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Abstract—Dramatic advances in computer and communication technologies have made it economically feasible to extend the use of

embedded computer systems to more and more critical applications. At the same time, these embedded computer systems are

becoming more complex and distributed. As the bulk of the complex application-specific logic of these systems is realized by software,

the need for certifying software systems has grown substantially. While relatively mature techniques exist for certifying hardware

systems, methods of rigorously certifying software systems are still being actively researched. Possible certification methods for

embedded software systems range from formal verification to statistical testing. These methods have different strengths and

weaknesses and can be used to complement each other. One potentially useful approach is to decompose the specification into

distinct aspects that can be independently certified using the method that is most effective for it. Even though substantial research has

been carried out to reduce the complexity of the software system through decomposition, one major hurdle is the need to certify the

overall system on the basis of the aspect properties. One way to address this issue is to focus on architectures in which the aspects are

relatively independent of each other. However, complex embedded systems are typically comprised of multiple architectures. In this

paper, we present an alternative approach based on the use of application-oriented frameworks for implementing embedded systems.

We show that it is possible to design such frameworks for embedded applications and derive expressions for determining the system

reliability from the reliabilities of the framework and the aspects. The method is illustrated using a distributed multimedia collaboration

system.

Index Terms—Distributed embedded systems, software composition, application-oriented frameworks, software reliability

assessment.

�

1 INTRODUCTION

DRAMATIC advances in computer and communication
technologies have made it economically feasible to

extend the use of embedded computer systems to more and
more critical applications, such as process-control systems,
manufacturing systems, avionics, railway systems, etc. At
the same time, these embedded computer systems are
becoming more complex and distributed. A distributed
embedded system consists of an array of sensors, actuators,
displays, and control logic. The sensors acquire information
regarding the state of the system and the environment and
send these to the control logic components and display
(monitoring) stations. The control components, typically
realized in software, embody all the intelligence in the
system. They perform control-related computations driven
by the specified control goals and then send commands to
the actuators to cause desired transitions in the state space.
Distributed embedded systems are typically used in early
warning systems, distributed power management systems,

traffic monitoring and control systems, defense command-
and-control systems, and other emerging applications. For
these real-time critical applications, it is necessary to be able
to rigorously certify the quality (reliability, safety, perfor-
mance) of the system.

While relatively mature techniques exist for certifying
hardware systems, including the use of “overdesign”
techniques for dealing with worst-case situations, methods
of rigorously certifying software systems are still being
actively researched. In addition,most of the hardware system
failures are caused by some random process (i.e., heat,
physicalwear and tear, etc.) in the normal course of hardware
usage whereas software failures are due to design flaws.
Therefore, certifying a software system becomes a very
difficult task. Furthermore, as the bulk of the complex system
application logic is realized by software, one must be able to
deal with extremely large and complex programs. Com-
pounding this difficult situation even further is the fact that
these systems are typically long-lived systems that must be
continually updated in the field to enhance their function-
ality. This further exacerbates the complexity of these systems
and requires frequent expensive recertification.

Possible certification methods for embedded software
systems range from formal verification to statistical testing.
Verification is especially effective for certifying logical
properties of the system, i.e., properties that either hold or
do not hold. Logical properties are generally application-
specific, but also include more general properties such as
the absence of deadlocks, absence of race conditions,
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assurance that exceptions will not be generated, etc.
Verification is less effective for quantitative properties that
require domain-specific analysis, such as the average
performance, probability of security violation, degree of
fault coverage, etc. For these properties, statistical testing
and quantitative modeling and analysis techniques are
more practical.

It is clear that neither formal verification nor quantitative
analysis and testing are by themselves adequate for
certifying complex embedded software systems. These
methods have different strengths and weaknesses and can
be used to complement each other. One potentially useful
approach is to decompose the specification into distinct
aspects that can be independently certified using the
method that is most effective for it. This approach is
especially attractive if each aspect corresponds to a disjoint
portion of the program since, then, a large verification or
testing problem is reduced to a set of substantially simpler
verification or testing problems. It also enables the use of
verification or testing on a per aspect basis rather than using
the same method across the entire program.

One of the earliest works related to software decomposi-
tion is [33] where a requirements specification is decom-
posed into multiple views, each of which captures some
behavior of the system. The concept of multiple views has
also been used in StateCharts [18], separation using rely-
guarantee assertions [24], behavioral inheritance [2], and
Aspect-Oriented Programming [23]. One major hurdle,
however, is the need to certify the overall system on the
basis of the aspect properties [15], [26], [27], [28], [31]. Even
though these decompositions reduce the complexity of the
system, two different views are not necessarily indepen-
dent. This complicates the reliability analysis. For example,
if the reliabilities of components f and g are 1.0 and 0.9999,
respectively, then the reliability of a system consisting of f
and g can range from 1.0 to 0.0 depending on how f and g
interact. This uncertainty means that considerable effort has
to be expended to reason about global properties of the
system, rather than by simple deductions from the
component properties, especially when there are hierarch-
ical or circular dependencies among the aspects. In such
cases, system certification still requires the assessment of
the reliability of one complex monolithic program.

One way around this problem is to focus on architectures
in which the aspects are relatively independent of each
other, as in the shared repository architecture, pipes-and-
filters architecture, and their variations [7]. However,
complex embedded systems are typically comprised of
multiple architectures. Hence, each system needs detailed
individual analysis which has to be repeated after each
upgrade to the system.

In this paper, we explore an alternative approach based
on the use of application-oriented frameworks for imple-
menting embedded systems. Each framework is designed to
have a stable portion that provides scheduling and
transport functionalities and mechanisms for coping with
security threats and component failures. The framework
supports “plug-in” aspects that can be added, upgraded, or
removed dynamically without having to stop the system.
Each plug-in aspect must be designed to be certifiable
independently of other aspects or the framework. The
framework is classified according to how different classes of
applications are composed to make up the framework. The
class includes applications that can be decomposed into
Independently-Developable End-user Assessable Logical
(IDEAL) aspects. Hence, we show that it is possible to

design such frameworks for embedded applications and
derive expressions for determining the system reliability
from the reliabilities of the framework and the aspects. The
approach is illustrated using a detailed example involving
distributed multimedia collaboration.

The rest of this paper is organized as follows: Section 2
presents a model of a class of application-oriented frame-
works that enable aspects to be dynamically plugged into
the framework. Sections 3, 4, and 5 present the reliability
assessments of systems that are composed from different
classes of aspects. Section 6 applies the approach to a case
study of a distributed multimedia collaboration system.
Section 7 reviews the related work while Section 8
summarizes the paper and outlines some future research
directions.

2 SYSTEM MODEL

We consider a framework consisting of two sets of
independent aspects and one composition component,
fS;A; Cg, where S denotes the set of fixed (static) frame-
work aspects, A denotes the set of “plug-and-play”
application aspects, and C denotes the composition com-
ponent that ties everything together. The set S can contain
aspects that address functional as well as nonfunctional
requirements. These include user interface aspects, com-
munication aspects, scheduling/security/fault-tolerance
aspects, etc. Essentially, the static framework aspects
provide “services” that may enhance the framework’s
computing platform. Let S ¼ fs1; s2; . . . ; snS

g, where s1, s2,
. . . , snS

represent the static framework aspects. A require-
ment imposed on these aspects is that each one should be
independent of the other aspects. That is, aspect si does not
invoke or depend on any other aspect sj during its
execution and its correctness can be certified independently
of other aspects. However, an aspect may coordinate the
execution of other aspects and its output can be visible to
the composition component.

The setA ¼ fa1; a2; . . . ; anA
g contains application-specific

plug-in aspects that can be dynamically added to or
removed from the framework. Each aspect must be
designed to operate independently given its inputs and it
must also be possible to certify it independently of the
framework or other aspects. Generally, these aspects
implement specific features or functional aspects of the
application.

Whether it is a static framework aspect or an application
specific plug-in aspect, an aspect can be separated from
other aspects depending on how it accesses the shared state
space. The notion of “access” here includes read and write
operations (i.e., an operation that affects the shared state
space). Aspects can affect different regions of the shared
state space or may affect at least one common point in the
shared state space. For the cases where there is a clear
separation in the regions they affect, the separation may
occur statically (i.e., deterministically) or dynamically. If the
accesses can be known statically (i.e., at compile-time), the
separation is denoted as compile-time separation; however,
if the accesses are dynamic in nature (i.e., the access point in
the state space is determined at runtime), the separation is
denoted as runtime separation. In both cases, aspects can
affect the shared state space at the same time or at different
times. Fig. 1 shows the classification of such separation.

. Compile-Time Spatially Separable.

. Compile-Time Temporally Separable.

KIM ET AL.: SYSTEMATIC RELIABILITY ANALYSIS OF A CLASS OF APPLICATION-SPECIFIC EMBEDDED SOFTWARE FRAMEWORKS 219



. Runtime Spatially Separable.

. Runtime Temporally Separable.

. Spatially Inseparable and Temporally Inseparable.

A given framework can incorporate a combination of the
above aspects. For example, consider a simple framework
for a VoIP communication management system. The frame-
work consists of a slot for data capture on the transmission
side and a slot for data presentation on the receiving side. It
allows a varying number of components to be added at
either end. Potential aspects include error handler, event
reporting, time manager, call record keeper, resource
checker as well as complementary pairs of components on
each side, such as compression/decompression and en-
cryption/decryption components. On the transmission side,
there is also a component for data integrity management
(i.e., connection management) that assembles packets using
the output of the pipeline stage as well as checksum
computation, sequence number assignment, to/from

address headers, and data descriptors (e.g., length and
format). The sequence number and data to be transmitted
are determined based on the fusion of several aspects,
including the transmission window size, elapsed time,
pending acknowledgments, etc. On the receiving side, a
similar component (i.e., connection management) is used to
parse the message and divide it into the checksum, sequence
number, to/from address, and data portions. The checksum
component checks whether any failures have occurred. The
sequencing component checks whether the packet was
already received. The acknowledgment component pre-
pares and sends an acknowledgment if needed. If the packet
passes the checks, it is then passed to the inverses of the
components that are responsible for decryption and
decompression as well as appropriate handler components
and, finally, to the presentation component. Fig. 2 shows the
UML package diagram of a simple framework for VoIP
communication.
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Fig. 1. Classification of accesses to a shared state space.

Fig. 2. Specification of application-specific plug-and-play framework using UML package diagram.



The components in the above VoIP communication
management framework can be classified into different
aspects as mentioned earlier. For example, the error
handler, the various input handlers (i.e., Event Reporting,
Time Manager, and Call Record Keeper), and the resource
checker are compile-time temporally separable aspects as
they can be positioned in a pipes-and-filters fashion at
compile time. In addition, the paired components are also
compile-time temporally separable aspects for the same
reason. The only difference is that the former is the property
preserving aspects and the latter is the property restoring
type. However, the various input handlers are compile-time
spatially separable aspects as each looks at different regions
of the data passed. Therefore, Event Reporting, Time
Manager, and Call Record Keeper can execute in parallel
without affecting each other.

Considering the above example of the VoIP communica-
tion management system containing the set of aspects data
capture, error handler, event reporting, time manager, call
record keeper, resource checker, compression, encryption,
transmission on the sending side, and receiving component,
decryption, decompression, resource checker, call record
keeper, time manager, event reporting, error handler, data
presentation on the receiving side, the reliability of these
aspects can be assessed independently:

1. Data capture and presentation. These aspects can be
tested and evaluated as one unit. The presentation
routine can be analyzed independently by using
standard preassembled data, but it is very difficult to
test the data capture module independently. Also,
these aspects involve quantitative quality assertions,
such as fidelity of the data capture or presentation.
Hence, data capture and presentation are easier to
test and analyze as one unit.

2. Error handler, event reporting, time manager, call record
keeper, and resource checker aspects. These can be tested
independently using standard test patterns or in
conjunction with the presentation component.
Again, these components involve quantitative qual-
ity assertions that make them more amenable to
testing and analysis.

3. Compression and decompression aspects. Assuming
lossless compression, these components can be
tested easily as one unit. A quality measure is the
degree of compression achieved, which can be
checked via testing and analysis.

4. Encryption and decryption aspects. These components
can also be tested as one unit. A key quality factor is
how difficult it is for a third party to decipher the
data. This is difficult to test, since it is impossible to
enumerate all possible strategies that a third party
might use. However, the protection provided by the
encryption can be analyzed in general terms.

5. Communication management. This is a part of the
framework, but can be tested and evaluated inde-
pendently. Issues such as congestion and packet loss
need to be analyzed using standard performance
analysis techniques.

Component C denotes the composition component. It
receives the outputs of the aspects in A as well as some
aspects in S and assembles the final output of the system.
The fixed part of the framework provides the framework
services to meet other nonfunctional requirements for the
application. For example, hardware failures can be dealt

with by using a fault-tolerance service, coordination of
multiple accesses to the system resources is provided by
the concurrency control service, finite memory constraints are
addressed by the garbage collection service, etc.

Each of these aspects is simpler and more focused than
the overall framework and its code can be evaluated
independently. The user plug-in aspects can be added,
removed, or updated dynamically at runtime—the frame-
work must include coordination code to ensure that correct
matching components are used on both the sender and
receiver sides in spite of these dynamic updates. Another
advantage is that, by observing the behavior of the system,
it is possible to trace defects to the individual components.
For example,

1. abnormal input error handling and ignored events
can be traced to the error handling and event
reporting aspects,

2. abnormally large packet size may signal a problem
with the compression routine,

3. poor security will require changes to the encryp-
tion/decryption routines, and

4. out of order packets implies a connection manage-
ment problem.

This type of dynamic fault diagnosis is more difficult to
achieve in monolithic systems where there can be many
interdependencies among the components.

3 RELIABILITY ASSESSMENT OF COMPILE-TIME

SEPARABLE ASPECTS

3.1 Compile-Time Spatially Separable Systems

As mentioned above, the event reporting, time manager,
and call record keeper aspects of the VoIP communication
management system are compile-time spatially separable
aspects (i.e., they affect different regions of the state space).
In particular, two aspects, A and B, of the system, R, are
compile-time spatially separable if the system postcondi-
tion, PCðSÞ, can be decomposed into P ðS0; S1Þ ^QðS0; S2Þ,
where S1 \ S2 ¼ �, S0 � S1 � S2 ¼ S, and neither P nor Q
modifies S0. If A implements P and B implements Q, then
A and B together implement R. A and B have noninterfer-
ing failure aspects if the system is designed to guarantee
that it is physically impossible for A to update S2 and for B
to update S1. It is also necessary in this as well as the other
cases to ensure that one aspect does not “walk” over
another aspect, i.e., update the code or data of another
aspect. For example, the time manager aspect records the
call time, and the call record keeper simply notes any
significant call related events for future billing purposes;
thus, neither of these aspects updates the code or data of the
other aspect. Under these conditions, we have the following
lemma.

Lemma 1. For independent aspectsA andB—i.e., they access and
modify disjoint regions in the state space (i.e., S0 ¼ � )—the
probability of the correct outcome produced by A and B is the
product of the probability thatA produces the correct output and
the probability that B produces the correct output.

Proof. For aspects A and B, assume that S0 ¼ � and let S1 ¼
fa1; a2; � � � ; ang and S2 ¼ fb1; b2; � � � ; bmg denote the state
spaces of A and B, respectivley. Let S0

1 ¼ fa01; a02; � � � ; a0jg
and S0

2 ¼ fb01; b02; � � � ; b0kg be the sets of points for which A
andB are correct, respectivley. Then, the probability of the
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correct outcomeproducedbyA andB ¼ ðjS0
1j � jS0

2jÞ=ðn�
mÞ since A and B are both correct for the combination of
any a0h where 1 � h � j and any b0i where 1 � i � k. Then,
the probability of the correct outcome produced by A and
B equals theprobability thatAproduces the correct output
� the probability that B produces the correct output since
the probability that A produces the correct output equal
jS0

1j=n and the probability that B produces the correct
output equal jS0

2j=m. tu
Lemma 2. For compile-time spatially separable aspects A and B

of R, Reliability of R equals reliability of A� Reliability of B
if A and B are independent (i.e., S0 ¼ �).

Proof. Since A and B are independent components, i.e.,
S0 ¼ �, therefore, the system reliability, ReliabilitySystem
ðtÞ ¼ probability (system performs correctly in ½0; t�j
system is up at time 0) ¼ probability (P ðS0; S1Þ ^ QðS0,
S2Þ holds for every input satisfying preconditionðÞ of
system in ½0; t�j system is up at time 0). Since probability
ðA ^BjCÞ¼ probability ðAjCÞ � probability ðBjCÞwhenA
andB are independent and using Lemma 1, we then have
RSystemðtÞ ¼ probability (P ðS0; S1Þ holds for every input
satisfying preconditionðÞ of system in ½0; t�j system is up at
time 0) � probability (QðS0; S2Þ holds for every input
satisfying preconditionðÞ of system in ½0; t�j system is up at
time 0) ¼ RAðtÞ �RBðtÞ. tu

Lemma 3. For compile-time spatially separable aspects A and B
of R, the reliability of R is bounded by the following
expression:

maxf0; ReliabilityA þReliabilityB � 1g � ReliabilitySystem

� minfReliabilityA;ReliabilityBg

if the input spaces of A and B are not disjoint nor
decomposable.

Proof. Input space is shared by both A and B and we do not
know exactly how the input is shared and accessed. Let n
be the total number of discrete points in the input space.
Then, if ReliabilityA is the reliability of A, n �ReliabilityA
is the number of inputs for which A is correct, and ð1�
ReliabilityAÞn is the number of inputs for which A fails.
Likewise, n �ReliabilityB is the number of inputs for
which B is correct, and ð1�ReliabilityBÞn is the number
of inputs for which B fails. The maximum reliability of
the system is obtained when the system works correctly
for the maximum number of inputs. Since the system
works correctly if and only if both A and B work
correctly, the maximum reliability is generated when
there is the largest overlap of the inputs on which both A
and B work correctly. With complete overlap, the
number of inputs for which the system works correctly
is min (maximum number of inputs for which A works
correctly, maximum number of inputs for which Bworks
correctly). Therefore, the maximum reliability of the
system is minðn � ReliabilityA=n; n �ReliabilityB=nÞ. On
the other hand, the minimum reliability of the system is
obtained when there is the smallest overlap of the inputs
on which both A and B work correctly. In the case where
there is minimal overlap, the number of inputs for which
the system works correctly is max(0, total number of

inputs—(number of inputs for which A fails + number of
inputs for which B fails)). Therefore, the minimum
reliability of the system is maxð0; ðn� ð1�ReliabilityAÞ
n� ð1�ReliabilityBÞnÞ=nÞ which is maxð0, ReliabilityA
þReliabilityB � 1Þ. tu

As seen in Lemmas 2 and 3, the input space for the
aspects of the system may be overlapping or disjoint. Let us
consider the same example mentioned above where two
aspects A and B of the system access and modify the state
spaces ðS0; S1Þ and ðS0; S2Þ, respectively, where S1 \ S2 ¼ �,
S0 � S1 � S2 ¼ S, state space for the system, and neither A
nor B modifies S0. Disjoint input space (i.e., S0 ¼ �) causes
no complications; however, in the case where the input
space is overlapping (i.e., S0 6¼ �), we do not know exactly
what each aspect would do with a random input (i.e., fail or
succeed) since aspects can be developed by different people
at different times. Therefore, we can only assume that there
is no correlated input failures among aspects for the given
input. In addition, it is not possible in practice to know the
exact behavior of each aspect since it is very difficult to
tabulate the input-output relationships for infinite input
space for each aspect. With these assumptions, we can
generally say that the reliability of the system is the product
of the reliabilities of the aspects when aspects are
independently tested with sample points from the input
space and we have the average reliabilities of the aspects.

3.2 Montage Composition

In general, the output of each aspect influences the
correctness of the overall output in the system that is
decomposed into compile-time spatially separable aspects.
This is especially true for a serial composition of compile-
time spatially separable aspects. However, users may be
satisfied with a partial output where the system output is
composed of outputs from a subset of the aspects. This is a
special case where the compile-time spatially separable
aspects can exist simultaneously. In such a situation, the
output of individual aspects are composed into the system
output via the montage composition.

In montage composition, the output of each component
is evident in the final system output which forms a specified
montage of the outputs of all the aspects. The aspects in this
model may process fully overlapping, partially overlap-
ping, or fully disjoint parts of the input set. Examples
include HTTP (Hypertext Transfer Protocol) and SIP
(Session Initiation Protocol) message processing, GUI
(Graphical User Interface), and visualization applications.
For example, consider a Web page composed of different
text, images, links, and mpeg clips. The Web page is a
montage of these different components. Each output of
these different components of the page is evident in the
overall display of the page.

LetRðtÞ ¼ fr1ðtÞ; r2ðtÞ; . . . ; rnA
ðtÞg represent the reliability

vector for the aspects. The montage composition makes the
success or failure of each aspect directly visible to the user.
Further, the success or failure of aspect ai hasno impact on the
success or failure of other aspects aj, j 6¼ i. From the user’s
perspective, the system does not necessarily fail the moment
one aspect fails. Instead, the systemmay degrade in the sense
that the quality of the output becomes lower and lower as
more and more aspects fail. (Here, the “quality” of an aspect
refers to thevalueprovided to theuserby the correctoperation
of that aspect. It is similar to a reward function. By definition,
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the quality of an aspect that has failed is 0.) Let Q ¼
fq1; q2; . . . ; qnA

g represent the quality vector for the aspects.
LetCðQÞ represent the composition expression for the system
quality. Then, the average quality of the system output is
CðQRðtÞÞ, where QRðtÞ ¼ fq1 � r1ðtÞ; q2 � r2ðtÞ; . . . ; qnA

�
rnA

ðtÞg.
As an example, consider a system that controls the

button/light display panel of an elevator. If each button/
light is controlled by a separate aspect, then the quality and
reliability of each button/light is distinct from those of the
other buttons/lights. Hence, we have a montage composi-
tion with CðQÞ ¼

PnA

i¼1 qi. Hence, the average quality
qðtÞ ¼

Pn
i¼1 riðtÞ � qi.

As another example, let us expand our VoIP system a bit
further. In addition to the voice, the system can now offer
video display. Assume that the video display consists of two
video streams (brightness and color frames). Also assume
that the color stream adds value to the display in addition to
the brightness, but the system works if we have at least the
audio stream and the brightness stream. The added color
capability is a “nice to have” feature, and users are partially
satisfied with just the voice and the brightness stream. Then,
the montage composition expression is CðQÞ ¼ qb � qa
�ð1þ qcÞ, where “b” denotes brightness, “a” denotes audio,
and “c” denotes color. Hence, the average quality qðtÞ ¼ qb
�rbðtÞ � qa � raðtÞ � ð1þ qc � rcðtÞÞ.

3.3 Compile-Time Temporally Separable Systems

The case considered in the previous section is conceptually
simple. In every cycle, each aspect looks at its portion of the
state space, performs its computation, and updates its
portion of the state space. Thus, there is no direct functional
dependency between the aspects. The class of compile-time
temporally separable systems is a richer class than compile-
time spatially separable systems. Since actions can be
separated in time, it is now possible to have functional
dependency among the aspects. However, the key property
of this class is that temporal separation is achieved at
compile time which limits the architecture to a subset of the
pipes-and-filters architecture. That is, aspect A processes
the input that is then forwarded to aspect B for further
processing. (We denote this by A ! B.) In the VoIP
communication management framework, the error handler,
the various input handlers, resource checker, compression,
encryption, and connection management aspects are com-
pile-time temporally separable. For example, the output of
the compression aspect (i.e., compressed data) is passed
down to the encryption aspect for further processing. The
error handler may also “filter out” the captured data from
any further processing. In the following sections, we
identify two subclasses for which the system reliability
can be inferred from the aspect reliabilities.

3.3.1 Visible Intermediate Result

In this case, it is assumed that the output of A is visible to
the end-user and A is functional; thus, the specifications for
A and B can be derived directly from the requirements
specification. This is the case with compression and
encryption aspects. The output of the compression aspect
(i.e., compressed data) is visible to the end-user and the
compression aspect is functional. To estimate the reliability
of A ! B from the individual reliabilities of A and B, it is
necessary to be able to accurately determine the operational
profile of the input to B. This requires the specification of A

to define a function (rather than a relation). Under the
condition that the specification of A is functional, we have:

Lemma 4. The reliability of A ! B is equal to the reliability of
A� the reliability of B if A is functional.

Proof. Since the operational profile of A, OPA, is known
and A is functional, then OPB can be generated from
OPA and the function F that is A. That is,
OPB ¼ F ðOPAÞ. Given the state space S, A is correct
if preconditionA ) wpðA; postconditionAÞ, and B is
correct if preconditionB ) wpðB; postconditionBÞ and
postconditionA ) preconditionB. Then, the correctness
of A and B can be estimated by sampling OPA and
OPB and comparing the generated output with
postconditionA and postconditionB, respectively. From
this observation, we can conclude that we are dealing
with a system composed of two serial and independent
aspects (A and B). Therefore, the reliability of the
system (i.e., A ! B) = probability(A is correct in [0, t] ^
B is correct in [0, t]) = probability(A is correct in [0, t])
� probability(B is correct in [0, t]) = the reliability of
A� the reliability of B. tu

The restriction that A should be a functional component
can be removed by having filters that establish some
specific property and, at the same time, preserve all other
properties. We call such filters Property Preserving Filters.
Suppose P ðSÞ is the precondition of the system and RðS00Þ is
the postcondition. Further, suppose that RðS00Þ can be
decomposed into two parts, namely, R1ðS00Þ ^R2ðS00Þ. Let A
establish R1 while B preserves R1 and establishes R2. For
verification purposes, assume that the postcondition of A is
QðS0Þ ^R1ðS0Þ which is also the precondition of B.

To assess the reliability of A ! B from the reliabilities of
A and B, it is necessary to know the operational profile of B.
Since A establishes a partial result, it is not practical to
require the specification of A to be functional. Instead, we
require the implementation of A to be relational, that is, A
generates all possible values that satisfy its requirements.
This effectively makes the input to B invariant of the actual
implementation of A and, hence, the operational profile of
B can be determined from the specification of A. Under this
condition, we have:

Lemma 5. The reliability of A ! B is equal to the reliability of
A� the reliability of B if A is relational.

Proof. The proof is similar to the proof of Lemma 4. The
difference is that A is relational instead of functional.
However, A generates all possible values that satisfy its
requirements. This effectivelymakesA “functional” since,
for a fixed input, different correct implementations of A
must produce the same output set. Therefore, B’s
operational profile can be determined from the specifica-
tion of A since the input to B is invariant of the actual
implementation of A. That is, given IA (the actual input
space for A), A generates a set of possible outputs
(A : IA ! 2IB ) that will be passed on to B. The input
selector for B, FB, generates the actual input for B from a
set of possible inputs for B (FB : 2IB ! IB). Then,
FB �A : IA ! IB. Therefore, we can generate B’s opera-
tional profile from the specification Spec of A and the
specification of FB. Then, given the state space S, A is
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correct if preconditionA ) wpðA; postconditionAÞ, andB is
correct if preconditionB ) wpðB; postconditionBÞ. Then,
the correctness of A and B can be estimated by sampling
OPA and OPB and comparing the generated output with
postconditionA and postconditionB, respectively. Hence,
we can conclude that we are dealing with a system
composed of two serial and independent aspects (A and
B). Therefore, the reliability of the system (i.e., A ! B) =
the reliability of A� the reliability of B. tu

All the aspects in property-preserving filters must work
correctly for the system output to be correct. Hence, the
reliability of the system is

QnA

i¼1 riðtÞ. The quality of the final
output is additive if the composition preserves the effect of
each aspect on the data stream. In this case, the average
quality is given by ð

PnA

i¼1 qiÞ �
QnA

i¼1 riðtÞ, where qi is the
average quality of aspect ai.

Filtering composition, whether it is composed of prop-
erty-preserving or property restoring filters, occurs in signal
processing applications, text processing applications, and
also certain types of process control applications. In the
VoIP communication management system, the error hand-
ler “filters out” abnormal data from any further processing.
Aspects in filtering composition are domain-specific and,
hence, require testing or domain-specific analysis for
certification.

3.3.2 Nonvisible Intermediate Result

In this case, each aspect is implemented by a pair of filters,
one (say, A) that satisfies a specific nonfunctional require-
ment and another (say, A0) that restores the information, i.e.,
A0ðAðIÞÞ ¼ I. We call such filters Property Restoring
Filters. The verification of the system is similar to the
methods in the previous case for the functional aspect of the
requirements. This essentially means verifying that
A0ðAðIÞÞ ¼ I. However, nonfunctional aspects, such as
performance and security properties of the system, can be
more difficult to verify and are impossible to do so if the
properties are achieved only statistically. Statistical relia-
bility assessment works well for this type of system. First,
since the inverse of Amust exist, the specification of A must
be functional. Hence, the operational profile at the output of
A can be determined accurately from the operational profile
at the input of A and the specification of A. Second, the test
oracle is obvious if A and A0 are tested as one unit. This
substantially reduces the cost of testing. Third, the
nonfunctional aspects can be validated statistically as part
of the reliability assessment procedure. Hence, we have:

Lemma 6. The reliability of A ! B = reliability of A�
reliability of B.

Proof. (The proof follows the same line as Lemma 4 and
Lemma 5.) Since the inverse of A must exist, the
specification of A must be functional. Therefore, OPA

and SpecA can be used to determine OPB much like in the
proof of Lemma 5. Then, given the state space S, A is
correct if preconditionA ) wpðA; postconditionAÞ, andB is
correct if preconditionB ) wpðB; postconditionBÞ. Then,
the correctness of A and B can be estimated by sampling
OPA and OPB and comparing the generated outputs with
postconditionA and postconditionB, respectively. Hence,
we can conclude that we are dealing with a system
composed of two serial and independent aspects (A and

B). Therefore, the reliability of the system (i.e., A ! B) =
the reliability of A� the reliability of B. tu

Since any faulty aspect in property-restoring filters can
corrupt the output, the reliability of this composition isQnA

i¼1 riðtÞ. Each aspect can be viewed as adding to the
quality of the system. Hence, the overall system quality is
ð
PnA

i¼1 qiÞ �
QnA

i¼1 riðtÞ.
Property restoring filters occur in communication sys-

tems. For example, as discussed in Section 2, for a VoIP
communication management system, aspects pairs can
include (capture, presentation), (compression, decompres-
sion), (encryption, decryption), and (disassemble, reassem-
ble). Each aspect must work correctly for the output of the
system to be correct. However, each aspect achieves specific
objectives, such as reducing the bandwidth requirement,
increasing the security, enhancing the fault tolerance, and
so on. Aspects in property restoring filters are amenable to
rigorous formal verification with respect to their composi-
tional correctness, i.e., verification that 8x; ai2ðai1ðxÞÞ ¼ x.
Once this assertion has been verified for each aspect, the
reliability of the system is 1.0 for all time t. Formal
verification can be replaced by runtime checking at some
extra cost. For example, let x be the input to aspect ai1. The
code for aspect ai1 can be augmented to apply aspect ai2 and
to pass x to the next stage in case ai2ðai1ðxÞÞ 6¼ x; otherwise,
it passes ai1ðxÞ to the next stage. Though the reliability
(correctness) is 1, the quality (such as bandwidth required,
security achieved, etc.) is affected by the behaviors of the
aspects; with checking, the average quality is given byPnA

i¼1ðqi � riðtÞÞ.

4 RELIABILITY ASSESSMENT OF RUNTIME

SEPARABLE ASPECTS

4.1 Runtime Spatially Separable Systems

A typical example of this type of system is a delegation
design pattern where a coordinator monitors events or
inputs and selects an appropriate handler for each event or
portions of the state space. For a two aspect runtime
spatially separable system, the coordinator C scans the state
space S and decomposes it into orthogonal sets S0, S1, and
S2. It then invokes AðS0; S1Þ and BðS0; S2Þ that can operate
in parallel. The outputs of A and B are passed to modify S1

and S2, respectively. The verification of the system is done
by verifying that the coordinator identifies S0, S1, S2

correctly and verifying that A and B are correct. Statistical
reliability assessment for these systems is complicated by
the fact that the operational profiles induced at A and B
must be accurately estimated. This can be done indepen-
dently of C only if the specification of C is functional;
otherwise, the internal logic of the moderator has to be
analyzed in order to determine the correct operational
profile, which makes the reliability estimates of A and B
dependent on the implementation of C. Once the opera-
tional profiles have been estimated, the reliability of the
system is assessed by first determining the reliabilities of A,
B, and C separately. The reliability of the system is equal to
the product of the reliabilities of C, A, and B provided that

1. the decomposition specification is derived from the
requirements specification,
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2. a defect in one aspect cannot modify the code or data
of another aspect,

3. A and B only modify their own portions of the state
space containing S1 and S2, respectively, and

4. A, B, and C operate in parallel.

4.1.1 Selection Composition

Selection composition falls into the runtime spatially separ-
able category. In the selection composition method, at any
given instant of time, one of the aspects is selected. Various
criteria can be used to select the appropriate output, such as
the earliest response, the response having the smallest or
largest value, etc. Examples include pattern matching in
image recognition and bidding systems in E-commerce
applications.

Let P ¼ fp1; p2; . . . ; pNA
g be a vector such that pi is the

probability that aspect ai is selected at any time t. Then, the
system reliability is given by

PnA

i¼1 riðtÞ � pi, where riðtÞ is
the reliability for the aspect ai for a random input. The
average quality of the system for a random input isPnA

i¼1 pi � riðtÞ � qi, where qi is the average quality of the
output of aspect ai. As an example, consider the VoIP
communication management system using different tech-
niques to optimize its performance. We have seen the
compression/decompression aspects, encryption/decryp-
tion aspects, and other aspects that may use different
techniques to achieve satisfactory solutions. For example,
the compression/decompression aspects must consider
compression level, compressed audio quality, and compres-
sion/decompression speed to select appropriate techniques
to meet the user requirements. The reliability of the system
increases if a reliable technique is plugged that meets the
user requirements into the framework and decreases if such
a technique is unavailable, or the chosen technique is
unreliable. Since the system is correct as long as one aspect
produces the correct output, the probability that the output
is correct is 1�

QnA

i¼1ð1� riðtÞÞ. The average quality of the
output is ½

PnA

i¼1 pi � qi� � ½1�
QnA

i¼1ð1� riðtÞÞ�, where pi is
the probability that the ith aspect is selected.

4.2 Runtime Temporally Separable Systems

One way of preventing two spatially inseparable aspects, A
and B, from interfering with each other when they access a
shared state space is to coordinate their execution to ensure
that their accesses are serializable. Usually, this type of
coordination logic is interspersed within the code that
implements the functional aspects of the process, but it is
also possible to separate out the coordination details from
the implementation of functional aspects. Two cases of
coordination logic are presented here, namely, sequence
coordinators and concurrency control.

4.2.1 Sequence Coordinators

In the case of Sequence Coordinators, the coordinator C
implements a schedule of activation patterns for aspects
that perform specific tasks. For a system consisting of
aspects A and B, the coordinator alternates the activation of
A and B. The verification of C consists of proving that it
correctly enforces the invocation schedule. The reliability
assessment again requires the operational profile to be
determined for A and B. Since these aspects do not run in
parallel, it is also necessary to deduce the proportion of time
for which each one is active. This is impacted by the service

times of A, B, and C as well as the coordination policy
implemented by C. To make the analysis independent of
the implementation of C, the specification of the coordi-
nator must be functional. Let p denote the proportion of
time that A is active and let q denote the proportion of time
that B is active. (pþ q can be less than 1 if there is a delay
between the completion of an aspect and the selection of the
next aspect.) Then, the reliability of the system is the
reliability of C � (p� reliability of Aþ q � reliability of B).

4.2.2 Concurrency Control

In Concurrency Control, a number of independent tasks vie
for access to the shared state space. The coordinator
processes the current state of the system as well as all
events and requests. Based on specified concurrency control
policies, it enqueues or activates certain tasks. In addition to
policies that impact the functional behavior of the system,
the coordinator may need to meet other constraints, such as
performance constraints, absence of deadlock, absence of
starvation, etc. The system can be verified by verifying each
individual task separately. The verification of the coordi-
nator consists of proving that it enforces the specified
coordination policies. Model checking can be used to verify
other properties, such as absence of deadlocks and absence
of starvation. These proofs together imply the correctness of
the overall system. Statistical reliability assessment is
extremely complex for such systems due to the nondeter-
minism inherent in the coordination process. It is difficult to
determine the operational profile and equally difficult to
recreate the operational profile during testing.

5 RELIABILITY ASSESSMENT OF SPATIALLY

INSEPARABLE AND TEMPORALLY INSEPARABLE
ASPECTS

In this case, it is neither possible to separate the accesses of
the aspects in different dimensions of the state space nor is
it possible to separate their accesses at different times.
Instead, the aspects have to operate in parallel and have to
update the state space at the same time. One way of
enabling the code for the programs to be developed
independently and to then be composed together is to
write the programs so that they generate all possible output
values corresponding to an input rather than simply one
value. The programs can be composed together at the
output level by taking the intersection and union of their
output sets as needed.

Suppose the postcondition is P ^Q and the precondition
is T for a 2-aspect system consisting of aspects A and B,
respectively. Let the output set of A be pðA; T Þ and the
output set of B be qðB; T Þ. Then, verification consists of
showing that T ) wpðA;P Þ and T ) wpðB;QÞ. This implies
that pðA; T Þ satisfies P and qðB; T Þ satisfies Q. Hence, the
intersection of the outputs, if it is nonnull, satisfies P ^Q. If
the intersection is null, then it means that P andQ cannot be
satisfied simultaneously for this input.

The reliability of the system can be estimated from the
reliabilities of the aspects. Each of the aspects accesses the
shared state space directly and, hence, it sees the same
operational profile. Testing using random sampling is used
to validate each aspect independently. The test oracle must
accept a set of values and check whether all the values
satisfy the postcondition.

In the following, we discuss fusion composition, where
the outputs of the different aspects are merged together to
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obtain the output of the system. Hence, even though the
aspects are independent, a failure in one aspect can cause a
failure of the whole system. In particular, there are three
types of fusion composition, namely, cooperative fusion [1],
competitive fusion [21], and relational fusion. In all these
cases, the composition component processes all the outputs
and generates the final system output. The processing can
involve set intersection and union operations, arithmetic
and Boolean operations, and information fusion techniques.
Examples include deciding which actuator(s) to activate
depending on parallel processing of different goals,
composing features in a telephone switching system,
determining which packet to transmit next based on fault
tolerance and performance constraints, etc.

In a cooperative fusion, the output from two or more
independent aspects are fused together to achieve an
outcome that could not have been achieved by the
individual outputs of the aspects. For example, a set of
thermometers over a region can produce a gradient of
temperature difference within the entire region [1]. In a
competitive fusion, the outputs from the individual aspects
compete for the overall output of the system. However, this
is different from the selection type where one output from a
set of individual outputs is selected as the overall system
output. In a competitive fusion, the individual outputs
“influence” the overall system output rather than determine
the outcome [21]. Statistical mean, majority voting, and n-
version voting are some of the examples of competitive
fusions. The cooperative and competitive fusions are well-
known in the sensor network area. In the following section,
relational fusion is discussed in detail.

5.1 Relational Fusion

In relational fusion, the top level specification, g, is first
decomposed into a conjunction of predicates, g ¼ g1 ^ g2
^ � � � ^ gn. The individual predicates, gi, are further decom-
posed into a disjunction of predicates, i.e., gi ¼ gi1 _ gi2 _
� � � _ gini

. Each predicate gij represents one way of achieving
gi. Note that conjunctive and disjunctive decompositions
can be applied to the specification iteratively as necessary.
Let Pij be a program that achieves gij. In conventional
programs, Pij is viewed as a function. There is no obvious
mathematical model for merging independently developed
Pijs into the overall system program P since the output of
the Pijs may be incompatible with each other. In our
approach, Pij is viewed as a general relation and, hence, it
returns the set of all output values for each input. P can be
obtained by simply forming the intersection of the output
sets of Pis, P � P1 \ P2 \ � � � \Pn, where Pi is the program
for achieving gi. Similarly, each Pi can be obtained via a
systematic union operation from its components, i.e.,
Pi � Pi1 [ Pi2 [ � � � [ Pini

.
Since each relational program, Pij, returns the set of all

possible output values for each input, Pij is correct if and
only if there are no extra values or missing values in the
output set. Having an extra value in the output set causes
the system to work incorrectly when the extra value is
chosen as the final selection for the system output. On the
other hand, missing values pose a serious problem in the
case where the system output set is obtained from an
intersection of the output sets of the components since the
missing values would be carried to the system output.
Hence, the incorrect output sets can be categorized into two

types—one that is missing the necessary output values and
the other that contains extra values since we do not know
how each output set will be used. Note also that any
incorrect value in the output set is considered as an extra
value. It is also reasonable to assume that the probability of
having missing values in the output set and the probability
of having extra values in the output set are independent. Let
ProbmðPijÞ denote the probability that Pij has some missing
values and ProbeðPijÞ denote the probability that Pij has
some extra values. Consequently, let ProbneðPijÞ be the
probability that Pij has no extra values and ProbnmðP Þ be the
probability that Pij has no missing values in the output set.

Lemma 7. For a relational program P , the reliability of P ¼
ProbneðP Þ � ProbnmðP Þ.

Proof. Since a relational program returns a set of all possible
output values for a given input set, it is considered
correct if and only if there are no extra values nor any
missing values in the output set. The reliablity of P ,
ReliabilityP , is then ProbfP has no extra value and P has no
missing valuesg ¼ ð1� ProbeðP ÞÞ � ð1� ProbmðP ÞÞ =
ProbneðP Þ � ProbnmðP Þ. tu

The system level reliability then follows from the
relational aspect level reliability in a simple way.

Lemma 8. If P1 and P2 are two relational programs, the reliability
of the system,ReliabilityðP1 \ P2Þ, is bounded by the following
expression: fProbneðP1Þ � ProbnmðP1Þg � fProbneðP2Þ �
ProbnmðP2Þg � ReliabilityðP1 \ P2Þ provided P1 and P2 have
independent failure processes.

Proof. If both P1 and P2 work correctly, then the system,
P1 \ P2, works correctly. As seen in Lemma 7, a relational
programworks correctly if and only if it contains no extra
values nor missing values in its output set. Therefore, if
P1’s output set contains no extra values normissing values
AND P2’s output set contains no extra values nor missing
values, then the system works correctly. Then, the
reliability of the system, ReliabilityðP1 \ P2Þ, becomes

fProbneðP1Þ � ProbnmðP1Þg � fProbneðP2Þ � ProbnmðP2Þg:
However, there are some cases where the reliability of the
systemmaybehigher than the expressionmentioned. This
happenswhen one relational component’s extra values do
not fall within the range of the other relational compo-
nent’s output set and/or one relational component’s
missing values do not fall within the range of the other
relational component’s output set. In such a situation,
those extra or missing values get discarded during
intersection process. Therefore, the reliability of the
system, ReliabilityðP1 \ P2Þ, is bounded by:

fProbneðP1Þ � ProbnmðP1Þg � fProbneðP2Þ � ProbnmðP2Þg

� ReliabilityðP1 \ P2Þ:
ut

Lemma 9. If P1 and P2 are two relational programs, the reliability
of the system,ReliabilityðP1 [ P2Þ, is bounded by the following
expression: fProbneðP1Þ � ProbnmðP1Þg � fProbneðP2Þ �
ProbnmðP2Þg � ReliabilityðP1 [ P2Þ provided P1 and P2 have
independent failure processes.
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Proof. Theproof is similar to theproof ofLemma8except that
the system is correct when one relational component’s
extra values do fall within the range of the other relational
component’s correct output set and/or one relational
component’smissing values do fall within the range of the
other relational component’s correct output set. Therefore,
the reliability of the system, ReliabilityðP1 \ P2Þ, is
bounded by: fProbneðP1Þ � ProbnmðP1Þg � fProbneðP2Þ �
ProbnmðP2Þg � ReliabilityðP1 \ P2Þ. tu

6 CASE STUDY

In this section, we illustrate the framework-based reliability
assessment approach using a multimedia collaboration tool.
The tool not only provides voice chat capability usingVoIP as
shown in Section 2, but also allows users to carry out video
conferencing aswell as file transfers. A high level description
of selected functionalities is as follows: Consider a multi-
media collaboration tool that supports up to three users in
doing voice and video conferencing. Each participant of a
collaboration session can hear and see all participants of the
conference. The tool also allows users to choose different
audio codec techniques (i.e.,G.711,G.723.1, andG.729) for the
voice conferencing. Users of the tool can also monitor overall
network usages of a collaboration session as well as the
average system resource usages. These usage statistics can be
used for future billing purposes and resource optimizations.

The multimedia collaboration system enables a user to

1. invite up to two people to participate in a three-
person voice/video conference and hear and see all
participants,

2. select different audio codec technique that works
best for a particular situation,

3. monitor overall network usages in terms of session
related packets exchanged among all participants,
and

4. select up to three session related resources to
monitor average resource usage.

Also, the framework presents the user with a set of tools
and menus that will enable the user to create a customized
way of viewing the readings of different usage readings.
These are upgradable and extensible “visual aspects” and
include time plots, use of different colors, use of different
geometric shapes or icons, use of sound, moving bars or
other objects along different scales (vertical, horizontal, 2D,
along a curve, etc.), circular gauges, etc. The capability
provided to the user enables grouping and placement of
different usage displays.

Let RF ðtÞ denote the overall reliability of the framework
excluding the reliabilities of the usage data acquisition
aspect, the visual aspect, the chosen audio codec technique,
and the video displays. Assume that a user is monitoring
three resource usages, RS1, RS2, and RS3, two network
usages, N1 and N2 (i.e., network usages between two other
participants and himself or herself). To enhance the audio
quality for a voice chatting session, the user is able to select
a codec scheme from three different options, G1, G2, and G3

using the ITU-T recommendations for codecs G.711,
G.723.1, and G.729, respectively. In addition, there are three
video output windows, V1, V2, and V3 to see all three
participants including himself or herself.

Assume that

1. the resource usage is combined together using
component C1 and their average is displayed as a
moving bar in display region D1,

2. the network usage is combined together using
component C2 and the aggregate value is displayed
as a color in display region D2,

3. the audio codec technique selection is displayed in
region D3(the user can only select one scheme at a
time), and

4. the outputs of the Web-cams of the three participants
are displayed in regions D4, D5, and D6.

The overall display is a montage of six display objects.
Hence, the system quality is

X6
i¼1

qi �RDi
ðtÞ

 !
�RF ðtÞ:

Since D1 is a fusion of RS1, RS2, and RS3,

RD1
ðtÞ ¼

Y3
i¼1

RdataAcquisition�RSi
ðtÞ

 !
�Rcomposition�C1

ðtÞ�

Rvisualization�D1
ðtÞ;

where RdataAcquisition�RSi
ðtÞ is the reliability of the plug-in

resource usage monitoring aspect RSi, 1 � i � 3,

Rcomposition�C1
ðtÞ

is the reliability of the composition routine that computes
the average of RS1, RS2, and RS3, and Rvisualization�D1

ðtÞ is
the reliability of the visual aspect for display region D1.

Similarly, the composition for region D2 is of the fusion
type, so

RD2
ðtÞ ¼

Y2
i¼1

RdataAcquisition�Ni
ðtÞ

 !
�Rcomposition�C2

ðtÞ�

Rvisualization�D2
ðtÞ;

where RdataAcquisition�Ni
ðtÞ is the reliability of the plug-in

network usagemonitoring aspectNi, 1 � i � 2,Rcomposition�C2

ðtÞ is the reliability of the composition routine that computes
the effective network usage from N1 and N2, and
Rvisualization�D2

ðtÞ is the reliability of the visual aspect for
display region D2. Since the composition for region D3 is of
the selection type,

RD3
ðtÞ ¼

X3
i¼1

Pselect�Gi
�RdataAcquisition�Gi

ðtÞ
 !

�

Rvisualization�D3
ðtÞÞ;

where Pselect�Gi
is the probability that the ith codec

technique is selected, 1 � i � 3. The video camera displays
conform to the selection composition. Hence, for 4 � i � 6,

RDi
ðtÞ ¼ RdataAcquisition�Vi�3

ðtÞÞ �Rvisualization�Di
ðtÞ:

Hence, the overall reliability of the system is

X6
i¼1

RDi
ðtÞ

 !
�RF ðtÞ:
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The main benefit of the framework-based assessment
approach is that the reliability of the system can be easily
recomputed as aspects are modified or as new aspects are
added to the system since the system reliability is mathema-
tically inferred from the aspect reliabilities. For example,
consider a system of two compile-time temporally separable
aspectsA andB. Since the system reliability,Reliabilitysystem,
is ReliabilityA �ReliabilityB, if the aspect A is modified to or
replaced with A0, the system reliability can easily be
recomputed using the reliability of A0 (i.e., Reliabilitysystem
simply becomes ReliabilityA0 �ReliabilityB).

7 RELATED WORK

Designing a software system as a framework that can
support plug-in aspects is an effective way of simplifying
the system and assuring high-quality by making the
specification of each aspect as well as the composition
component more amenable to rigorous analysis. It also
enables the framework to deal with generic application-
independent issues, such as scheduling, buffering, commu-
nication, security, fault tolerance, naming services, etc.

The basis for plug-in aspects can be traced to extensive
work in the area of requirements decomposition. One of the
earliest works is reported in [33] where a requirements
specification is decomposed into multiple views, each of
which captures some behavior of the system. Each view is
represented by a sequence diagram. This decomposition
reduces the complexity of the system. However, two
different views are not necessarily independent, e.g., they
can interact via aliases in order to react in a compatible way
to a given input. The concept of multiple views has also
been used in Statecharts [17], Objectcharts [11], and other
related methods. It has also been applied to existing
languages, e.g., Z [20]. The primary motivation for these
views (achieved by grouping multiple states into one super
state) is to reduce the complexity of the underlying Finite
State Machine specification of the system. Again, interac-
tions between machines (e.g., via synchronous events) can
introduce dependencies between different machines. RSML
[25] is a significant extension to Statecharts with the goal of
achieving more easily understandable and reviewable
specifications. It also has a more intuitive step semantics,
but the objective is to assure analyzability of complex
specifications rather than to identify plug-in software
aspects.

Decomposition methods that persist over the life-cycle
include separation using rely-guarantee assertions [24],
behavioral inheritance [2], IDEAL components [7], and
Aspect-Oriented Programming [23]. These methods result
in distinct pieces of code that can be analyzed separately
and are then formally composed together to form the
system. The rely-guarantee-based approach achieves se-
paration between different components by using a common
interface language between two components with a precise
specification of rely and guarantee conditions [22] for each
separate component. However, components are not re-
quired to be observable by the end-user who may not even
be aware of some interfaces, especially interfaces with inner
components. Behavioral inheritance is an elegant way of
separating out synchronization concerns from functional
concerns in object-oriented languages [2]. The approach
proposed in [2] uses multiple inheritance, by inheriting one
functional component and one behavioral component. It
satisfies independent assessability, but does not guarantee

an implementation-invariant state space (so, the system
properties cannot be inferred from the component proper-
ties). In the IDEAL systems approach [7], separate aspects
are used to ensure the invariance of the components. In
addition, this approach enables the decomposition of a
behavioral component into more than one component (e.g.,
by having separate components for assuring mutual
exclusion, priority, FIFO access, enforcement of precedence,
etc.). Aspect-Oriented Programming (AOP) is a more recent
technique [23] that strives for separation of concerns in
implementing object-oriented programs. Features that can
be used for more than one object, such as error detection,
exception handling, and synchronization code, are sepa-
rated from the main functionality of the objects. The code
for these features are written once along with identification
of the objects that will need the code and the positions/
situations that will activate the code. Then, a preprocessor is
used to “weave” the code for the features with the code for
the objects. There is substantial overlap between the
philosophy of Aspect Oriented Programming and frame-
work plug-in aspects. However, there are also some
important differences. For example, framework plug-in
aspects can be executed as separate processes, while aspects
in AOP have to be statically “woven” together to form the
program. Dynamic composition allows each process to be
evaluated separately using model checking [19] and
operational profile testing [29]. Also, each aspect can be
made fault-tolerant more cost-effectively using design
diversity [14], exception handling, and other methods.

In summary, a lot of work has been done in decomposing
specifications into multiple views. The key feature of the
approach discussed in this paper is that the framework and
composition method can be used to infer the system
reliability from the aspect reliabilities.

A problem with decomposition of a specification into
simpler components is how to compose the components to
obtain a system with assessable properties. One difficult
problem is how to assure the consistency of the different
views [3]. Nonmonotonic logic [9], especially paraconsistent
nonmonotonic logic [10], provides some support, but it
cannot handle all types of inconsistencies. Formal techni-
ques have been developed to tag inconsistent specifications
and remove them either manually or by using rule-based
methods [16]. This difficulty is compounded when different
specification methods are used to specify different views
[34]. Such multiparadigm methods can result in simpler
specifications by allowing the use of notations that enable
easy expression of specific aspects, e.g., Z, specification for
abstract data types and Statecharts for reactive components.
Inconsistencies are resolved by automatically translating all
the specifications into a uniform framework, typically a first
order predicate calculus specification. These approaches do
not address execution-time concerns, such as striving for
end-user assessable components or ensuring that the
reliability of the system can be inferred from the reliability
of its components.

In the plug-in approach, the system requirements
specification is decomposed based on conjunctive and
disjunctive connectives and directly mapped to simple
composition operations, including fusion, nesting, selection,
etc. Each aspect can be implemented and evaluated
independently and the different aspects can be composed
dynamically by the framework. Each aspect is directly
assessable at the system level and can be traced back to the
requirements specification. This property facilitates fault-
confinement and isolation. Also, inconsistencies can be
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detected during some composition methods, for example,
set intersection in fusion composition, and can be resolved
by assigning priorities to components. Another nice feature
is that aspect reliability estimates can be statistically
combined to obtain the system reliability. Further, each
aspect has relatively few states and transitions, which
makes it feasible to develop highly reliable components and
assess their reliabilities to a high degree of confidence.

8 SUMMARY

In this paper, we have presented and evaluated a frame-
work-based approach for decomposing and implementing
complex software systems that 1) enable the system
reliability to be rigorously inferred from the aspect
reliabilities based on the composition method, 2) allow the
aspects to be upgraded or removed, and 3) allow new
aspects to be added dynamically. In both the latter two
cases, the reliability of the system can be inferred without
having to test the entire system again.

The approach uses orthogonal decomposition methods
to partition a complex software system into a fixed part,
consisting of the framework and composition components,
and slots in which application aspects can be added
dynamically as needed. Since each aspect is independent
of other aspects and is substantially simpler than the whole
system, the verification and analysis of each aspect is much
simpler than attempting to verify the entire system as one
single monolithic entity. Further, it is possible to selectively
use verification or analysis and testing depending on the
characteristics of each aspect in order to maximize the
confidence in the correctness of the system.

In addition to the above advantages, the approach also
allows aspect-level hardening for redundancy, customiza-
tion, etc. With end-user observability of aspects, each aspect
can be tested, validated, and verified by the end-user (not
the developers). Furthermore, interactions among aspects
are straight-forward, and users do not have to worry about
new glue code synthesis when changing aspects. The
approach also supports multiple architectures in imple-
mentation of different parts of the system.

The approach currently has some limitations, the main
one being that the application must be decomposable into a
set of IDEAL aspects. The need for relational composition
for some of the aspects implies that the approach is most
suitable for applications where the output sets can be
represented concisely, such as continuous process-control
systems, or where the composition can be done statically.
The approach has been successfully applied to process-
control systems [8], a high-assurance measurement reposi-
tory system [6], and telecommunications systems. The
current version of the approach is not optimized, and
methods of improving the performance of the framework
needs more investigation. The framework currently en-
compasses two types of architectures, namely, the pipes-
and-filters architecture and the shared repository architec-
ture. A future research direction is to investigate the
applicability of the approach to other types of software
architectures. It is also interesting to explore the possibility
of other composition methods that support plug-in applica-
tion aspects. Other research issues include incorporating
quality of service specifications by associating a quality of
service measure with each output, decomposition of a given
specification into finer aspects, and the automated identi-
fication of such decompositions.
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