
DOI 10.1007/s11276-007-0032-y

On optimal batch rekeying for secure group communications
in wireless networks
Jin-Hee Cho · Ing-Ray Chen · Mohamed Eltoweissy

C© Springer Science + Business Media, LLC 2007

Abstract Advances in wireless communications and
mobile computing have led to the emergence of group
communications and applications over wireless. In many of
these group interactions, new members can join and current
members can leave at any time, and existing members
must communicate securely to achieve application-specific
missions or network-specific functionality. Since wireless
networks are resource-constrained, a key challenge is to pro-
vide secure and efficient group communication mechanisms
that satisfy application requirements while minimizing
the communication cost. Instead of individual rekeying,
i.e., performing a rekey operation right after each join or
leave request, periodic batch rekeying has been proposed
to alleviate rekeying overhead in resource-constrained
wireless networks. In this paper, we propose an analytical
model to address the issue of how often batch rekeying
should be performed. We propose threshold-based batch
rekeying schemes and demonstrate that an optimal rekey
interval exists for each scheme. We further compare these
schemes to identify the best scheme that can minimize the
communication cost of rekeying while satisfying application
requirements when given a set of parameter values charac-
terizing the operational and environmental conditions of the
system. In a highly dynamic wireless environment in which
the system parameter values change at runtime, our work
may be used to adapt the rekeying interval accordingly.

J.-H. Cho (�) · I.-R. Chen · M. Eltoweissy
Department of Computer Science,
Virginia Tech
e-mail: jicho@vt.edu

I.-R. Chen
e-mail: irchen@vt.edu

M. Eltoweissy
e-mail: toweissy@vt.edu

Keywords Secure group communication . Key
management . Batch rekeying . Wireless networks .

Performance analysis

1 Introduction

Many applications over wired and wireless networks, such
as emergency response, mobile commerce, online gaming,
and collaborative work, are realized based on a group com-
munication model. Also, wireless networks, such as mobile
ad hoc networks and sensor networks, inherently must co-
operate to achieve network functionality such as multi-hop
routing. Consequently, it is important to assure confidential-
ity, authenticity, and integrity of messages exchanged among
group members which may be end users or network nodes.
From this point forward we will use the term “user” to refer
to an end-user or a network node.

One way to achieve cost-effective secure group commu-
nications is to use a symmetric key, called the group key,
shared by group members. The group key is distributed by a
key server that provides the group key management service.
A dedicated key server may be employed, or the function-
ality may be implemented on the same server offering other
services such as authentication. Multiple key servers may
co-exist in a clustered network, where a cluster head may
play the role of a key server [19]. The group key is employed
to encrypt messages sent by a member to the group. Only
members of the group are capable of decrypting the mes-
sages [2]. In a dynamic group where users may join or leave
the group at any time, there are two main security properties
commonly associated with rekeying [1, 12]. First, forward
secrecy assures that an adversary that knows a contiguous
subset of old group keys cannot identify subsequent group
keys. This guarantees that a member cannot know future

Springer

Wireless Netw (2008) 14:915–927

Published online: 14 March 2007

group keys after it leaves the group. Second, backward se-
crecy ensures that an adversary that knows a subset of group
keys cannot discover previous group keys. This guarantees
that a new member that joins the group cannot learn any pre-
vious group keys. To maintain both backward and forward
secrecy, the key server needs to perform rekeying (change
the group key) when the group membership changes [1, 2].

For large dynamic groups, a join or leave request can
occur very frequently. Individual rekeying performs a rekey
operation whenever a new user joins the group or a current
member leaves the group or is evicted. This is not scal-
able to a large dynamic group because of the significant
communication overhead incurred by frequent rekeying in
bandwidth-constrained wireless communications. The over-
head is exacerbated by the need to authenticate each rekeying
message. Moreover, synchronization is difficult to maintain
if the group key is rekeyed after each join or leave [2]. To rem-
edy this, researchers have proposed periodic batch rekeying
[2, 4, 7, 14] by which join and leave requests are aggregated
and rekeying is done only periodically. A consequence of
batch rekeying is that members may not immediately join
or leave the group. Thus, forward and backward secrecy re-
quirements may not be strictly satisfied.

Hardjono et al. [14] proposed periodic batch rekeying to
decrease rekeying overheads in dynamic group communica-
tions. Li et al. [2] proposed the use of periodic batch rekeying
to improve efficiency and reduce the out-of-sync problem.
Setia et al. [4] described an approach for scalable group
rekeying for secure multicast using periodic group rekeying,
called Kronos. They discussed the inefficiency of individual
rekeying under dynamic and large networks, and compared
the performance of Kronos with other key management pro-
tocols using simulation. Yang et al. [7] designed a batch-
rekeying algorithm, called keygem, to improve scalability
and performance of a large and dynamic group. Moharrum
et al. [13] proposed a method to handle group dynamics in a
multicast key tree and maintain a balanced tree with minimal
cost. Recently, Lazos and Poovendran [16] proposed the use
of location-aware batch rekeying of key hierarchies in wire-
less ad hoc networks. Di Pietro et al. [17] proposed LKH ++
which extends the basic logical key hierarchy (LKH) scheme
[3] to efficiently provide secure group key management for
mobile users. Di Pietro et al. [18] also proposed LKHW, a
scheme that combined directed-diffusion and LKH for effi-
cient key management in wireless sensor networks. Several
other schemes as reported in [20] used enhancements of LKH
for key management in wireless networks.

Based on the literature reviewed, even though LKH has
been used for key management in wireless networks and
periodic batch rekeying has been proposed as an efficient
strategy to reduce rekeying overhead by trading off secrecy
violation for reduced rekeying overhead, the issue of an op-
timal batch rekey interval has not been addressed and the

relationship between the optimal batch rekey interval and
environmental conditions (i.e. the arrival rate of join or leave
requests or the probability of trustworthiness in receiving
requests) remains to be investigated.

In this paper we propose new threshold-based schemes
for periodic batch rekeying and demonstrate that there exists
an optimal batch rekey interval for each scheme when given
a set of parameter values characterizing the environmental
conditions, such as the arrival ratio of join or leave requests
or the probability of trustworthiness in the network. A pre-
liminary version of the paper appears in [21]. We compare
these threshold-based batch rekey schemes under the same
set of environmental conditions, and identify conditions un-
der which a scheme would perform the best in terms of the
minimum communication overhead per join/leave operation
without violating constraints in secrecy and delay. To reveal
the batch rekey interval that optimally explores the tradeoff
between acceptable secrecy violation and rekeying delay in
wireless networks, we develop a Stochastic Petri net (SPN)
model to measure and analyze performance metrics, includ-
ing the communication overhead per operation, probability
of secrecy violation, rekeying delay, and batch rekey interval.

This paper has three contributions. First, it develops new
threshold-based batch rekeying schemes and identifies an op-
timal rekey interval for each scheme that would minimize the
communication cost per join/leave operation while satisfying
secrecy and delay constraints. Second, since periodic batch
rekeying can be efficiently used in resource-constrained net-
works as well as dynamically changing networks, finding
an optimal batch rekey interval can be usefully employed in
wireless networks. Third, the development of SPN models
to measure performance metrics for finding an optimal batch
rekey interval is a novel approach in this field. The reason we
choose SPN as our analysis tool is that SPN provides concise
representation of underlying semi-Markov/Markov model
and is capable of dealing with a large number of states. Fur-
thermore, solution techniques in SPN can consider general
time distributions by using SPNP (SPN Package) [9], thus
allowing an SPN model to be easily defined and constructed.

The rest of the paper is organized as follows. Section 2
states the system model and assumptions used in the paper.
Section 3 describes threshold-based batch rekeying algo-
rithms developed with the objective to minimize the com-
munication overhead per group join/leave operation while
satisfying secrecy and delay requirements for wireless group
communication systems. Section 4 develops mathematical
models for performance analysis of the proposed threshold-
based schemes. Section 5 presents and analyzes numerical
results obtained from applying the mathematical models.
Optimal batch intervals of the proposed threshold-based
schemes under which the communication cost per join/leave
operation is minimized while satisfying delay and secrecy
requirements are identified for performance comparison.

Springer

916 Wireless Netw (2008) 14:915–927

Physical interpretations are given to explain the results.
Finally, Section 6 concludes this paper and suggests future
work.

2 System model and assumptions

We assume that the group communication system is in a wire-
less environment in which there is a central key distribution
server that can authenticate and authorize individual group
members. A new member (called a receiver) contacts the
key server to request the group key. The key server authenti-
cates the receiver with a standard authentication protocol and
establishes a secure channel that provides confidentiality, in-
tegrity, and authenticity. If the receiver is authorized, the key
server sends group key information to the receiver. A group
member encrypts messages with the group key to accomplish
confidentiality and limit access to authorized receivers.

We consider that the central key server maintains a key tree
based on the Logical Key Hierarchy (LKH) key distribution
protocol [3] to efficiently update the group key after a join
or leave event to satisfy forward and backward secrecy re-
quirements. Each node in the tree indicates a cryptographic
symmetric key. The key distribution center connects each
group member with one leaf node of the tree and the follow-
ing invariant will be always maintained: each group member
knows all the keys from its leaf node up to the root node, but
no other key in the key tree. We call the set of keys that a
member knows the key path. Since all members know the key
at the root node, that key plays a role as the group key. For
instance, the key path for member M2 in Fig. 1 is composed
of the keys K5, K2, and K1. When a new member joins the
group, the key server sends it all the keys on the key path
over a secure channel. When a member leaves the group,
the key server needs to update all the keys that the member
knows, that is, all the keys on the key path. The main reason
for utilizing such a key tree is to efficiently update the group
key when join and leave events occur.

 K1

 K2 K3

 K4 K7 K6 K5

M1 M2 M3 M4

Fig. 1 An example hierarchical key tree

Note that the key update after a member leave event only
requires a message of length 2klog2 (N) bits (where k is the
length of a key, and N is the number of members). Also, a
key update operation after a new member join event requires
a message of length k (2log2 (N) – 1). One main benefit of
LKH is that each secure key update only requires a broadcast
message size that is logarithmic in the number of group
members [3, 16].

We assume that the inter-arrival times of join requests
and leave requests are exponentially distributed with rates λ

and µ, respectively. This assumption allows us to construct
an SPN model that can be evaluated using tools such as
SPNP v4 [10]. The assumption of exponential distribution
can be relaxed easily by defining other time distributions
and evaluating the model using SPNP v6 [9].

We assume that periodic batch rekeying is employed in the
resource-constrained wireless network to alleviate rekeying
overheads in terms of the communication overhead incurred
due to join or leave requests. We assume that a user cannot
join the group unless it is authorized by the authentication
server. In this case the join request is identified as a “trusted”
join. If a user can join without authentication, then we term
that join as “untrusted” join. Untrusted joins are not allowed
in our model presented in this paper. A leave request also may
be “trusted” or “untrusted.” A trusted leave is the one issued
by a user that voluntarily leaves the group, for example, be-
cause it has moved to another location. On the other hand,
a leave is untrusted if the leave is due to the eviction of the
group member. If rekeying does not take place immediately
after an untrusted leave, a period of security vulnerability
occurs until rekeying takes place. When processing a leave
operation, the key server is able to differentiate a trusted
leave operation from an eviction operation. The probabil-
ity of trustworthiness for leave operations, Pt, thus can be
computed by the key server as the ratio of the number of
trusted leave operations over the total number of leave and
eviction operations statistically collected by the key server
periodically.

3 Threshold-based periodic batch rekeying

A class of batch rekeying schemes is proposed in this paper
based on the notion of “thresholds” to govern the maximum
number of requests (either join or leave, or both) that can
be accumulated in the key server, beyond which rekeying
will be performed. As a baseline, we consider a periodic
batch rekey algorithm (called ULT below) for which only one
threshold, say k3, is used. When k3 is reached, rekeying will
be performed. We also consider more sophisticated periodic
batch rekey schemes for which two thresholds, say k1 and k2,
are used and when either k1 or k2 has reached, rekeying will
be performed. By using thresholds, a threshold-based policy

Springer

917Wireless Netw (2008) 14:915–927

thus identifies the set of states in which rekeying will be
performed, thereby implicitly determining the time interval
between two rekeying operations.

The behavior of periodic batch rekeying schemes pro-
posed can be described by a state machine with a 3-
component state representation (a, b, c), where a is the num-
ber of trusted join requests, b is the number of trusted leave
requests, and c is the number of untrusted leave requests, re-
spectively. We consider three different threshold-based batch
rekeying schemes as follows:

1. Untrusted Leave Threshold-based (ULT): This scheme
has only one threshold, say k3, to check against the num-
ber of untrusted leave requests (i.e., c in the state represen-
tation). This scheme only guards against untrusted leave
requests irrespective of the traffic pattern of trusted users.
For the special case in which k3 is 1, ULT degenerates to
individual rekeying for untrusted requests. We use ULT
as a baseline scheme against which we compare the per-
formance characteristics of two other more sophisticated
batch rekeying schemes described below.

2. Trusted and Untrusted Double Threshold-based
(TAUDT): This scheme has two thresholds, k1 and k2,
with k1 checking against the number of trusted requests
(i.e., a + b) and k2 checking against the number of
untrusted leave requests (i.e., c).

3. Join and Leave Double Threshold-based (JALDT): This
scheme has two thresholds, k1 and k2, with k1 checking
against the number of trusted join requests (i.e., a) and k2
checking against the number of leave requests including
both trusted and untrusted leave requests (i.e., b + c).

To consider untrusted requests, the probability of trust-
worthiness (Pt), which indicates the percentage of trusted
requests received, is given in all three schemes. For untrusted
join requests, the key server does not accept the new node’s
join request through authentication and authorization. Thus,
only untrusted leave requests need to be considered by the
key server. In Fig. 2, K1, K2, K3, and K4 refer to the group
keys updated in each interval. Rekeying is performed only
at the end of the batch rekey interval defined as the period
between two successive group key updates, such as between
K1 and K2 labeled in Fig. 2.

Two application-specific constraints are considered in this
work: probability of secrecy violation (Pv) and delay (D) in-
curred due to periodic batch rekeying. The delay parameter
(D) refers to the average latency experienced per join or
leave operation. The probability of secrecy violation (Pv) is
measured by the proportion of the time the secrecy require-
ment is violated. Note that we only need to consider forward
secrecy violation (caused by delayed rekeying for leave re-
quests). That is, when a new member joins the group, there
is no backward secrecy violation because no key is ever is-
sued to the new member until the end of the batch interval.

K1 K2 K3 K4

Time

 Rekeying

K1 K4K3K2

Time

 Join interval
 = Join latency

 Leave interval
= Forward secrecy violation + Leave latency

Fig. 2 Periodic batch rekeying with respect to join and leave events

On the other hand, when an untrusted member requests to
leave the group, there is a forward secrecy violation since
the untrusted member does not leave immediately right after
it requests a leave operation, and has to stay until the end of
batch rekey interval, allowing it to learn group information.
As a result, by the probability of secrecy violation, we refer
to the proportion of the time the forward secrecy is violated
due to the presence of untrusted users having requested to
leave the group.

Note that we do not distinguish join interval from leave
interval because join and leave events are aggregated and
processed at the end of each batch interval through rekey-
ing. The optimal batch rekey interval (T) is the interval at
which the overhead is minimized while satisfying the two
application-level constraints in terms of the probability of
secrecy violation and delay caused by the postponed rekey-
ing, e.g., 5% of secrecy violation (Pv) and 5 seconds of delays
(D).

A simple optimization feature is used to reduce commu-
nication overhead taking advantage that the key server in our
design has both join and leave requests for rekeying. That is,
a new join member can take the place of a leave member in
the key tree. Thus, for each pair of join and leave requests,
the key server only needs to generate new keys along the
paths of the leave members and give the new keys to the new
join members. Recall that a state in our design is represented
by (a, b, c) where a is the number of trusted join requests, b
is the number of trusted leave requests, and c is the number
of untrusted leave requests. The key server applies the fol-
lowing procedure when performing a rekeying operation at
the end of each batch interval:

� if a > b + c, then the server will process b + c join-leave
request pairs before processing a – (b + c) join requests;

� if a = b + c, then the server will process b + c join-leave
request pairs;

� if a < b + c, then the server will process a join-leave
request pairs before processing (b + c)–a leave requests.

Springer

918 Wireless Netw (2008) 14:915–927

4 Performance model

Table 1 summarizes the notation used for parameters in the
paper. For ULT, we derive analytical closed-form solutions
below to calculate the minimum communication overhead
per operation (S), the probability of secrecy violation (Pv),
and the delay (D) occurred due to periodic batch rekeying.

Let T be the average batch rekey interval in ULT, which
can be calculated as follows:

1

µ(1 − Pt)
× k3 (1)

where 1
µ(1−Pt)

is the average inter-arrival time of an untrusted
leave request.

Thus for ULT, at the end of each batch rekeying interval,
the state of the system represented by (a, b, c) (see Table 1
for their definitions) will have the following state variable

Table 1 Notation

Symbol Meaning

λ Arrival rate of join requests
µ Arrival rate of leave requests
Pt Probability of trustworthiness, i.e., probability that a leave

request is issued from a trusted user
Tb Average overhead (delay) for broadcasting in the wireless

network due to wireless channel contention and
propagation

BW Network bandwidth (Mbps)
Cm Communication overhead bits in a batch rekey operation
Scm Average communication overhead (delay) for batch rekey
S Average communication overhead (delay) per join/leave
Pv Average probability of secrecy violation
D Average delay occurred per join/leave operation
T Average batch rekey interval
N Total number of members in the group
J Length of each key (bits)
a Number of trusted join requests
b Number of trusted leave requests
c Number of untrusted leave requests
ULT Untrusted Leave Threshold-based: This scheme has only

one threshold, k3, to check against the number of
untrusted leave requests (i.e., c in the state representation)

TAUDT Trusted and Untrusted Double Threshold-based: This
scheme has two thresholds, k1 and k2, with k1 checking
against the number of trusted requests (i.e., a + b) and k2
checking against the number of untrusted leave requests
(i.e., c).

JALDT Join and Leave Double Threshold-based: This scheme has
two thresholds, k1 and k2, with k1 checking against the
number of trusted join requests (i.e., a) and k2 checking
against the number of leave requests (i.e., b + c)

k1 First threshold used by TAUDT and JALDT
k2 Second threshold used by TAUDT and JALDT
k3 Only threshold used by ULT

values:

a = λ × Pt × T, b = µ × Pt × T, c = µ × (1 − Pt) × T

(2)

Consequently, based on the procedure used by ULT for
performing rekeying at the end of each batch interval, the
total communication overhead bits (Cm) in ULT can be com-
puted as follows:

if a >= (b + c),

then J × (b + c) × 2 log2 N + J × (a − b − c)

×(2 log2 N − 1)

= J × a × 2 log2 N − J × (a − b − c)

else if a < (b + c),

then J × a × 2 log2 N + J × (b + c − a) × 2 log2 N

= J × (b + c) × 2 log2 N (3)

Let Scm be the communication overhead (referring to the
communication delay) required for performing batch rekey-
ing with the unit of time. Let Tb be the overhead for broad-
casting in the wireless network. Then, Scm can be calculated
as the sum of Tb and the packet transmission time calculated
as the communication overhead bits (Cm) given by Eq. (3)
divided by the wireless bandwidth, i.e.,

Scm = Tb + Cm

BW
(4)

Note that Tb includes the wireless channel contention time
and the wireless propagation time for broadcasting a mes-
sage, both of which can be monitored by the key server.
In practice, the key server can timestamp every broadcast
message prior to transmission, and, based on the timestamps
of acknowledgements returned from members, deduce Tb as
the average time difference minus the transmission time.

The average communication overhead per join/leave oper-
ation (S) in ULT for rekeying is simply equal to the total over-
head divided by the number of leave/join operations, i.e.,

S = Scm

(a + b + c)
(5)

The probability of secrecy violation (Pv) due to periodic
batch rekeying in ULT is calculated as the proportion of time
in which forward secrecy is violated because of the presence
of untrusted leave requests, i.e.,

PV =
(

(k3 − 1)/
k3

)
× T + Scm

(T + Scm)
(6)

Springer

919Wireless Netw (2008) 14:915–927

Here T + Scm in the denominator is a base observation period
and [(k3–1)/k3] × T + Scm in the numerator is the duration
within the base observation period in which forward secrecy
is violated. Note that when k3 = 1, the probability of secrecy
violation (Pv) is simply Scm /(T + Scm) because in this special
case an untrusted leave request arrives at the system in every
T time interval on average and as soon as it arrives, the
system immediately takes Scm to perform rekeying to process
the arriving untrusted leave request (because k3 = 1), during
which forward secrecy is violated.

The delay per join/leave operation (D) in ULT is obtained
by:

D = S + T

2
(7)

Here T/2 is the average wait time for batch rekeying as expe-
rienced by an operation and S is the average communication
overhead per join/leave operation. Through a sanity check
that compares D with the response time per operation, we
validate that the calculated D is almost the same as the re-
sponse time per operation, thus justifying its use. Here the
response time, R, is obtained by using Little’s law R = n/X
[11], where n is the average number of requests and X is the
throughput of the system.

For TAUDT and JALDT, there are too many states to
yield closed-form analytical expressions. Therefore, an SPN
model is developed to measure performance metrics includ-
ing Pv, D, T, and S. Figure 3 shows our SPN model. For
convenience, Table 2 lists the places, transitions, transition
rates, arcs and arc multiplicities used in the SPN model.

We first briefly introduce the nomenclature necessary for
the comprehension of an SPN model [9]. An SPN model con-
sists of entities including transitions, places, arcs, and tokens.
A token is used as a marker; it can be used to represent a user
request. A place is a token place-holder to contain tokens
representing join and leave requests; it is normally given a

a

c

b

tmp

 T1

 T2

 T3

 T5

 T4

Fig. 3 SPN model for TAUDT and JAUDT

Table 2 Places, transitions, transition rates, arcs and arc multiplicities
for the SPN model

Place Meaning

a mark(a) indicates “a” (number of trusted join requests).
b mark(b) indicates “b” (number of trusted leave requests).
c mark(c) indicates “c” (number of untrusted requests).
tmp mark(tmp) = 1 indicates that a leave request has just

arrived; mark(tmp) is always 1 or 0.

Transition Type Rate or probability

T1 Timed λPt

T2 Timed µ

T3 Timed 1/Scm

T4 Immediate Pt

T5 Immediate 1 − Pt

Input arc Multiplicity Output arc Multiplicity

tmp – T4 1 T1– a 1
tmp – T5 1 T2– tmp 1

a – T3 mark(a) T4– b 1
b – T3 mark(b) T5– c 1
c – T3 mark(c)

distinct name that conveys the meaning of a state compo-
nent, e.g., place a in Fig. 3 holds the number of trusted join
requests, place b holds the number of trusted leave requests,
and place c holds the number of untrusted leave requests (cor-
responding to a, b and c in Table 1). The function mark(p)
is used to return the current number of tokens held in place
p. Typically, state components in the state representation of
the underlying Markov or semi-Markov model correspond to
places in an SPN. Since a state in our model has three com-
ponents, namely, a, b, and c, three places, namely, a, b and
c are created for these state components, respectively. Place
tmp is a temporary placeholder, which does not correspond
to any state component and is used to hold newly arriving
leave requests.

A transition represents an event. If a timed transition is
fired in an SPN then it means that an event associated with
the transition has occurred, e.g., a leave request arrives after a
time exponentially distributed (or generally distributed) has
elapsed in the SPN model. For modeling convenience, we
also allow immediate transitions to exist in an SPN model. An
immediate transition occurs instantaneously without taking
any time when the transition fires.

Arcs connect places to transitions. We differentiate input
arcs from output arcs. An input arc goes from an input place
to a transition, while an output arc goes from a transition to
an output place. An arc can be associated with a multiplicity
to indicate the number of tokens associated with the arc; the
default is 1 if not specified. A transition can be optionally
associated with an enabling function to explicitly check

Springer

920 Wireless Netw (2008) 14:915–927

conditions to be satisfied to allow the transition to be
fired. An enabling function will return either true or false
depending on the current state of the system. For example,
TAUDT will perform rekeying when place c holds a number
of tokens equal to the k2 threshold, or places a and b
altogether hold a number of tokens equal to the k1 threshold.
In Fig. 3, a transition can fire if the following two conditions
are satisfied: (a) there are at least m tokens in each of its input
places connected to it by an input arc with multiplicity of m;
(b) the associated enabling function (if one is assigned)
returns true.

Below we explain how the SPN model shown in Fig. 3 is
constructed:

� When a trusted join request arrives, a token is created to
move to place a used to hold the number of trusted join
requests. This is modeled by transition T1 with rate λPt.
Note that untrusted join requests will be detected by the key
server, so the transition rate here is λPt only to account for
the arrival rate of trusted join requests. We use a parameter,
Pt, to denote the probability of trustworthiness, that is, the
probability that a request is issued from a trusted entity.

� When a trusted or untrusted leave request arrives, a token
is created to move to tmp. This is modeled by transition T2
with rate µ. Our model distinguishes trusted requests from
untrusted requests. If the leave request is from a trusted
entity, the token in tmp flows to b; otherwise, the leave
request is untrusted and the token in tmp flows to c. The
immediate transition T4 is associated with probability Pt,
while transition T5 is associated with probability 1 − Pt.
They are fired as soon as its input place, e.g., tmp, con-
tains a token, after which the token will be moved from
tmp immediately to b with probability Pt, and to c with
probability 1 − Pt.

� Under TAUDT or JALDT, when a rekey condition is sat-
isfied, i.e., when either the k1 or k2 threshold is reached,
rekeying is performed. This is modeled by associating an
enabling function with transition T3 specifying the rekey
condition to be satisfied and firing T3 when it is so. Based
on the threshold control policies, the enabling function of
T3 for TAUDT is if mark(a) + mark(b) = k1 or mark(c)
= k2, then return true; otherwise return false. The en-
abling function of T3 for JALDT is if mark(a) = k1 or
mark(b) + mark(c) = k2, then return true; otherwise re-
turn false. After a rekeying operation is processed by the
key server, all the tokens in a, b, and c (representing the
join/leave operations accumulated at the server over the
batch interval period) are removed through transition T3
and the state system goes back to the initial state (0, 0, 0),
i.e., mark(a) = 0, mark(b) = 0 and mark(c) = 0.

Table 3 lists the enabling functions associated with tran-
sitions in the SPN model for the TAUDT and JALDT
schemes, reflecting their respective control behaviors for

Table 3 Transitions and associated enabling functions in the SPN
model

Transition Enabling function

T1
TAUDT If mark (a) + mark(b) < k1

and mark(tmp) = 0, then return true;
otherwise return false.

JALDT If mark (a) < k1 and mark(tmp) = 0,
then return true;
otherwise return false.

T2
TAUDT If mark (c) < k2 and mark(tmp) = 0,

then return true;
otherwise return false.

JALDT If mark(b) + mark (c) < k2
and mark(tmp) = 0, then return true;
otherwise return false.

T3
TAUDT If mark(a) + mark(b) = k1 or

mark(c) = k2, then return true;
otherwise return false.

JALDT If mark(a) = k1 or
mark(b) + mark(c) = k2, then return true;
otherwise return false.

T4
TAUDT If mark (a) + mark(b) < k1

and mark(tmp) = 1, then return true;
otherwise, return false.

JALDT If mark (a) < k1 and mark(tmp) = 1,
then return true;
otherwise return false.

T5
TAUDT If mark (c) < k2 and mark(tmp) = 1,

then return true;
otherwise return false.

JALDT If mark(b) + mark (c) < k2
and mark(tmp) = 1, then return true;
otherwise return false

firing the transitions. The average communication over-
head per operation (S) is obtained by assigning a reward
of Scm

(mark(a)+mark(b)+mark(c)) to each rekeying state in which the
enabling function of T3 returns true, where Scm is calculated
by Eq. (4) whose value depends on the values of a, b, and c
in each rekeying state. Specifically, the following formula is
used to calculate S in the SPN model:

S =
all∑

i∈R

P(i)× Scm

(mark(a) + mark(b) + mark(c))
(8)

Here R denotes the set of rekeying states and P(i) denotes
the steady-state probability of the system being in state i,
which we could easily obtain by evaluating the SPN model
using SPNP [9].

Under TAUDT and JALDT, secrecy is violated when there
is at least one untrusted leave request in the system. Thus,

Springer

921Wireless Netw (2008) 14:915–927

the violation probability Pv is obtained by assigning a reward
of 1 when mark(c) > 0, calculated as follows:

Pv =
all∑

i∈V

P(i)×ri (9)

Here V denotes the set of states in which mark(c) > 0, ri is
1, and P(i) is the probability that the system is in state i in
the steady-state.

In order to obtain the average batch rekeying interval T
under TAUDT and JALDT, we transform the SPN model
shown in Fig. 3 into one in which all rekeying states be-
come absorbing states. Then, in this transformed SPN model
with absorbing states, by assigning a reward of 1 to all states
except the absorbing states, T can be computed by the ex-
pected cumulative reward until absorption, E[Y (∞)], since
this mean time to absorption corresponds to the average time
it takes to reach an absorption state in which rekeying will
be performed. Specifically, in the transformed SPN model
with rekeying states as the absorbing states, T is calculated
as follows:

T = E[Y (∞)] =
∞∑

i∈S

ri

∫ ∞

0
Pi (t)dt (10)

Here S denotes the set of all states except the absorbing
states in the transformed SPN model, ri = 1, and Pi (t) is the
probability of state i at time t. An SPN evaluation tool such
as SPNP [9] can be readily applied to compute T based on
Eq. (10). Once S and T are obtained from Eqs. (8) and (10),
the average delay per operation D can be calculated based
on Eq. (7) for TAUDT and JALDT.

5 Numerical results and analysis

This section presents and analyzes numerical results obtained
from applying the mathematical models developed for ULT,
TAUDT and JALDT. In all cases presented, the number of
members in the group (N) is set to 1024 (representing a
large dynamic group), the length of each key (J) is 64 bits,
Tb = 5 msec, and the bandwidth (BW) is 1 Mbps. Changing
these parameter values will affect the scale of the results
but does not affect the trend. On the other hand, we change
the values of other key parameters including the ratio of the
arrival rate of join requests to the arrival rate of leave requests
(λ: µ) and the probability of trustworthiness (Pt) to see their
effects on the results.

We organize the presentation as follows. First, we show
that for each of the three batch rekeying algorithms proposed
(ULT, TAUDT, and JALDT) an optimal batch rekeying in-
terval (T) exists that would minimize the cost per join/leave

operation (S) while satisfying the requirement constraints in
terms of delay (D) and secrecy violation (Pv) in Sections 5.1,
5.2 and 5.3, respectively. Then in Section 5.4 we compare
these threshold-based schemes head-to-head under identical
system conditions characterized by the probability of trust-
worthiness (Pt) and the ratio of λ: µ, and identify the scheme
that performs the best that minimizes S among all. We used
a log scale (base 10) to represent the values measured.

5.1 Untrusted leave threshold-based (ULT) batch rekeying

Recall that the ULT batch rekeying scheme is our baseline
scheme which TAUDT and JALDT will be compared against.
It only has one threshold, k3, to guard the number of untrusted
leave requests (i.e., c).

Figure 4 shows the effect of varying k3 on the probabil-
ity of secrecy violation, Pv, in ULT while setting λ: µ = 1:
0.5 and Pt = 0.9. Other λ: µ and Pt values exhibit similar
trends and are not shown here. As we can see, Pv increases
as k3 increases. The reason is that k3 checks against the
number of untrusted leave requests (c) in the key server.
Therefore, increasing k3 means that there are more untrusted
leave requests in the key server accumulated until rekeying
is performed, thus resulting in a higher probability of se-
crecy violation. Note that when k3 = 1, Pv is 0. That means
that as soon as the key server accepts an untrusted leave re-
quest, it performs a rekey operation immediately, in which
case there is no secrecy violation and forward secrecy is pre-
served without any violation at the expense of performance
degradation.

Figure 5 shows the effect of changing k3 on the delay
(D) incurred due to periodic batch rekeying in ULT. As
shown in Fig. 5, D increases as k3 grows. The reason is that
when a higher threshold (k3) is applied for batch rekeying,
it takes more time to accumulate the number of untrusted
leave requests by the key server to reach the threshold, thus
increasing D.

Figure 6 shows the average communication overhead
per join/leave operation (S) as k3 increases. As expected,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

Threshold of k3

P
v

Fig. 4 Pv vs. k3 under the ULT scheme

Springer

922 Wireless Netw (2008) 14:915–927

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Threshold of k3

D
(s

ec
o

n
d

)

Fig. 5 D vs. k3 under the ULT Scheme

8.00E-04

9.00E-04

1.00E-03

1.10E-03

1.20E-03

1.30E-03

1.40E-03

1 2 3 4 5 6 7 8

Threshold of k3

S

Fig. 6 S vs. k3 under the ULT scheme

S decreases as k3 increases. The optimal k3 value that
minimizes S while satisfying the imposed constraints on D
and Pv, however, is not infinity. For example, when D = 5 s
and Pv = 5%, k3 is 1. The corresponding optimal batch rekey
interval (T) that minimizes S while satisfying D and Pv in this
case can be readily calculated as 6.67 s based on Eq. (1).

5.2 Trusted and untrusted double threshold-based (TAUDT)
batch rekeying

Recall that TAUDT has two thresholds, k1 and k2, with k1
guarding against the number of trusted requests (a + b) and
k2 guarding against the number of untrusted requests (c).
Figure 7 shows the effect of (k1, k2) on Pv in TAUDT with λ:
µ = 1: 0.5 and Pt = 0.9. As k1 increases, Pv increases (ex-
cept when k2 = 1 representing the special case that secrecy is
perfect) because a higher threshold contributes to more states
having violated the secrecy requirement. Pv also increases
as k2 increases in general until k2 reaches a threshold (k2 >

2) beyond which Pv is insensitive to the increase of k2. The
reason is that with Pt = 0.9 most arrivals are trusted requests
and thus the effect of k1 as a threshold dominates the effect
of k2. We observe that, nevertheless, when Pt decreases, Pv

becomes more sensitive to k2, and the Pv vs. (k1, k2) curves
become more distinct for different k2 values.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15

Threshold of k1

P
v

(P
ro

b
.)

k2 = 1
k2 = 2
k2 = 3
k2 = 4
k2 = 5
k2 = 6
k2 = 7
k2 = 8

Fig. 7 Pv vs. (k1, k2) under the TAUDT scheme

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15

Threshold of k1

D
(s

ec
o

n
d

)

k2 = 1

k2 = 2

k2 = 3

k2 = 4

k2 = 5

k2 = 6

k2 = 7

k2 = 8

Fig. 8 D vs. (k1, k2) under the TAUDT scheme

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

1 3 5 7 9 11 13 15

Threshold of k1

S

k2 = 1

k2 = 2

k2 = 3

k2 = 4

k2 = 5

k2 = 6

k2 = 7

k2 = 8

Fig. 9 S vs. (k1, k2) under the TAUDT scheme

Figure 8 shows D vs. (k1, k2). We observe that D increases
as k1 increases, because using a higher threshold to aggregate
more join or leave requests will result in a higher latency.
Here, D also increases as k2 increases although the effect of
k2 is not as significant as k1 due to a high Pt used. Again,
we observe a more significant effect of k2 on D when we
decrease Pt.

Lastly Fig. 9 shows the effect of (k1, k2) on the communi-
cation overhead per operation (S) in TAUDT. As k1 increases,
S decreases in the key server because aggregating join and
leave events reduces the batch rekeying overhead. Similar to
what we have observed in Figs. 7 and 8, since there is a small
number of untrusted leave requests (c), S is insensitive to in-
creasing k2. Figures 7–9 allow us to find the optimal (k1, k2)
when given constraints in terms of D and Pv. For example,

Springer

923Wireless Netw (2008) 14:915–927

when D = 5 s and Pv = 5%, the optimal setting (k1, k2) is
(16, 1) corresponding to the optimal interval of T = 8.83 s.
The translation of the optimal (k1, k2) to the optimal T is
through the use of Eq. (10) when evaluating the Petri net
model for TAUDT discussed earlier.

5.3 Join and leave double threshold-based (JALDT) batch
rekeying

JALDT has two thresholds, k1 and k2, with k1 checking
against the number of join requests (a) and k2 checking
against the number of leave requests (b + c), respectively.

Figure 10 shows the effect of changing k1 and k2 on Pv

in JALDT. We see that as either k1 and k2 increases, Pv

increases. The reason is that a higher threshold in either k1
or k2 brings more states until rekeying is performed, thus
contributing to more states in which the secrecy requirement
is violated.

Different from the previous results for TAUDT (Figs. 7–9),
we observe more distinctions between curves as k2 increases
because k2 in the JALDT scheme is used as a threshold to
check against trusted and untrusted leave requests (b + c),
not just the number of untrusted requests (c) as in TAUDT.

Figure 11 shows the effect of increasing k1 and k2 on
D in JALDT. We see that as k1 and k2 increase, D also
increases. Again, using higher thresholds introduces more
requests accumulated in the key server until a rekey operation
is performed, resulting in the delay being increased. Also,
because there are more leave requests governed by k2 in the
key server, D increases as k2 increases.

Figure 12 shows the change of average communication
overhead per join/leave operation (S) over increasing k1 and
k2. Again as k1 and k2 increase, S decreases because ag-
gregating more join and leave events for a batch rekeying
operation will amortize the cost per operation.

From Figs. 10–12, we can easily determine the optimal
(k1, k2) that would minimize S while satisfying D and Pv.
For example, when D = 5 s and Pv = 5%, the optimal setting
(k1, k2) found is (13, 2) corresponding to the optimal interval
of T = 3.96 s. The translation of the optimal (k1, k2) to the
optimal T is through the use of Eq. (10) while evaluating the
Petri net model for JALDT.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threshold of k1

P
v

(P
ro

b
.)

k2 = 1

k2 = 2

k2 = 3

k2 = 4

k2 = 5

k2 = 6

k2 = 7

k2 = 8

Fig. 10 Pv vs. (k1, k2) under the JALDT scheme

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threshold of k1

D
(s

ec
o

n
d

)

k2 = 1

k2 = 2

k2 = 3

k2 = 4

k2 = 5

k2 = 6

k2 = 7

k2 = 8

Fig. 11 D vs. (k1, k2) under the JALDT scheme

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Threshold of k1

S

k2 = 1

k2 = 2

k2 = 3

k2 = 4

k2 = 5

k2 = 6

k2 = 7

k2 = 8

Fig. 12 S vs. (k1, k2) under the JALDT Scheme

5.4 Comparing ULT, TAUDT and JALDT batch rekeying
schemes

In this section we compare the minimum S and optimal T
obtainable while satisfying imposed constraints on D and Pv

by ULT, TAUDT, and JALDT. We test the sensitivity of our
results by varying Pt and λ: µ under identical conditions, and
identify the best scheme that minimizes S among all while
satisfying D and Pv.

Figure 13 shows the “minimum” S (i.e., the optimal S)
obtained by ULT, TAUDT, and JALDT as a function of Pt. The
ratio of of λ: µ is set to 1: 0.5 to isolate out its effect. Each data
point given is the optimal S found satisfying the constraints
that D = 5 s and Pv = 5%. We see that for each curve, as the
probability of trustworthiness (Pt) increases, S decreases.
The reason is that a higher Pt implies less untrusted requests
and consequently a lower secrecy violation probability Pv. As
a result, a higher Pt reduces the average communication cost
per operation. Note that there is no data point at Pt = 0.9
under ULT because too much delay has occurred (higher
than 5 s of D) caused by a low arrival rate of µ (1 − Pt) for
untrusted leave requests in this case.

Among the three threshold-based batch rekeying schemes,
TAUDT performs the best in terms of the minimum commu-
nication cost per join/leave operation (S), while satisfying
the constraints on D and Pv. On the other hand, ULT shows
the highest minimum S. The reason is that ULT tends to
sharply increase Pv as k3 increases because ULT uses only

Springer

924 Wireless Netw (2008) 14:915–927

-6

-5

-4

-3

-2

-1

0
P = 0.1 P = 0.3 P = 0.5 P = 0.7 P = 0.9

Prob. of Trustworthiness (Pt)

lo
g

(S
)

TAUDT JALDT ULT

Fig. 13 Comparing ULT, TAUDT, and JALDT: Log (S) vs. Pt

a single threshold, k3, to bound the number of untrusted
leave operations. To satisfy the stringent constraint in Pv,
ULT must select a small k3 value corresponding to a small
optimal T and a large minimum S. Similarly, since JALDT
generates a higher Pv than TAUDT under identical condi-
tions, JALDT has a higher minimum S than TAUDT. The
reason that JALDT generates a higher Pv and consequently
a higher S than TAUDT is that JALDT has more states hav-
ing violated forward secrecy because k2 in JALDT checks
against (b + c) while k2 in TAUDT only checks against c.

Figure 14 shows the optimal T corresponding to the min-
imum S found in Fig. 13. Note that the optimal T at Pv =
0.9 under ULT is not available for the same reason that D
obtained in this case does not satisfy the constraint.

Next we compare ULT, TAUDT, and JALDT as a function
of the ratio of λ: µ to test the result sensitivity. Figure 15
shows the minimum S obtainable when the arrival rate of
leave requests (µ) varies (with the arrival rate fixed at 1) to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P = 0.1 P = 0.3 P = 0.5 P = 0.7 P = 0.9

Prob. of Trustworthiness (Pt)

lo
g

(T
)

TAUDT JALDT ULT

Fig. 14 Comparing ULT, TAUDT, and JALDT: Log (T) vs. Pt

-6.00E+00

-5.50E+00

-5.00E+00

-4.50E+00

-4.00E+00

-3.50E+00

-3.00E+00

-2.50E+00

-2.00E+00

lo
g

 : ratio

(S
)

TAUDT JALDT ULT

Fig. 15 Comparing ULT, TAUDT, and JALDT: Log (S) vs. λ: µ

reflect varying ratios of λ: µ. Here we note that the mini-
mum S values at µ = 0.1, 0.5, and 1 in ULT are not available
because D obtained exceeds the constraint of 5 s. The min-
imum S at µ = 50 under ULT could not be found because
Pv obtained is too high due to a very high arrival rate of
leave requests. Similarly, the minimum S value at µ = 50
under TAUDT could not be found because Pv obtained is
too high. Figure 15 shows that as µ increases, the minimum
S also increases. The reason is that a higher µ introduces
more untrusted leave requests, resulting in a higher Pv, and
thus a higher minimum S. As discussed earlier since TAUDT
is able to generate a lower Pv than JALDT under identical
conditions, TAUDT is able to generate a lower minimum S.
This is confirmed once again from Fig. 15, which shows that
over a wide range of λ: µ ratios, TAUDT is the most efficient
scheme, showing the lowest minimum S among all.

Finally we compare all three threshold-based schemes
in terms of the optimal T corresponding to the minimum
S found in Fig. 15. In Fig. 16, as µ increases, the optimal
T decreases. Comparing Fig. 16 with Fig. 15, whenever
there is a minimum S, correspondingly there is an optimal

-2

-1.5

-1

-0.5

0

0.5

1

1.5

lo
g

(T
)

TAUDT JALDT ULT

Fig. 16 Comparing ULT, TAUDT, and JALDT: Log (T) vs. λ: µ

Springer

925Wireless Netw (2008) 14:915–927

T generated. We observe that Fig. 16 correlates well with
Fig. 15 in terms of the trend shown. Specifically, TAUDT has
the highest optimal T, as shown in Fig. 16, as it has the lowest
minimum S, as shown in Fig. 15. Further, JALDT shows the
second highest optimal T, followed by ULT which is the last
although there is only one value at µ = 10 under ULT. Based
on Fig. 16, we conclude that TAUDT has the longest optimal
T compared with the two other threshold-based schemes, by
reducing the batch rekeying overhead more efficiently.

6 Conclusions and future work

In this work, we have proposed a class of threshold-based
batch rekeying schemes with the objective of reducing the
communication overhead per join/leave operation (S) while
satisfying delay (D) and secrecy (Pv) requirements for wire-
less group communication systems. We have developed per-
formance models to analyze these batch rekeying schemes,
and compare their performance characteristics. We observed
that an optimal rekeying interval (T) exists under each of
these schemes. Further, by varying the probability of trust-
worthiness among receiving requests (Pt) and the ratio of
the arrival rate of join requests to the arrival rate of leave
requests (λ: µ) over a wide range, we concluded that among
the threshold-based batch rekeying schemes proposed (ULT,
TAUDT, and JALDT), TAUDT is able to produce the mini-
mum S and the maximum T, which makes it the most efficient
scheme among all. As Pt increases, we observed a decreas-
ing minimum S and an increasing T. As µ increases, we
observed an increasing minimum S, and a decreasing op-
timal T. These results can be used by system designers to
determine the optimal T value that would minimize S under
TAUDT.

As reliability and availability are vital in wireless net-
works to deal with unreliable group communications [6–8],
the SPN model developed in the paper can be augmented
to take reliability and availability designs into consideration
and analyze their effects on the optimal batch rekeying inter-
val. Future research areas include (a) analyzing the effect of
insider attacks and intrusion detection system design on the
security and performance properties of group communica-
tions in wireless systems; and (b) investigating the issue of
optimal batch rekeying for the case in which a group consists
of multiple subgroups [22].

References

1. C.K. Wong, M. Gouda and S.S. Lam, Secure group communica-
tions using key graphs, IEEE/ACM Transactions on Networking
8(1) (Feb. 2000), 16–30.

2. X. Li, Y.R. Yang, M.G. Gouda and S.S. Lam, Batch rekeying
for secure group communications, in: Proceedings of the Tenth

International Conference on World Wide Web Hong Kong (July
2001), pp. 525–534.

3. A. Perrig and J.D. Tygar, Secure Broadcast Communication in
Wired and Wireless Networks (Kluwer Academic Publishers,
2003).

4. S. Setia, S. Koussih, S. Jajodia and E. Harder, Kronos: A scalable
group rekeying approach for secure multicast, in: IEEE Sympo-
sium on Security and Privacy (Oakland, CA, May 2000), pp. 215–
228.

5. S. Zhu, S. Setia and S. Jajodia, Performance optimizations
for group key management schemes, in: Proceedings of the
23rd IEEE International Conference on Distributed Comput-
ing Systems (Providence, Rhode Island, May 2003), pp. 163–
171.

6. S. Zhu and S. Jajodia, A scalable and reliable key distribution
protocol for multicast group rekeying, Technical Report, GMU,
(Jan. 2002).

7. Y.R. Yang, X. Li, X. Zhang and S.S. Lam, Reliable group rekeying:
A performance analysis, in: ACM SIGCOMM 2001 (San Diego,
August 2001), Vol. 31, No. 4, pp. 27–38.

8. C.K. Wong and S.S. Lam, Keystone: A group key management
system, in: International Conference on Telecom’s, Acapulco,
Mexico (May 2000).

9. G. Ciardo, R.M. Fricks, J.K. Muppala and K.S. Trivedi, SPNP
Users Manual Version 6 (Department Electrical Engineering,
Duke University, 1999).

10. G. Ciardo, R.M. Fricks, J.K. Muppala and K.S. Trivedi, SPNP
Reference Guide Version 4 (Department Electrical Engineering,
Duke University, 1994).

11. R.A. Sahner, K.S. Trivedi and A. Puliafito, Performance and Relia-
bility Analysis of Computer Systems: An Example-Based Approach
Using the Sharpe Software Package (Kluwer Academic, 1996).

12. M. Steiner, G. Tsudik and M. Waidner, Key agreement in dynamic
peer groups, IEEE Transactions on Parallel and Distributed
Systems 11(8) (August 2000), pp. 769–980.

13. M. Moharrum, R. Mukkamala and M. Eltoweissy, Efficient secure
multicast with well-populated multicast key trees, in: Proceedings
of the 10th International Conference on Parallel and Distributed
Systems, IEEE Computer Society (July 2004), pp. 215–222.

14. T. Hardjono, B. Cain and I. Monga, Intra-Domain Group Key
Management Protocol (Internet Draft, Feb. 1998).

15. D.M. Wallner, E.G. Harder and R.C. Agee, Key Management for
Multicast: Issues and Architecture (Internet Draft, Sept. 1998).

16. L. Lazos and R. Poovendran, Energy-aware secure multicast
communication in ad hoc networks using geographic location
information, IEEE International Conference on Acoustics Speech
and Signal Processing 4 (April 2003), pp. 201–204.

17. R.D. Pietro, L.V. Mancini and S. Jajodia, Security and middleware
services: efficient and secure keys management for wireless mobile
communications, in: Proceedings of the 2nd ACM International
Workshop on Principles of Mobile Computing, Toulouse, France
(Oct. 2002), pp. 66–73.

18. R.D. Pietro, L.V. Mancini, Y.W. Law, S. Etalle and P. Havinga,
LKHW: A directed diffusion-based secure multicast scheme for
wireless sensor networks, in: Proceedings of the 1st International
Workshop on Wireless Security and Privacy, Kaohsiung, Taiwan
(Oct. 2003), pp. 397–406.

19. K Ghumman, M.F. Younis and M. Eltoweissy, Location-aware
combinatorial key management scheme for clustered sensor
networks, IEEE Transactions on Parallel and Distributed Systems
17(8) (Aug. 2006), pp. 865–882.

20. A. Ghosh and F. Anjum, Wireless network security II: last hop
topology sensitive multicasting key management, in: Proceedings
of the 1st ACM International Workshop on Quality of Service and
Security in Wireless and Mobile Networks, Montreal, Quebec,
Canada (Oct. 2005), pp. 63–70.

Springer

926 Wireless Netw (2008) 14:915–927

21. J.H. Cho, I.R. Chen and M. Eltoweissy, Optimization of batch
rekey interval for secure group communications in wireless
networks, in: 2005 IEEE International Conference on Wireless
Networks, Communications, and Mobile Computing, Vol. 1, Maui,
Hawaii (July 2005), pp. 522–527.

22. E. Jung, X.-Y. Liu and M.G. Gouda, Key bundles and parcels:
secure communication in many groups, in: Proceedings of the 5th
International Workshop on Networked Group Communications,
LNCS 2816, ed. B. Stiller, Springer-Verlag, Munich, Germany
(Sept. 2003), pp. 119–130.

Jin-Hee Cho received the B.A. degree from Ewha Womans University
in Seoul, Korea in 1997, and the M.S. degree in Computer Science from
Virginia Polytechnic Institute and State University, USA, in 2004. Since
Fall 2004, she has been pursuing her Ph.D. degree in the Department of
Computer Science at Virginia Tech, where she is a Graduate Research
Assistant in the Mobile Computing Lab. Her research interests include
wireless mobile networks, mobile ad hoc networks, sensor networks,
secure group communication, network security, and intrusion detection
systems.

Ing-Ray Chen received the B.S. degree from the National Taiwan Uni-
versity, Taipei, Taiwan, and the M.S. and Ph.D. degrees in computer

science from the University of Houston. He is a full professor in the
Department of Computer Science at Virginia Tech. His research in-
terests include mobile computing, pervasive computing, multimedia,
distributed systems, real-time intelligent systems, and reliability and
performance analysis. Dr. Chen has served on the program committee
of numerous conferences, including as program chair for 29th IEEE
Annual International Computer Software and Application Conference
in 2005, 14th IEEE International Conference on Tools with Artificial
Intelligence in 2002, and 3rd IEEE Symposium on Application-Specific
Systems and Software Engineering Technology in 2000. Dr. Chen cur-
rently serves as an editor for Wireless Personal Communications, The
Computer Journal, and International Journal on Artificial Intelligence
Tools. He is a member of the IEEE/CS and ACM.

Mohamed Eltoweissy is an associate professor in The Bradley Depart-
ment of Electrical and Computer Engineering at Virginia Tech. He also
holds a courtesy appointment in the Department of Computer Science.
His research interests are in the areas of information assurance and
trust, networking and security in large-scale, ubiquitous, unstructured
and resource-constrained environments, service-oriented architectures,
and group communications. Eltoweissy received his Ph.D. in Computer
Science from Old Dominion University in 1993 and his M.S. and B.S in
Computer Science and Automatic Control from Alexandria University,
Egypt in 1989 and 1986, respectively. He has over 100 publications
in archival journals and respected books and conference proceedings.
Eltoweissy is a senior member of IEEE and a member of ACM, ACM
SIGBED, and ACM SIGSAC. In 2003, Eltoweissy was nominated for
the Virginia SCHEV outstanding faculty awards, the highest honor for
faculty in Virginia.

Springer

927Wireless Netw (2008) 14:915–927

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

