IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH 81

Effect of Parallel Planning on System Reliability of
Real-Time Expert Systems

Ing-Ray Chen, Member IEEE
National Cheng Kung University, Tainan

Key Words — Real-time, expert system, parallel planning, soft-
ware reliability model, system reliability.

Summary & Conclusions — Real-time expert systems (RTXS)
are expert systems embedded in process-control systems which must
plan & execute control strategies in response to external events
within a real-time constraint. This paper presents a method for
estimating the reliability of uni-processor & multi-processor RTXS.
The paper discusses why there are intrinsic faults in RTXS pro-
grams that must be considered in their reliability modeling. Then,
it shows that for uni-processor RTXS, no single planning algorithm
can avoid all types of intrinsic faults. Finally, it presents a multi-
processor architecture with parallel planning with the objective of
reducing intrinsic faults of RTXS and improving the embedded
system reliability. A robot control system illustrates the method.

1. EMBEDDED REAL-TIME EXPERT SYSTEM

Acronyms’

CF correctable fault

CPU central processing unit (of a computer)
DTD difficult to decide (for failures)?

DV deadline violation (for failures)

ML maximum likelihood

XS expert system

RTXS real-time XS

T&D testing & debugging.

Notation

Ry (1) system reliability
R, (1) software reliability
Ry (t) hardware reliability

Ao initial value of A\,

¢ failure rate decay parameter for A

A failure rate due to software CF

N2, Ay failure rate of [DTD, DV] failures

T length of the T&D phase

t; CPU time at which CF i is observed and removed dur-
ing the T&D phase

n number of CF detected during the T&D phase

The singular & plural of an acronym are always spelled the same.
’In the appendix, the DTD events are treated with fuzzy & possibili-
ty theory [22].

H, (t1, s ..., 1,): failure history due to CF collected
during the T&D phase

r number of DTD failures detected during the T&D
phase

f failure level of DTD failure i detected during the T&D
phase.

Hy (i, f»> ---, f): DTD failure history collected during
the T&D phase

q number of DV failures detected during the T&D phase

Bo 1/6

B Ao+

B implies: ML point estimate

M hardware failure rate

w number of hardware failures detected during the T&D
phase

t, real-time deadline.

Other, standard notation is given in ‘‘Information for Readers
& Authors’ at the rear of each issue.

An embedded RTXS, eg, in factory automation, aircraft
control, or robot control systems [13] must provide timely con-
trol functions in response to external sensor events. Each sen-
sor event represents a mission assignment for which the embedd-
ed RTXS must plan a control strategy, and subsequently invoke
the underlying hardware to execute the strategy within a ¢, cor-
responding to the time interval between two successive sensor
events. For a hard RTXS, failing to plan & execute a response
within ¢, can be catastrophic. Therefore, it is important to
assess the system reliability before putting the system into
operation.

An embedded RTXS affects system reliability in several
ways. The most prominent is the software reliability of the
embedded RTXS. Software failures are caused by design faults.
Formal methods have been proposed to validate & verify RTXS
designs [7, 18] to produce bug-free RTXS programs. However,
even if the program can be proved to be completely devoid of
bugs, there ate characteristics of RTXS programs which must
be considered explicitly in the software reliability model, eg,

1. Correctness/response-time tradeoff. In planning, there
is often a strong s-correlation between time spent in formulating
a strategy and the possibility that the strategy is correct. For
example, a deep (detailed) knowledge rule base usually requires
more time to execute than a shallow (summarized) knowledge
rule base to produce an output for the same input but the output
is more likely to be appropriate because of the use of deep
reasoning. In rule-base XS, when there are many rules which
can be fired simultaneously, firing more rules along many search
paths can usually result in a better solution than firing only a
few rules along a single search path. Therefore, as more rules
are selected to fire, the more likely that the selected strategy
1S appropriate.

0018-9529/97$10.00 ©1997 IEEE

82

2. DTD correctness criterion. The correctness of the out-
put of some XS programs is a DTD rather than a binary quan-
tity, in the sense that one might not be able to state categorical-
ly whether the output is correct or not. For example, an XS
program for controlling an automated factory might agsemble
acceptable products but perhaps not of the best quality or not
in the best way. This problem is compounded by the fact that
minor deviations from the optimum point are usually not easily
discernible.

3. Intrinsic faults. Some of the fundamental techniques used
in XS programs do not work successfully all the time. For ex-
ample, the planning algorithm used for selecting rules to fire
terminates only when some newly generated data meet the ter-
mination condition. Similarly, even the best heuristics might
fail for certain cases. These faults are well known but cannot
be eliminated easily. «

XS programs also directly affect the hardware reliability
of the embedded system. Consider strategy #1 formulated by
an XS program to execute two hardware components sequen-
tially vs strategy #2 formulated to execute three similar com-
ponents in parallel, to accomplish a mission. The hardware
reliability of the mission is the product of the hardware
reliabilities of the planning & execution phases. Strategy #2,
although providing a higher execution-phase hardware reliability
than strategy #1, might require the system to spend more plan-
ning time to explore extra solution paths before a solution is
formulated and, consequently, might reduce the planning-phase
hardware reliability. Therefore, strategy #2 might not provide
a better hardware system reliability when compared with
strategy #1. In RTXS, this tradeoff is compounded by the fact
that if an XS program spends too much time in the planning
phase trying to formulate the best solution, then there might
not be enough time left for the execution phase even though
the formulated solution is otherwise the best.

This paper advocates two approaches reminiscent to black-
box and white-box testing strategies in software engineering to
assess the reliability of RTXS, considering that an embedded
RTXS might contain not only the conventional CF (design faults
or program bugs) but also intrinsic non-CF associated with
heuristic search or reasoning techniques which can cause the
real-time deadline to be violated (due to excessive search) or
produce control decisions that are not entirely acceptable (due
to insufficient search).

The black-box approach is often used when there is no
knowledge regarding the design & implementation details of
the system and is based on probability modeling. It can yield
a closed-form solution for the reliability of a RTXS as a func-
tion of time, or as a function of the number of missions en-
countered by the RTXS during its life [4], in accordance with
a failure criterion [1] specified by the application. Under the
black-box approach, the end product is a theory and a method
with which the reliability of a RTXS can be calculated based
on the failure data collected during testing.

The white-box approach is used when the design details
are known. A reliability model for RTXS was developed in [5]
based on the white-box approach using hierarchical modeling

IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

in combination with simulation and Petri net techniques. For
a RTXS being modeled, it can yield a response-time distribu-
tion and a failure-level distribution (for partially correct out-
puts) which can be used to predict the system reliability accor-
ding to the failure criterion specified by the application.

Both the black-box and white-box approaches are exten-
sions to [2] which considers that the reliability of an embedded
system is the probability that an embedded XS can successfully
formulate & execute strategies under real-time constraints.

This paper concerns the black-box approach. In [4], under
the black-box approach, the software reliability issues of real-
time artificial intelligence software running on uni-processor
systems were studied. A modified Musa-Okumoto software
reliability model [15] was used to consider an XS that might
contain not only design & coding faults, but also intrinsic faults
which cannot be removed even after the XS has been tested &
debugged for a long time. This paper extends that work to assess
the system reliability of uni-processor & multi-processor RTXS.
An embedded-system reliability is approximated as:

Rsys(t) = Rsoft(t) *Ryara(D). 1

Eq (1) is an approximation by assuming mutual s-independence
of software & hardware states, and does not consider common
faults which affect both of them. Ry (7) is interpreted in a
statistical sense over all possible events which the system might
encounter during [0,7].

This paper shows that no planning algorithm running on
uni-processor systems can avoid all types of intrinsic faults of
RTXS programs. Then, a multi-processor architecture with
parallel planning is proposed to improve system reliability. A
method for assessing the resulting system reliability due to
parallel planning is given and the reliability improvement over
a uni-processor system is illustrated with a real-time robot con-
trol system.

This work can be extended to analyze the effect of other
parallel algorithms on the system reliability of parallel XS,

ey,

o distributed algorithms with rule partitioning {3],

* blackboard-based algorithms [9],

e parallel Rete or Treat matching algorithms [6, 8, 14],
e parallel rule firing algorithms [11].

2. RELIABILITY OF UNI-PROCESSOR RTXS

For uni-processor systems, an embedded RTXS con-
ceivably can: a) employ a fixed planning algorithm, or b) plan
a quick, non-optimal strategy at the beginning of a mission
assignment using a non-optimal planning algorithm and then
use the remaining time to improve the quality of the strategy
by switching to an optimal planning algorithm. Since the assess-
ment method in this paper is based on the black-box approach,
it can be generically applied to both cases. Assumption #1 is
used for ease of presentation.

CHEN: EFFECT OF PARALLEL PLANNING ON SYSTEM RELIABILITY OF REAL-TIME EXPERT SYSTEMS

Assumptions

1. The system uses a fixed planning algorithm.

2. After the RTXS is designed & coded, it enters a T&D
phase in which it is tested until a failure is encountered. If the
fault causing the failure is a CF then it is removed from the

program.
3. The 3 processes for A (£), Ny, A3 are mutually
s-independent. -

2.1 Software Reliability Assessment

To assess the software reliability of a RTXS program, the
logarithmic Poisson execution time software reliability growth
model [15] is modified to account for the intrinsic faults which
are not removable but can exist in RTXS programs.

The general assumptions of software reliability growth
models include: a) the correction of a fault does not introduce
any new faults into the program and therefore the software
reliability of the program grows as more faults are removed;
and b) inputs to the program are selected randomly and
s-independently from the input domain according to the opera-
tional distribution [17]. The logarithmic Poisson execution time
model [15] assumes that failures occur as a nonhomogeneous
Poisson process and that the failure rate decreases exponential-
ly per failure experienced, ie, the first few failures yield large
decrements in failure rate while later failures result in much
smaller decrements. In sections 2 & 3, the Musa & Okumoto
model [15] is used to estimate the failure rate of CF in RTXS
programs in the operational phase.

For uni-processor systems, Ry (#) of a RTXS program
can be estimated by splitting the failure process into 3
s-independent Poisson processes:

* N\ (#) is decreasing, reflecting the growth in the software
reliability as a result of CF which are detected & removed
during T&D;

¢)\, is constant and due to intrinsic faults which cause DTD
non-removable failures;

¢ Az is constant and due to intrinsic faults which cause DV.

During the software T&D phase, an embedded XS pro-
gram is tested with the anticipated operational profile [17] un-
til a failure is encountered. By anticipated operational profile,
we mean a set of test cases (or mission assignments) generated
according to the probabilities with which they are anticipated
to occur during the operational phase. If the failure is caused
by a CF (program bug) then the fault causing the failure is
located and removed from the program. Otherwise, the pro-
gram is not modified because the failure is caused by a DTD
or DV fault which is not removable. As a result of CF which
are removed from the program during the T&D period, the pro-
gram software reliability increases. Based on the Musa-Okumoto
model [15], the failure rate of CF in the operational phase is
estimated by:

A= No/DNo-8-T + 1].)]

83

Ao & 6 are estimated by ML based on H, [16].

Notation

¥ (x)
o;(x)

[+ x-z]™
[In(1 + x-£,)]7".

60 = n'¢n(31)7

[éll-) wéo] — nty b B a(B) = 0.

i=1

The upper & lower limits of an approximate (1 —a) s-confidence
interval for §; are:

Bi + k1_ya/I(B)

K| _y, = appropriate s-normal deviate

P(x) = %(n/x) ¢y(x) [, ¥, (x) — 1 + $2(x) —
21+ (1 + 6,(x)) ¥ (x)]

The s-confidence intervals for 3y, Ag, ¢ and consequently for
A; in (2) can be established by the substitution principle since
they are all strictly monotonic functions in the permissible range
of 8,. Also,

Xz = r/T,

For some real-time applications, a mission assignment is suc-
cessfully accomplished as long as a strategy is planned and ex-
ecuted within a real-time constraint (eg, a bomb placement mis-
sion before the bomb explodes). For such applications, the no-
tion of DTD failures does not exist and \, is zero; for other
applications, see the appendix.

Ry (1) = exp(-(\y + Ng)+1)-) poim(n; Ap+1) -G (1),
n=0
(3)

G™ () is defined in the appendix.

2.2 Hardware Reliability Assessment

Collecting hardware failure data by physically executing
a plan formulated by the XS planning program and observing
if the hardware execution fails during the testing period is im-
practical, because the hardware system fails rarely and it would
require a very long testing period (eg, life-testing) to collect
the hardware failure data. One approach is to consider the hard-
ware system of a mission as having completely failed (various
missions use different hardware components and structure func-
tions as determined by software) if the predicted hardware
reliability of the mission is less than a hardware reliability re-
quirement. This approach allows the embedded system to be

84

tested without physically executing the plan formulated by the
planning program. The hardware reliability can be considered
as 1 between mission assignments.

Based on this approach, hardware failure data can be col-
lected easily during the testing phase on a mission by mission
basis.

Example A

1. Test case j causes the system to formulate a strategy
with a given planning time;
2. The failure rate of the digital hardware is constant.

The hardware reliability in the planning phase for test case j is:

Ryara (j; planning phase) = exp(-A,-1,,).

Notation
Lp:j planning time for test case j
N failure rate of the digital system on which the XS is

run. -

The planning phase is followed by an execution phase in
which the plan is executed by the underlying hardware actuators.
The hardware reliability of the execution phase of mission j can
be estimated by computing the hardware reliability of the for-
mulated strategy using common hardware reliability assessment
techniques [12]. -

Example B

A robot system has a strategy to move its hand, arm, and
leg actuators simultaneously to reach for an object such that as
long as two actuators remain alive, the mission j can be ac-
complished. The hardware reliability of the execution phase is
that of a 2-out-of-3 parallel system for the duration of mission
j- This reliability can be computed easily since the component

On the other hand, if the strategy is to move the leg ac-
tuator first and subsequently the hand actuator after the leg mo-
tion has stopped, then the hardware reliability of the execution
phase is that of a series system connecting the leg and hand com-
ponents, which again can also be computed easily. -

Hardware failures experienced during the T&D period can
be caused by intrinsic faults of XS programs which determine
the execution time and structure function of the hardware system
through planning. Then, analogous to the approach used to
estimate A\, in section 2.1:

No = W/T, Ryga(2) = exp(=Ny-2). “)

Combining this result with R (#) in (3), the system reliabili-
ty of an embedded XS can be calculated as a function of the
operational time 7.

2.3 Example: A Robor XS Given

1. A robot RTXS is embedded in a hard real-time
environment.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

2. The RTXS runs on a uni-processor system having a con-
stant hardware failure rate A, = 1.0-1077 failures/sec.

3. A planned strategy is executed by invoking the robot’s
mechanical components which have a constant failure rate of
N\, = 5.0-107 failures/sec.

4. The function of RTXS is to formulate a path connec-
ting a start node to a goal node of a random graph to be deter-
mined in real-time. The robot is required to plan a path and
subsequently execute the path within the execution time (travel-
ing time from the start location to the end location) equal to
the sum of the edge-costs along the solution path.

5. A mission incurs ¢, planning time and 7, execution
time.

6. Hardware unreliability requirement = 1075 -

The hardware system reliability for that single mission is:
exp(_()\p ' tp +)\e ' te))a

which is compared with the hardware reliability requirement
to determine whether that mission has caused a hardware failure
on the uni-processor system,

This approach allows the robot system to be tested without
physically executing the path planned by the embedded XS plan-
ning program to avoid the impractical problems associated with
life-testing.

The input graphs are weighted graphs (with costs on edges)
of 50-100 nodes not known beforehand. They are randomly
generated during the T&D phase based on the anticipated opera-
tional profile. The 7, is 3 minutes. For each input graph (cor-
responding to a mission assignment) thus generated, if the solu-
tion planned by the robot is not optimal, then the system has
either partially failed or experienced a DTD failure, because
there is higher risk of accidents (eg, on bumpy roads). The DTD
failure level in a mission assignment is proportional to the dif-
ference in cost between the optimal solution path and the solu-
tion path found by the robot program. That is, the failure level
of that mission is:

(C - COpI)/CDp[:

Notation

C, C,p mission cost of the [planning algorithm, optimal] solu-
tion, C > Coy.

This is recorded as one of the f; in H during the testing phase
so as to estimate the a, b parameters of the Beta(a, b) distribu-
tion (see appendix). If the sum of DTD failures encountered
exceeds 1, the system has completely failed.

There are two options in designing an XS planning
algorithm:

1. Use an optimal search algorithm such as A* with lower-
bound estimates [21] as the underlying planning algorithm to
avoid DTD failures. A* operates by ranking all partially ex-
plored solution paths by the sum of cost accumulated so far (g)
and a lower-bound estimate of the cost remaining (%), and
always expanding the solution path with the minimum f=g+h

CHEN: EFFECT OF PARALLEL PLANNING ON SYSTEM RELIABILITY OF REAL-TIME EXPERT SYSTEMS

value among all paths until the goal node is found. Because
the estimates of the cost remaining can be underestimated
(eg, the linear distance between the frontier node of a solution
path and the goal node can be used as the estimate of the
remaining cost), the solution path found is optimal [20, 21],
thus ensuring that no DTD failure happens during the robot’s
operational time. Nevertheless, a potential difficulty with A*
is that the robot might not be able to plan & execute a solution
within ¢,, due to excessive planning.

2. Avoid DV failures by using a planning algorithm that
can formulate a solution path more quickly, although possibly
less optimally. One such algorithm (a variation of A*) is A*
[19]. In addition to maintaining an OPEN list keeping all
partially explored solution paths (or all rule instances) sorted
in ascending order of costs, A; also maintains a FOCAL list
keeping a few partially explored solution paths sorted in ascen-
ding order of the remaining planning effort required to find
a solution (minimum number of nodes that must be visited
before the goal node can be found). A always cxpands the
solution path at the front of the FOCAL list, rather than the
front of the OPEN list, until the goal node is found, so that
it will only expand a solution path that never deviates by
more than 100e% in cost from the best solution path but pro-
mises to offer the fastest planning time. For example, ¢ =
0.1 means that the cost of the solution found by A’_y, can
only be worse than that found by A* by 10%.

Roystem(t)
100 v o g

Wy ... "
.y
098 | ¢
a.
096 - a° . 1
& » g
094 r Atzon ° 4
A x °
092 + =03 E
Ac=06 - - 2o
000 | o7 o - .
© L] o
0.88 Tg=3 minutes : be
k .
1 1 1 1 ¥ J
100 200 500 1000 2000 5000 10000
t (CPU sec.)
Figure 1. Robot-Program Reliability for Uni-Processor

Systems Running A* & A*

Figure 1 shows the robot system reliability running A*
& A! as a function of the operational time. Each system ver-
sion (running A* or AY) was tested for =57 CPU hours us-
ing the same test profile; software & hardware failure data
were collected to compute: 1) point estimates of the failure
rates, and 2) system reliability based on (1), (3), (4). In general
a robot system running A; provides better reliability than a
system running A* when e is small and the operational time
is not too long (eg, less than 1 day of continuous operation),
because under this situation, DV failures will more likely
cause system failures than DTD failures. However, as ¢
becomes larger or the anticipated operational time becomes

85

longer, the advantage of A} over A* disappears quickly
because then DTD failures dominate DV failures. Neither
planning algorithm can provide the robot system with the best
reliability for all situations.

3. RELIABILITY OF MULTI-PROCESSOR RTXS

Section 2 showed that a uni-processor RTXS sometimes
can benefit from using a non-optimal planning algorithm
because it can plan a strategy more quickly and thus can
avoid DV failures. On the other hand, the system sometimes
can benefit from using an optimal planning algorithm because
it can always formulate an optimal solution and thus can
climinate DTD failures. However, no single planning algorithm
can avoid both DTD & DV failures. A multi-processor system
with parallel planning can avoid both types of intrinsic faults.
Under this architecture, a central scheduler:

« distributes (the same) mission assignments to processors,
» collects strategies formulated from all assigned processors,
« selects the best strategy to execute within 7,

A timeout mechanism can be used to ignore delaying results.
Using the robot XS as an example, a dual-processor system
can be used to run A* & A’y simultaneously on two pro-
cessors. The scheduler first can receive the strategy planned
by the processor running A'_q; because A}-q; requires less
planning time. Then, based on the information returned by
the strategy planned by Af_¢;, the scheduler estimates the
maximum length of the time interval within which it can wait
for a response from the processor running A* without a DV
if the strategy planned by A}_,; is to be executed at a later
time. If within that time interval, the processor running A*
can return a planned strategy, then that strategy is executed
to avoid DTD failures; otherwise, the strategy planned by
the processor running A’_ ; is executed to avoid DV failures.
Therefore, with parallel planning both DTD & DV failures
can be appreciably reduced and the system reliability can be
greatly improved. In this design, the scheduler should be fault-
tolerant because if it fails, the system fails.

(XT3
A? ° %
. R e=0.1

-
uniprocessor(t) = Rlniproceseon(t)

° Rmumiprocessor(t) = Riliprocessor(t)

0
g
o8

Tr=3 minutes *

i L 11 1 1 1]
100 200 500 1000 10000 20000 100000 500000

t (CPU sec.)

Figure 2. Reliability Difference Between Systems With &
Without Parallel Planning

86

Figure 2 shows the difference in reliability between a uni-
processor system running A* only and:

1. a uni-processor system running A7—q ; only;
2. a dual-processor system running A* & Af-p,
simultaneously on two processors.

The differences are shown in:
Rieor () — RA: (2), for case #1
UNIProcessor uniIprocessor s
A*
Rmultiprocessor(t) - Runiprocessor (t)’ for case #2.

The software failure data for the dual-processor system were
manually generated on a mission by mission basis by comparing
the two sets of output data obtained from the two uni-processor
systems operating under A* & A?_q ;. For example, if a mis-
sion (test graph) requires A’ ; to spend 1.5 minutes to find a
solution path which has a failure level of 0.1 and requires 1
minute to execute (which we know by calculation), then we check
whether A* can find a solution in 2 minutes for the same mis-
sion to meet t,=3 minutes. If the answer is yes, then the path
found by A* is selected to execute in order to avoid a DTD failure
by A*_q.1; otherwise, the path found by A} q, is executed to
avoid a DV failure by A*. In either case, no DV failure is observ-
ed for that mission. Of course, where even A~ ; cannot find
a solution within the time constraint, then the system has a DV
failure. The hardware failure data of the dual-processor system
are collected using a similar procedure. The calculation of the
hardware reliability of the dual-processor system itself is included
in the calculation of the hardware reliability of the planning phase
as each mission is considered, and thus is already included in
the calculation of the overall Ry,.(?).

After the failure data of the dual-processor robot system
are collected this way, the same set of equations, (1), (3), (4),
were used to compute the system reliability, considering the
case in which the speed of a single CPU in the uni-processor
and dual-processor systems is the same; the dual-processor
system contains two CPUs.

Figure 2 illustrates the effect of parallel planning on RTXS
reliability. The multi-processor design with parallel planning
can improve the system reliability over a uni-processor system
running either A* or A*because both DTD & DV failures can
be reduced. Even for a long operation time, the dual-processor
design can maintain at least the same reliability as that of a uni-
processor system running A* because of infrequent occurrences
of DTD failures.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Council of R.O.C. under grant NSC-85-2213-E-006-069 and
NSC-86-2745-E-006-020.

APPENDIX

This appendix treats the DTD failures of \, as fuzzy [22]
failures. The system can be considered as having experienced

IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

a fuzzy failure if the solution planned is not the best solution
for accomplishing a mission even though the real-time constraint
is satisfied, eg, a decision to shut down a system when there
is no need to do so. For this latter case, we can model the fuz-
zy output of XS programs with a distribution of fuzzy failures
over [0,1], with 0 denoting a benign (no) failure and 1 denoting
a definite failure. Specifically, fuzzy failures can be assumed
to have a distribution G. The system can be considered as hav-
ing failed if the sum of the fuzzy failures encountered exceeds
1; this is the accumulation criterion, and other fuzzy failure
criteria are in [1]. Then, the software reliability of the system
during the operation phase is given in (3).

G (1) = n-fold convolution of G(1) =
1, if n=0
G(l), ifn=1

1
S GV (1-y) dG(y), n > 1.
0

To use (3), one more set of failure data is needed to estimate
the G, viz, H; A reasonable model for G is the Beta(a, b)
distribution [10] with pdf:

[T (a+b)/[T(a) -T(B)]] x4~ - (1—x)b7 1,
if0=sx=<1
g(x) = _
0, otherwise.

The 4, b can be calculated using Hf;

REFERENCES

[1] F.B. Bastani, I.LR. Chen, T.W. Tsao, ‘‘Reliability of systems with a fuzzy
failure criterion’’, Proc. Ann. Reliability & Maintainability Symp, 1994,
pp 442-448.

[2] LR. Chen, F.B. Bastani, ‘‘Effect of artificial intelligence planning-
procedures on system reliability’’, IEEE Trans. Reliability, vol 40, 1991
Aug, pp 364-369.

[3] IL.R. Chen, B. Poole, ‘‘Performance of rule grouping on a real-time ex-
pert system architecture’’, [EEE Trans. Knowledge & Data Engineer-
ing, vol 6, 1994 Dec, pp 883-891.

[4] LR. Chen, F.B. Bastani, T.W. Tsao, ‘‘On the reliability of Al planning
software in real-time applications’’, IEEE Trans. Knowledge & Data
FEngineering, vol 7, 1995 Feb, pp 4-13.

[5] LR. Chen, T.W. Tsao, ‘‘A reliability model for real-time rule-based expert
systems”’, IEEE Trans. Reliability, vol 44, 1995 Mar, pp 54-62.

[6] C.L. Forgy, ‘‘Rete: A fast algorithm for the many pattern/many object
pattern match problem”’, Artificial Intelligence, vol 19, 1982, pp 17-37.

[71 R.F. Gamble, G.-C. Roman, H.C. Cunningham, ‘‘Applying formal
verification methods to rule-based programs’’, Int’l J. Expert Systems,
vol 7, num 3, 1994, pp 203-237.

[8] A. Gupta, Parallelism in Production Systems, 1987, Morgan Kaufman.

[9] B. Hayes-Roth, ‘A blackboard architecture of control”’, Artificial In-

telligence, vol 26, 1985, pp 251-321.

P.G. Hoel, S.C. Port, C.J. Stone, Introduction to Probability Theory,

1971; Houghton Mifflin.

T. Ishida, ‘‘Parallel rule firing in production systems’’, IEEE Trans.

Knowledge & Data Engineering, vol 3, 1991 Mar, pp.11-17.

[10]

(11}

CHEN: EFFECT OF PARALLEL PLANNING ON SYSTEM RELIABILITY OF REAL-TIME EXPERT SYSTEMS

[12] B.W. Johnson, Design and Analysis of Fault Tolerant Digital Systems,

1989; Addison Wesley.

T.J. Laffey, P.A. Cox, J.L. Schmidt, er al, ‘‘Real-time knowledge bas-

ed systems’’, Al Magazine, 1988 Spring, pp 27-45.)

[14] D.P Miranker, B.J. Lofaso, ‘‘The organization and performance of a

TREAT-based production system compiler”’, IEEE Trans. Knowledge

& Data Engineering, vol 3, 1991 Mar, pp 3-10.

J.D. Musa, K. Okumoto, ‘A logarithmic Poisson execution time model

for software reliability measurement”’, Proc. 7% Int’l Conf. Software

Engineering, 1984 Mar, pp 230-237.

J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement,

Prediction, Application, 1987, pp 303-351; McGraw-Hill.

[17] 1.D. Musa, ‘‘Operational profiles in software reliability engineering’’,

IEEE Software, vol 10, 1993 Mar, pp 14-32.

T.J. O’Leary, M. Goul, K.E. Moffitt, A.E. Radwan, ‘‘Validating ex-

pert systems’’, IEEE Expert, 1990 Jun, pp 51-58.

[19] . Pearl, Heuristics, 1984; Addison-Wesley.

[20] E. Rich, Artificial Intelligence 2™ ed), 1991; McGraw-Hill.

{211 P.H. Winston, Artificial Intelligence 3" ed), 1992; Addison-Wesley.

[22] L.A. Zadeh, “‘Fuzzy sets and information granularity”’, Advances in Fuzzy
Set Theory & Application (M.M. Gupta, R.D. Ragade, R.R. Yager, Eds),

[13]

[15]

[16]

{18]

87

1979; North-Holland.

AUTHOR

Dr. Ing-Ray Chen; Inst. of Information Eng’g; Nat’l Cheng Kung Univ; No.
1, University Road; Tainan, TAIWAN - R.O.C.
Internet (e-mail): irchen@iie.ncku.edu.tw

Ing-Ray Chen (M’90) received the BS from the National Taiwan Univer-
sity, and the MS & PhD in Computer Science from the University of Houston.
He is a Professor of Computer-Science & Information-Engineering at the Na-
tional Cheng Kung University. Prior to joining Cheng Kung, he was an Associate
Professor of Computer & Information Science at the University of Mississip-
pi. His research interests are in reliability & performance analysis, and real-
time intelligent systems. Dr. Chen is a member of the IEEE and ACM.

Manuscript TR95-144 received 1995 September 15; revised 1996 November 20
Responsible editor: R.J. Loomis Jr.

Publisher Item Identifier $ 0018-9529(97)02336-1 -<«TR»™

Bayes Inference for S-Shaped Software-Reliability Growth Models

Dr. Tae Young Yang; Dep’t of Mathematics; Myongji Univ; Yongin, Kyonggi,
Rep. of KOREA.
Internet(e-mail): tyang@wh.myongji.ac.kr

Tae Young Yang is an Assistant Professor at the Myongji University.
He received a BS (1985) in Mathematics from Korea University, a MS (1987)
in Statistics from the University of Vermont, and a PhD (1994) in Statistics
from the University of Connecticut. He has done research in software reliability

(Continued from page 80)

and Bayes inference for stochastic point processes. He has been a visiting scholar
at Stanford University.

Manuscript TR95-138 received 1995 September 6; revised 1996 December 9
Responsible editor: R.A. Evans

Publisher Item Identifier S 0018-9529(97)03033-9 <«TR»>

