]. The basic idea is to reduce
the number of Match-Select-Act cycles by applying an in-
terference detection algorithm in the select phase to choose as
many non-interfering rule instantiations as possible [16]. These
non-interfering rule instantiations are then fired simultaneous-
ly in the act phase. Since all non-interfering rules can be fired
in every cycle, assuming infinite processing elements are
available, there is no need to use any conflict-resolution
algorithm in the select phase. These studies (eg, [16]) do not
include the effect of matching. Furthermore, similar to the
studies conducted in other phases, the performance evaluation
concentrates only on the average time behavior of the system.

We propose a model that ties in all three phases of the
Match-Select-Act cycle. Unlike previous studies, the objective
is not to devise new matching, conflict-resolution, or firing
algorithms for improving the performance of individual phases;
rather, we are interested in providing a framework with which
the system reliability of real-time expert systems can be analyzed.
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In doing so, an equation for system reliability of expert systems
is first derived. Then, by using a reward SPN [18] describing
the intrinsic Match-Select-Act cycle of expert systems to ac-
count for the response time variation in all three phases, the
parameters identified by the equation are parameterized (ie,
computed using analytic or statistical means), allowing the
system reliability to be computed.

2. DEFINITIONS & ASSUMPTIONS

Notation

Ryygem  System reliability

1,, t,  [planning, execution] time

l; reliability of hardware component i during time ,+¢,
) {I,e 500}
s constant software-failure rate due to software residual

faults

Rpgen(7; @) general hardware-reliability function; 7, é:
various [times, parameters]

Pc(t,) Priheuristics used in the planning method work dur-
ing time #,}

Py(t,,t,) Pr{plan is valid during time z,+,|plan is based on
observation at time 0}

f(1), F() pdf{e}, Cdf{r}

tr real-time constraint for a problem-solving request

Mys average number of fact changes per rule firing

mg, average number of rule instantiations per fact change

f(t,1j) pdf{response time|j Match-Select-Act cycles are ex-
ecuted to reach a decision}

Jeye () pdf {number of Match-Select-Act cycles to reach a

decision}
Seye GIN)  pdf{number of Match-Select-Act cycles to reach a
decision|solution is found at depth N of the search tree}
average number of [positive, negative] rule instantia-
tions per rule firing
b b, — b,
Paadrs Premover Pr{when a rule fires, a new rule instantiation
generated is a [positive, negative] rule instantiation and
is [added into, removed from] the conflict set}

by, by

g(n)  cost of the path accumulated from the root node to node
n in the search tree

h*(n) remaining cost from node n to a nearest goal node in
the search tree

h(n)  an estimate of h*(n) such that 0 < h(n) < h*(n)

Y(n) (h*(n) — h(n))/h*(n): error of the heuristic
estimate on node n

€ error bound on Y(n) for each node n in the search tree

Nyax  maximum depth of the search tree

N depth of the search tree at which a solution is found

P(N) Pr{asolution is found at depth N of the search tree};
IN™ P(N) =1

y transition rate of transition ¢ in the Petri net

R number of rule instantiations in the conflict set

T average time to scan a node in a sorted linear list with

each node corresponding to a rule instantiation stored
in the list

T, average time needed to compute the heuristic estimate
g(n) +h(n) for a rule instantiation n

T, average time needed to execute a r.h.s. action

VA number of nodes (rule instantiations) expanded by A*

in a b-ary tree
range of arc costs in the search tree
indicator function: 9(True)=1, 9(False)=0.

(o, B)
9(4)

Other, standard notation is given in ‘‘Information for Readers
& Authors’’ at the rear of each issue.

2.1 Definitions

The system reliability of an expert system can be defined
as the probability that, for a problem-solving request (or mis-
sion) issued from the environment, the system can successfully
plan and execute a response without causing a hardware, soft-
ware or timing failure [7]:

Pr{mission succeeds} = j S Ry gen(tpste; 1)
0Jo

'exp(')‘s'tp)'PC(’p) 'PV (tp’te) dF(’p’te)- 0y

This reliability definition is on a per problem-solving request
basis. Problem solving requests are s-independent from each
other and are issued from the environment as demanded by the
occurrences of real-time events. We consider hard real-time en-
vironments where a violation of real-time deadline is a system
failure. The notion of ‘‘soft’’ timing failures where the ac-
cumulation of a series of ‘‘soft’’ timing failures can cause a
system failure [4] is not considered in this paper.

Two types of faults are considered in (1).

1. Type #1 is due to software residual faults (program bugs)
which, when executed under particular conditions, can cause
a software failure. For this type of fault, existing software
reliability models [23] can be used for estimating the software-
failure rate. In general, this software-failure rate decreases as
more time is spent in testing & debugging the program. Since
typically the program is not modified in the operational phase,
the software-failure rate due to program bugs can be considered
constant in the operational phase: A, in (1) is modeled as a con-
stant. <

2. Type #2 is due to the fundamental Al techniques used
by the expert system program which might not work all the time.
For example, a conflict-resolution algorithm used by an expert
system program might find only sub-optimal solutions and might
even fail to find a solution in certain cases, especially when there
is a stringent real-time constraint. This type of fault exists even
if the program is devoid of program bugs (such as a bug in im-
plementing the algorithm, or constructing the rule set); and it
is not removable even though the system has been tested &
debugged for a long time. This fault type can cause the follow-
ing failures to occur.

a. Fuzzy-output failures [3, 4]: The output solution found
by an expert system program might not be correct all the time.
The degree to which the output is acceptable can be modeled
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by Pr{search heuristics work in tp}, ie, Pc(t,) in (1) with the
value of 1 representing that the output is totally acceptable, and
0 representing that the output is totally unacceptable. A strong
s-correlation exists in expert system programs between 7, &
Pc(t D ).

b. Timing failures: In trading response-time with program
correctness, if the expert system chooses to compromise the
system response time in searching for a more acceptance out-
put in a combinatorial search space, it can violate the real-time
deadline requirement.

c. Hardware failures: If the expert system chooses to com-
promise the program correctness in searching for a quicker but
inferior solution in order to avoid timing failures, the inferior
solution might use inferior hardware components in executing
the solution and can cause a hardware failure with a higher prob-
ability. This effect is modeled by R,,,gen(tp,te;l) in (1).

2.2 Assumptions

1. The real-time expert system runs under a hard real-time
environment so that the system fails if it fails to make & ex-
ecute a decision within #g:

Py(tpte) = 9(t,+1, < 1g).

2. The expert system runs on a hardware platform that
obeys the exponential failure law with a constant Ay:
Rh,gen(tp:te;l) = CXP(‘)\h‘ (tp+te) )

3. The execution time of the formulated strategy is im-

mediate, ie, the operator can immediately execute the strategy
once it is formulated by the expert system:

fo(te) = 8(0),

5(t) = standard impulse function having unit area concentrated
in the immediate vicinity of . [This assumption removes the
possibility of hardware failures in the execution phase.]

4. There is no software residual fault, ie, the expert system
has been tested for a long time before release so that A, = 0.
[This assumption removes the possibility of software failures
caused by program bugs.] -

Under these assumptions,

R

exp(-Ny-1,) -Pc(t,) dF(1,).

Pr{mission succeeds} = 5
0
@
These assumptions are reasonable for expert systems. Expert
systems typically:

« provide control strategies only to human operators whose ex-
ecution speed can be considered immediate.

e run on microprocessor-based computers whose hardware-
failure rate will be considered constant.
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Eq (2) implies that the most important factor affecting system
reliability is F(z,). This makes intuitive sense because the high
variability of the response time of expert systems is a major
reason why expert systems have been used for advisory rather
than for control purposes. Section 3 uses a reward SPN model
to compute F(z,).

Other than F(z,), eq (2) also requires the parameteriza-
tion of N, & Pc(1,). While the assessment of N\, is subject to
,standard techniques [2], Pc(1,) depends on whether the
conflict-resolution algorithm used in the select phase has any
fundamental limitations. For example, the use of heuristics in
a conflict-resolution algorithm can result in occasional failures
even though the algorithm is devoid of any software residual
faults (even A\, = 0). For exhaustive-search-based (such as
depth-first and breadth-first) conflict-resolution algorithms,
Pc(t,) = 1 because the probability that the search can be misl-
ed by heuristics is zero since no heuristics are ever used.
However, this might result in performance degradation because
rules are selected statically (eg, the static priority policy in
CLIPS [12]) without considering the possibility that selecting
rules heuristically might lead the system to reach a decision more
quickly. The performance of the system can be improved by
using heuristic-based conflict-resolution algorithms in the select
phase (such as the Means-Ends-Analysis algorithm in OPS5
based on recency & specificity [19] or A*). However, to avoid
compromising system reliability, some admissibility conditions
might have to be satisfied to guarantee Pc(z,) = 1. For ex-
ample, if A* is used as the conflict-resolution algorithm, then
the admissibility condition to guarantee Pc(t,) = 1 is that the
heuristic estimate of any rule instantiation in the conflict set,
ie, the estimate of the distance in terms of the execution cost
from a rule in the conflict set to the nearest rule leading to ter-
mination, must be not greater than the actual distance of that
rule [27]. When this condition is violated, A* can lead to occa-
sional failures.

Assumption

5. The admissibility requirement of the conflict-resolution
algorithm is satisfied by the design so that Pc(t,) =1
However, there exists a variation in heuristic estimates due to
the fuzzy nature of expert system processing, thus causing the
number of Match-Select-Act cycles executed by the expert
system before a decision is reached to be a distribution. <«

With this additional assumption #5, we remove fuzzy-
output failures from our failure model and (2) simplifies to:

Rgystem = S ’ exp(-M,-1,) -f(8p) dtp. 3

0

3. THE REWARD SPN MODEL

We use a stochastic Petri net (SPN) to model the Match-
Select-Act cycle in expert systems, with the objective of com-
puting f(2,). The model is shown in figure 1 with circles
representing places and bars representing transitions. The 8 tran-
sitions and their representations are:
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place

transition

O
0
57
®

incoming inhibitor arcs from places new-facts, a-pos-rule and a-neg-rule

incoming inhibitor arcs from places a-rule-to-fire, new-facts, matched-rules, a-pos-rule, and a-neg-rule

confl-set

a-neg-rule

premover tremover

elapses, if it is a timed transition. In our SPN model, only tran-
sitions paddr & premover are immediate (a constant O distribu-
tion), which are associated with probabilities p,qqr & Premover
to model the fact that a new rule instantiation can be a positive
instantiation with probability p,44, O a negative one with prob-
ability premover- TO simplify the analysis, the firing times of
other transitions are exponentially distributed, thus rendering
the Petri net stochastic and susceptible to solution techniques
provided by the software tool Stochastic Petri Net Package

stop a-rule-to-fire new-facts
tacts tactc tmatch
LJ
tselect
Figure 1. Petri-Net Model for Rule-Based Expert Systems
tactc act phase leading to the next cycle
tacts act phase leading to a decision
tmatch match phase
paddr Pr{positive instantiation}
premover Pr{negative instantiation}
taddr action for adding a positive rule instantiation to the
conflict set
tremover action for removing a negative rule instantiation
from the conflict set
tselect select phase.

The SPN has 7 places which serve as token-holders. Each place
can hold an arbitrary number of tokens corresponding to the
objects held in the place. For example, the 3 tokens in place
new-facts in figure 1 correspond to 3 facts being held in that
place, waiting to be matched against the 1.h.s. condition elements
of rules by the matching algorithm. Similarly, tokens in place
matched-rules corresponds to new rule instantiations produc-
ed in a cycle, waiting to be added to (with probability P,y for
positive instantiations) or removed from (with probability
P_.move fOr negative instantiations) the conflict set.

The Match-Select-Act cycle is executed by the expert
system sequentially in a uniprocessor; this is modeled by ad-
ding inhibitor arcs from places new-facts, a-pos-rule, and a-
neg-rule to transitions paddr and premover as well as from
places a-rule-to-fire, new-facts, matched-rules, a-pos-rule,
and a-neg-rule to transition tselect. Since SPN enables a tran-
sition only when all incoming non-inhibitor arcs emanate from
places containing one or more tokens, and all incoming inhibitor
arcs emanate from places containing no tokens, the use of in-
hibitor arcs in SPN ensures that the select phase in a cycle is
executed only after the act phase in the previous cycle and the
match phase in the same cycle have been executed, even if the
conflict set is not empty (a nonempty place confl-set). For ex-
ample, transition paddr is enabled only if place matched-rules
is nonempty and place new-facts is empty. When a transition
is enabled, the transition fires immediately, if it is an immediate
transition, or after an amount of time determined by a random
sample from the associated distribution with the transition

(SPNP) [5, 22]. Our approach can be easily extended to Ex-
tended Stochastic Petri Net (ESPN) [9] models in which firing
times are general distributions.

Regardless of the distribution type, when a transition is
fired, one or more tokens, depending on the multiplicity’ of the
associated input arc, are removed from the input place, and one
or more tokens, depending on the multiplicity of the associated
output arc, are added to each output place. The multiplicities
of arcs in the SPN model are system parameters and must be
modeled explicitly. There are two arcs having multiplicity
greater than 1: the output arc from transition tactc to place new-
fact (where the arc multiplicity is labeled with m; in figure
1); and the output arc from transition tmatch to place matched-
rules (where the arc multiplicity is labeled with mg). All other
arcs only have multiplicity of 1 (the default). m; accounts for
the fact that firing a rule in a cycle can put one or more facts
into place new-facts, depending on the number of actions
specified in the r.h.s of the rule selected to fire in the act phase.
Since rules are not tagged, the number of facts generated in each
cycle is not known a priori, but we can associate m;s with a
multiplicity function that generates a random number
characterizing the average number of actions in the r.h.s. of
all the rules, thus accounting for the stochastic behavior of m;.
This distribution can be obtained by parsing the expert system
rule set [15]. On the other hand, mg, can be associated with

!An arc with multiplicity k can be thought of as k arcs having the same
source & destination.
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a multiplicity function that generates a random number
characterizing the average number of rule instantiations per fact,
which can be obtained by analyzing the run-time characteristics
of the expert system [15]. Although the number of rules instan-
tiated per fact change can be determined this way, the matching
algorithm handles only one fact change at a time since the arc
multiplicity of the input arc from place new-facts to transition
tmatch is 1.

A state of the SPN is characterized by the distribution of
tokens in the places, called a marking of the SPN. Initially, an
external (I/O sensor) event puts one or more tokens (depending
on whether the sensor is a multiple or single sensing device)
into place new-facts to start a Match-Select-Act cycle, thus
marking the initial state of the SPN. When a strategy is for-
mulated by the expert system in response to the event, place
stop is no longer empty. The termination condition causing
place stop to become nonempty is examined by a special enabl-
ing function associated with transition tacts. When the specified
termination condition is not satisfied, the enabling function
disables transition tacts, thus causing transition tactc to fire
and, consequently, activating the next Match-Select-Act cycle;
otherwise, transition tacts is fired over transition tactc, forc-
ing the expert system to terminate. This is achieved by
associating a high priority (1) with transition tacts. By default,
transitions have the lowest priority (0) and have no special enabl-
ing functions.

Because the probability that the system stays in a particular
marking (state) evolves over time as a function of the distribu-
tions of transition firing times and the arc multiplicities of the
SPN model, the response time distribution of the expert system
subject to a specified termination condition, f(t,|termination
condition), can be obtained by associating a reward rate of 1
with those markings in which place stop is nonempty and a
reward rate of 0 otherwise. In the context of rule-based expert
systems, the termination condition corresponds to the number
of Match-Select-Act cycles executed by the expert system to
formulate a decision.

fg,) = E Jeye G)-F(1,1)) dj. (O]
0

The r.h.s. of (4) can be used subsequently to compute the system
reliability based on (3).

4. EXPERT-SYSTEM MODEL
AND RELIABILITY COMPUTATION

This section illustrates the utility of the SPN model with
an expert system model characterized by the design conditions:

1. A rule firing results in an average of b, positive and
b, negative rule instantiations to the conflict set. (This condi-
tion applies to several expert systems [15] where the ‘average
number of changes made to the conflict set per production rule
firing’ as well as the ‘average size of the conflict set’ can be
statistically measured.) Further, b, > b,; therefore the search
space for formulating a decision (finding a solution path) is a
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b-ary tree, meaning that a rule firing, on the average, adds b
rules to the conflict set (b nodes to the search tree). )

2. A*[1, 27, 29] is used as the conflict-resolution algorithm
in the select phase to find a cost-effective solution path. To
achieve this goal, A* uses the sum of 2 quantities as a heuristic
estimate for the cost of a potential solution path:

i. g(n). The cost of the path accumulated so far from
the root node (the first rule instantiation fired in
response to a real-time event) to a candidate rule in-
stantiation n at the front of a partially-explored solu-
tion path.

ii. h(n). The remaining cost from rule n to a nearest
rule instantiation whose firing leads to a decision.

A* always selects (and subsequently fires) the frontier rule in-
stantiation of a solution path having the minimum g(n) + h(n).
Furthermore, to guarantee Pc(t,) = 1, the admissibility con-
dition 0 < h(n) < h*(n) is satisfied, thus guaranteeing that
A* always finds a solution path with the cheapest cost [27]. =

3. The error of the heuristic estimates, #* (n) — h(n),
is relative [27] and the error function, Y(n), is uniformly
distributed over the interval [0,e], 0 < e < 1, with e characteriz-
ing the degree to which h(n) deviates from A* (n) and thus the
complexity of the A* algorithm. When e = 0 (h(n) = h* (n)),
the number of rules fired is linear in N, the depth of the solu-
tion path found by A*; on the other hand, as e increases, 4 (n)
deviates more and more from h* (n), resulting in the number
of rules fired being exponential in N. -

4. The conflict set is maintained by a linear list data struc-
ture in which all rule instantiations are sorted by increasing
&(n) +h(n). In terms of priority ordering, the priority of rule
n in the conflict set is inversely proportional to g(n)+h(n),
so that the rule with the lowest g(n) 4+ A (n) has the highest
priority. Since A* always selects the rule with the highest priori-
ty to fire, the rule at the head of the sorted linear list is always
selected to fire in every cycle.

5. The last rule instantiation leading to a decision in
response to an external event is located at depth N of the search
tree with probability P(N), a parameter which can be obtained
by analyzing a large sample of event instances. An extreme case
is P(Npax) =1 with all leaf nodes at depth N, being solution
nodes, eg, the response trees for nuclear reactor operations [26].

<

4.1 Computation of f(z,|;) Using the SPN model

f(#,]j) can be numerically computed by parameterizing &
running the reward SPN model (figure 1) such that the enabl-
ing function associated with transition tacts enables the transi-
tion only when j Match-Select-Act cycles are executed by the
SPN. Due to the stochastic nature of the SPN model, the pro-
cessing speed of every Match-Select-Act cycle varies.
Therefore, f(t,]j) depends not only on j, but on the distribu-
tion of the transition firing times and the arc multiplicities of
the model. For the transition firing times, since we allow all
firing times to be either exponentially distributed or immediate,
it suffices to parameterize them with their transition rates or
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probabilities. Methods for parameterizing the SPN model with
the objective of computing f(#,|j) are now listed.

1. Transition rate of taddr (u.q4q,)- Because the conflict
set is maintained by a linear list data structure in which all rule
instantiations are sorted by decreasing priority, adding a positive
rule instantiation (in place a-pos-rule) to the conflict set (in place
confl-set) is a 2-step process:

i. computing g(n) +h(n) for the rule instantiation;
ii. inserting the rule instantiation into the linear list.

Since on the average one half of the list elements are scanned
before an insertion can take place, we use:

Praaar = (BR-T + T,);

T & T, can be statistically measured.

2. Transition rate of tremover (i emover)- Removing a
negative rule instantiation (in place a-neg-rule) from the con-
flict set involves first finding the rule instantiation in the linear
list and then removing it. Since on the average one half of the
list elements are scanned before a deletion operation can take
place, we use:

Brremover = (2R-T) L

3. Probabilities of pagar & Premover- A rule firing on the
average makes b, positive and b, negative rule instantiations
to the conflict set; therefore,

Paddr = bp/(bp+bn):
Premover = 1 - Paddr-

4. Transition rate of tselect (jueree). The rule with the
lowest g(n) +h(n) (highest priority) is always at the head of
the sorted linear list. Therefore, selecting a rule to fire requires
the same amount of time for deleting the head node from the
linear list:

Pselect = (T)-1~

5. Transition rate of tmatch (umay)- This is the rate at
which the matching algorithm can process a fact change, a
parameter which can be determined by analyzing the run-time
characteristics of the expert system [15] depending on the
specific matching algorithm [11 or 20] used in the match phase.
In general, this rate can be obtained by first measuring the
average numbers of tests on constant-nodes, a-memory-nodes,
B-memory-nodes, and-nodes, and or-nodes per fact change; and
then multiplying these numbers with the corresponding times
needed for the tests.

6. Transition rate of tactc (p,«). Because the multiplicity
of the output arc from transition tactc to place new-fact is not
1 but is mys which varies dynamically, pgee must

be computed cycle-by-cycle to account properly for the varia-
tion. This can be done by associating p, (the service rate of
the act phase) with a transition function which generates a ran-
dom time based on an mphase Erlang distribution such that
the service rate of a single phase of the Erlang function is the
same as the rate at which the system can execute a r.h.s action.
mys represents the number of facts produced (equivalent to the
number of r.h.s actions executed) per rule firing and is ran-
domly generated cycle-by-cycle by the multiplicity function
associated with the output arc going from transition tactc to
place new-fact. Thus, the average service rate of an Erlang
phase is (7,)'; thus e can be computed as soon as My is
generated.

7. Transition rate of tacts (uyqs)- Since all the r.h.s ac-
tions of the last rule instantiation must be executed by the ex-
pert system before a decision can be reached, s is the same
as #Lac[c- <

Figure 2 shows f(1,|j) for several j values, after
parameterizing & running the SPN model based on the set of
parameters in table 1.

Probability
0.4 - *
; * j=6
. S} o j=10
03 ¢ ;=14
* q4j=18
L]
o © 49 x j=22
0.2 - . . *
4 4. *
x ¢ * *
01 - ¥ °
: . a
o 4 * *
* Q *
$ 40 .
0.0 -
0.0 5.0 10.0 Time (msec)

Figure 2. f(t,|expert-cycle = j) As a Function of j

Based on (4), f(1,|j) obtained this way, along with f.,. (j) (see
section 4.2) can be used to compute f(1,), which subsequent-
ly can be used to compute the reliability of real-time expert
systems based on (3).

TABLE 1
Parameters for Generating Figure 2

T, 10 msec

Padar 0.8

Premover 0.2

Mye uniformly distributed over (2,4)
Mg, uniformly distributed over (1,3)
Pimatch 1/100 msec

T, 10 msec
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4.2 Computation of foy.(j) Using A Search-Tree Simulation
Model

Nmax
f;:yc(i) = E P(N) 'fcchlN)

N=1

®

The most important factor in feye GIN) is the error of the
heuristic estimates, h* (n) — h(n), for each rule instantiation
1 in the conflict set. To see this, refer to the equation in [27]
for the average number of nodes (rule instantiations) expanded
by A* in a b-ary tree, assuming that the depth of the solution
path is N:

N j d
B{Z} =N+ 1+ (1-b1)- ), Y v Tl ax ©®
j=1 d=1 k=1

Notation

Pr{node n;;, located at depth k of an off-solution-path
subtree Tj, is expanded by the underlying search
algorithm}

set of nodes, 0<j< N that represents the solution path

qj.k

njvo
Eq (6) covers the best & worst cases.

« Best case, h(n) = h*(n): foralljk, N = j = 1, k=1,
qx = 0; and Zyee = N+1;
« Worst case, h(n) = 0: for all j,k, gjx = 1.

In these two extreme cases, fuc (fIN) is the standard impulse
function having unit area concentrated in the immediate vicini-
ty of E{Z}.

However, when h(n) is a r.v. between 0 & h*(n), no
analytic form for f,,.(j|N) exists and statistical or simulation
methods must be used.

Probability
*
05 -
Nes * ¢=0.1
0 =03
b=3
04 + e=05
v a=50 * =07
0 . 3 =100 x €=0.9
03 - -
*
02 ™~
+ + % +
o1 k- . K. oo * 4 y
B F TR o
. _.X % RAE AR RV
X *0°‘r+ "*-v:‘xxx
0.0 R4 DA WA I 1"1'4; ?ﬁ X §-%
+ £
5.0 10.0 15.0 20.0 25.0

Number of Nodes Ezpanded

Figure 3. f(Number of nodes expanded|N)

We have conducted simulation studies with the objective
of computing fiy (j|N). In each simulation run, a search tree
is constructed in which:
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o total depth is Npax;

« arc costs are uniformly distributed over (o, B), a=P;

« error function Y(n) is uniformly distributed over (0,¢), 0 <
e <1;

« the solution node (and thus the optimal solution node) that
is to be found by A* is located at depth N, but other non-
optimal solution nodes might exist at the same or other depths
of the tree if that information is given, eg, all leaf nodes are
solution nodes [26].

A simulation run for computing f,. (j|N) consists of a suffi-
cient number of replication runs such that the s-confidence level
is 95%. In each replication run, N, Nyax, € @, 8 are kept con-
stant, while Y(n) and solution node locations are randomly
generated. A replication run always uses a new stream, and is
executed as follows.

1. During the process when the arc costs and solution nodes
of the tree are generated, h* () is computed and remembered
for each node n.

2. A* is applied to find the cheapest solution path at depth
N, using the knowledge of h* (n). [Of course, the cheapest solu-
tion path is found easily since h(n) = h*(n).]

3. After having determined the cheapest solution path at
depth N, the fuzzy distribution of h(n) is introduced by ran-
domly generating Y(n) and subsequently computing A (n) bas-
ed on h*(n) for each node n in the tree.

4. A* is applied, and uses only the information of h(n).
The number of nodes expanded by A* before the solution node
located at depth N is found is then recorded as the result for
a replication run and later is used as a data point for computing
Sy GIN). We modify € only on a run-by-run basis to analyze
the effect of h* (n) — h(n) on fo, (). -

Figure 3 shows an instance of feye GIN) resulting from our
simulation study as a function of ¢ for b= 3, Npax =N=6, (o,
8) = (50,100), and all leaf nodes are solution nodes. In general,
this simulation methodology allows f.,. (jIN) to be computed
numerically for any N, which, when combined with the
knowledge of P(N), allows the numerical computation of
SeyeU)s which subsequently can be used in (3) for computing
system reliability.

4.3 Computation of System Reliability

As a specific example of the utility of our expert system
model, consider a system like the REACTOR monitoring ex-
pert system [25, 26} embedded in a nuclear power plant for
recommending an appropriate strategy for core-cooling safety
during an emergency. The function of the system is to select
the most efficient path out of all available paths which can be
used to provide core cooling under a real-time constraint.
Similar to REACTOR expert system, all available paths form
a tree-like structure with all leaf nodes at depth Nmax being
solution nodes. Furthermore, the system uses A* as the conflict-
resolution algorithm for selecting a rule to fire in each Match-
Select-Act cycle, compute h(n), and adjust the arc costs of the
tree dynamically in response to external events. This example
system is characterized by the parameters in table 2.
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TABLE 2
Parameters of An Example Expert System

bp 4
b, 1
Ninax 6
P(Npax) 1 (all leaf nodes are solution nodes)
(o, B (50,100)
T 1 msec
T, 10 msec
Paddr 0.8
premover 02
My uniformly distributed over (2,4)
Mg uniformly distributed over (1,3)
Kematch 1/100 msec
T, 10 msec
M l/month = 1/2.5-10° msec

Reliability (Ryyscem)

1.00 £ x ¢=0a1 -

O =03 * ; N i x f t :
* o + * X
80 F +e¢=05 + " <
* ¢=07 o * X
60 |k X €=09 * + . X
BRI . X
40 R * x
s . * x
20 + v x
.00 » E X - L 1 )
3 5 msec

Real - Time Constraint (tg)

Figure 4. Effect of tg & ¢ on System Reliability

Figure 4 shows the system reliability as a function of the
real-time constraint ¢z and the error bound of the heuristic
estimates €, using (3) - (5). The expert system can be considered
real-time only when the real-time constraint is moderately large
(eg, tg > 4 msec) and the error bound of heuristic estimates
is moderately small (eg, ¢ < 0.5).
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