
Update Propagation Algorithms for Supporting Disconnected Write

in Mobile Wireless Systems with Data Broadcasting Capability

Ing-Ray Chen and Ngoc Anh Phan

Department of Computer Science

Virginia Tech

{irchen,nphan}@vt.edu

I-Ling Yen

Department of Computer Science

University of Texas at Dallas

ilyen@utdallas.edu

Abstract

We develop and analyze algorithms for propagating updates by mobile hosts in wireless
client-server environments that support disconnected write operations, with the goal of mini-
mizing the tuning time for update propagation to the server. These algorithms allow a mobile
host to update cached data objects while disconnected and propagate the updates to the server
upon reconnection for conflict resolutions. We investigate two algorithms applicable to mobile
systems in which invalidation reports/data can be broadcast to mobile hosts periodically. We
show that there exists an optimal broadcasting period under which the tuning time is mini-
mized for update propagations. We perform a comparative analysis between these two update
propagation algorithms that rely on broadcasting data and an algorithm that does not, and
identify conditions under which an algorithm should be applied to reduce the total tuning time
for update propagation by the mobile user to save the valuable battery power and avoid high
communication cost. For real-time applications, we address the tradeoff between tuning time
and access time with the goal to select the best update propagation algorithm that can minimize
the tuning time while satisfying the imposed real-time deadline constraint. The analysis result
is applicable to file/data objects that mobile users may need to modify while on the move.

Keywords: Wireless mobile systems, data broadcasting, disconnected operations, performance
analysis, mobile client-server systems.

1 Introduction

A mobile host (MH) performing read/write operations to a remote server can voluntarily discon-

nect itself from the server to save its battery life and avoid high communication prices in wireless

networks. Before disconnection, the MH can prefetch into its local cache frequently-used objects of

various formats based on the MH’s specification or the past access history [22]. During disconnec-

tion, the MH accesses these prefetched objects locally. When the MH is reconnected to the system,

the updates to the cached objects can be reintegrated back to the server to resolve conflicts with

updates performed by the server (from other sites). In the literature, the three phases of supporting

disconnected operations are termed hoarding, disconnection and reintegration [12, 18], respectively.

Over the past few years, various algorithms have been proposed to support disconnected op-

erations in wireless mobile environments in these three phases [2, 7, 11, 12, 14, 17]. However,

most existing algorithms assume read-only operations during disconnection. To support object

1

write/create operations during disconnection, the Caubweb project [17] proposes modifying con-

temporary web browers/servers. The basic idea is to support disconnected updates via a client

proxy running on the MH side to cache staging updates while disconnected, and a script running

on the server to accept requests from the client proxy upon reconnection. ARTour Web Express [2]

and ROVER [13] both allow staging updates to be incrementally and asynchronously flushed back

to the server to support intermittent or weak connections. The BAYOU system [24] proposes the

notion of application-specific conflict resolution to allow application-specific merge algorithms to

be applied when update conflicts are detected. Coda [14, 23] also provides mechanisms to resolve

update conflicts upon reintegration to support disconnected operations on files.

None of these systems above addresses the issue of when a disconnected MH should be recon-

nected to the server. In our previous work [4], we developed a multiple web-page update propagation

algorithm for supporting disconnected write operations in the context of web applications to ad-

dress this issue. We identified when a disconnected MH should be reconnected to the server (after

the prefetch phase) to propagate the web-page updates so that the system’s performance in terms

of the communication cost is optimized during the reintegration phase. The algorithm developed

assumes that a MH communicates with its server on-demand via a service channel regardless of if

the server may periodically broadcast information to all MHs regarding the validity of cached data

objects. In this paper, we present a modified version of this web-page update propagation algo-

rithm to deal with general file/data objects for supporting disconnected operations. Throughout

the paper we will call it the “Query on Reconnection” or QOR algorithm for short.

In cases where the server can periodically broadcast invalidation reports containing information

regarding objects having recently been updated using a broadcast channel, the QOR algorithm

may incur unnecessary costs since the MH can read the invalidation report and/or changed objects

from the broadcast channel to know whether its cached objects are still valid before propagating

updates to the server.

The use of broadcast to disseminate data in wireless networks [10, 6, 20, 21] has received

considerable attention due to the desirable scalability property to allow a large population of mobile

users to concurrently read data broadcast by the server in the air. The general model is well known

and there has been extensive analysis of broadcast channels and whether the server should broadcast

only invalidation reports or additionally should also broadcast changed data objects [1, 9]. Most

of the work concerns with the organization of broadcast data, i.e., when and how to broadcast

particular data objects such that the access time for data retrieval (the response time for data

access) from broadcasts is minimized. Furthermore, most work assumes read-only access by the

MH with updates being performed at the server.

Datta et al. [6] proposed to dynamically alter the broadcast content depending on the patterns

of client demand. In addition to the access time performance metric, they also proposed to use

2

the tuning time (the duration of time a MH actively listens) to measure power conservation of a

MH. To minimize the tuning time, Tan et al. [20] proposed two algorithms that exploit selective

tuning, namely, Selective Dual-Report Cache Invalidation and Bit-Sequences with Bit Count. To

facilitate the invalidation of cache contents, a server can periodically broadcast cache invalidation

reports that contain information regarding data objects that have been updated in the last w

broadcasting interval, with w being a design parameter. Kahol et al. [21] proposed an algorithm

called Asynchronous Stateful (AS) that uses asynchronous invalidation messages and buffering of

invalidation messages from the servers at the mobile host’s Home Location Cache to support discon-

nection. Recently, prototypes based on data broadcasting to mobile devices have been developed

and reported in the literature. Liebmann et al. [16] at Vienna University of Technology, Vienna,

Austria, implemented a prototype based on J2EE that integrates push-based data dissemination

with pull-based data requests where a backend server broadcasts data requested to all edge devices

instead of replying directly to the initiating devices. DaSilva et al. [5] at Virginia Tech developed

a prototype based on UDP broadcasting to iPAQ devices for a stock-quote application to empir-

ically analyze performance characteristics of flat versus indexed disk structure in broadcast-based

database services and to demonstrate the scalability property.

While the issue of supporting disconnected write operations was not addressed by these papers,

we draw upon the existing work in utilizing the same set of performance metrics (i.e., tuning

time and access time with a different context - see Section 2.5) and designing update propagation

algorithms based on the way broadcast data are organized and retrieved by a MH. Then we apply

similar analysis methods adjusted to evaluate update propagation algorithms proposed for mobile

wireless systems with data broadcasting capabilities. The novel aspect of our work is that we address

the issue of how to support disconnected write operations by means of update propagations in the

reintegration phase in systems with data broadcasting capability with the goal to minimize the

tuning time. For real-time applications, we address the tradeoff between tuning time and access

time with the goal to select the best update propagation algorithm that can minimize the tuning

time while satisfying the imposed real-time deadline constraint.

Another group of work [15, 19] focused on transaction processing in mobile broadcast-based data

dissemination systems. However, the bulk of research has been on the design of concurrency control

algorithms for efficient processing of read-only transactions at the mobile clients. Lately, the work

by Lee et al. [15] considered the design of algorithms to support update transactions performed

by mobile clients. To some extent, the transaction processing algorithm presented in their work

can be applied to support update propagations of a group of prefetched data items as a set of

update transactions since an update transaction performed by a MH can be structured to contain

only a single write operation on a data item. Their algorithm, however, deals mainly with the goal

of efficient processing of online concurrent mobile transactions to detect early data conflicts and

3

avoid transaction aborts and thus does not provide efficient supports for disconnected operations.

Our work deals specifically with disconnected operations for data objects without transactional

semantics, with the goal of minimizing the total time to propagate updates of all objects from the

MH to the server so as to minimize the communication cost and save the MH’s valuable battery

power.

In this paper, we develop two update propagation algorithms applicable to systems with data

broadcasting mechanisms to support disconnected operations. The first algorithm facilitates cache

invalidation through the use of invalidation reports. We call it the “Invalidation Only” or INV

algorithm. The second algorithm uses both invalidation reports and data broadcasting. We call it

the “Invalidation Plus Broadcasting” or I+B algorithm. We compare these two algorithms with the

QOR algorithm and for each algorithm we answer the questions of: (1) when to propagate and (2)

how much access time and tuning time would be required to propagate a set of objects prefetched

by a MH for supporting disconnected operations. The analysis result is useful for a MH to select

the best update propagation algorithm to apply in order to minimize the tuning time when given

a set of identified conditions. Here we note that even in the presence of data broadcasting, the MH

does not necessarily have to read data from the broadcast if it discovers that the QOR algorithm

will yield the best access or tuning time.

The rest of the paper is organized as follows. Section 2 states the system assumptions with a

system model. Section 3 describes algorithms QOR, INV and I+B developed for supporting update

propagations in mobile client-server environments, along with performance metrics used to assess

the performance of these algorithms. Section 4 develops analytical models and shows numerical

data to compare the performances of these three algorithms and identify conditions under which

one algorithm performs the best among all. It also analyzes the tradeoff between tuning time

and access time in these algorithms and illustrates how to apply the analysis results to select the

best algorithm that can minimize the tuning time while satisfying a real-time deadline constraint.

Finally, Section 5 concludes the paper and outlines possible future research areas deriving from this

work.

2 System Model

2.1 Assumptions

We assume that a number of objects will be prefetched and stored in the MH’s cache during

the prefetching phase. Some of these objects are read-only, while others may be updated by the

MH during the disconnection phase if needed to facilitate distributed authoring. We assume that a

prefetching policy exists to determine which objects are to be prefetched, e.g., based on a prediction

algorithm [11].

4

We assume that for each object, the MH also obtains from the server some update history

information in terms of a general parameter, i.e., the update rate of that object by all users of the

system. This information can be collected by the server readily by monitoring the update history

of the object. For a cached object i, we denote this parameter as λwi . In addition, we assume that

the MH has some idea of how often it is going to perform updates on each cached object. For each

cached object i, we call this parameter as λi. For read-only cached objects, λi = 0.

We assume that the server is located somewhere in the fixed network and is not moved during

a session. A MH communicates with the server via an intelligent server gateway located on the

fixed network, e.g., it can be just the base station. Further, the communication time on the fixed

network is negligibly small compared with that on the wireless link. This assumption is justified

for future high-speed wired networks. We assume that the differencing technique is used between

the server gateway and the MH to propagate updates. That is, instead of transmitting the whole

object from/to the client/server gateway, only the differences between two versions of the object

are transmitted to save the communication cost.

We do not address the issue of channel reservation [8] in this paper. We assume that the system

has a number of service channels available and that whenever a MH requests a service channel

for update propagation, the system is able to allocate one. When the broadcasting mechanism is

available, we assume there exists a relatively high-bandwidth broadcast channel (compared with

service channels) available for the server to broadcast invalidation reports and/or data to all MHs.

The QOR algorithm will use the service channel allocated to it upon reconnection for update

propagation, while the INV and I+B algorithms will read data from the broadcast channel in

addition to using service channels allocated to them for update propagation. All other resource

requirements are the same. We assume each MH can voluntarily disconnect and reconnect at will.

When given identified network and workload conditions, each MH has freedom to select the best

update propagation algorithm in order to save its battery power and communication cost.

While it is possible that optimization algorithms based on caching, transcoding and differencing

may be used by the server gateway to minimize the volume of data sent over the wireless network,

we will assume that two general cost parameters suffice for our analysis. For the service channel,

Tdiff is the average one-way communication cost of transmitting the differences along a service

channel and Tack is the average one-way communication cost of transmitting a simple request,

reply or acknowledgement along a service channel. These parameters can be estimated by knowing

more specific parameter values of the wireless network under consideration. Let sr be the average

size of a simple acknowledgement/reply. Let so be the average size of an object. Let pm be the

average fraction of any object being modified. Let Bd be the bandwidth of the broadcast channel

used by the server to broadcast data and invalidation reports. Let B be the bandwidth of the

service channel used by the MH to propagate updates to the server with Bd ≥ B. Assume that

5

the communication time in the fixed network is relatively small compared with that in the wireless

network. Then, Tdiff and Tack can be estimated as

Tdiff =
pmso
B

(1)

Tack =
sr
B

(2)

From the MH’s perspective, Tdiff accounts for the time for transmitting the update request that

carries the version number of the original cached object and the differences between the latest ver-

sion and the original prefetched version; Tack accounts for the time for transmitting a request from

the MH to the server. From the server’s perspective, Tdiff accounts for the time for transmitting

the updates (differences of the rejected items) from the server to the MH, and Tack accounts for

the time for transmitting a reply from the server to the MH.

2.2 Query on Reconnection Algorithm

In this algorithm we assume that when the MH reconnects to the server, it enters into the reinte-

gration phase during which it propagates all staging updates performed during the disconnection

phase in a batch mode to the server to resolve update conflicts. For each modified object, the MH

submits the differences between the original object prefetched from the server and the latest version

that it modifies, as well as the version number associated with the original version, to the server.

The server checks to see if the object has been modified during the MH’s disconnection period by

comparing the version number of the object it currently keeps with the version number submitted

to it by the MH. If they are the same, the server will accept the update request and modifies the

object accordingly based on the differences received from the MH; otherwise, the update request

of the object is rejected.

If an update request is rejected, we assume that the MH will stay connected and will issue a

request to write lock the object to prevent others from accessing the object. After the differences

relative to the MH’s original version before updating are sent to the MH, the MH will regenerate a

new version. Then, the MH will apply an application-specific merge algorithm such as the UNIX

diff3 program to resolve the update differences. After the update is done, the MH will propagate

the changes to the server by means of differencing again and will then release the write lock. It is

assumed that the MH will stay on-line performing the merge operation and update propagation in

this algorithm, i.e., the case in which the MH locks the page and then goes away will not occur.

If the MH is forced to be disconnected because of environment changes (e.g., due to roaming), we

assume that the lock will be broken by the server after a timeout period. This can be implemented

by the server by attaching a timestamp to the lock and releasing the lock after a timeout period

expires. The MH upon reconnection will discover that it does not own the lock any more and will

retry again by repeating part of the update propagation algorithm.

6

2.3 Invalidation Only Algorithm

In this algorithm, the server periodically broadcasts an invalidation report. Each item of the inval-

idation report consists of an ID and a timestamp. Let si be the size of an item in the invalidation

report. Let Ndb be the size of the database. The MH under this algorithm is disconnected from

the server and is reconnected to the server only at the beginning of each broadcasting period to

read the invalidation report before propagating updates. By comparing the id of the item in the

invalidation report and the id of the item in the cache, it knows what items have been updated

during the last invalidation period. The MH then propagates the updates of those items that are

still valid to the server. For the items that have been invalidated, the MH sends a service request

to the server. Upon receiving the request, the server will send the differences in reply. The MH

after receiving the differences is then disconnected during which merge operations are performed

in the background. This update propagation process then is repeated in subsequent broadcast

intervals until all items in the cache are propagated. Let Trep be the time to read a data item in

an invalidation report. Then,

Trep =
si
Bd

(3)

2.4 Invalidation plus Broadcast Algorithm

In this algorithm the server periodically broadcasts an invalidation report followed by new values of

data items that have been updated in the last broadcast interval. The invalidation report consists

of entries of updated items each with an ID, a timestamp, and a pointer that points to the new

value. The MH under this algorithm again is disconnected from the server and is reconnected to

the server only at the beginning of each broadcasting period to read the invalidation report, and,

if any data items yet propagated by the MH have been invalidated, new values of invalid cached

data items. Specifically, by reading the invalidation report, the MH knows what cached items

have been updated in the last invalidation interval. It then uses the pointers to retrieve the new

values of those data items. For those data items that have been updated by the MH but are still

valid, the MH propagates them to the server. For those data items that have been invalidated,

the MH retrieves the new values from the broadcasting data. Then the MH is disconnected again

during which new values are merged with updated data items and write operations are allowed

to be performed on the remaining data items. The update propagation process then repeats in

subsequent broadcasting intervals until all items are updated and propagated. Let sb be the size of

an item in the invalidation report. Due to extra information, the size of sb is larger than the size

of si in the INV algorithm. The time to read an object in an invalidation report is estimated as:

Trep =
sb
Bd

(4)

7

Let Tread be the time to read a data item from broadcast. Then,

Tread =
so
Bd

(5)

2.5 Performance Metric

The objective of the paper is to design and analyze update propagation algorithms for supporting

write operations in mobile client-server environments and to identify the condition under which

one algorithm can perform the best among all in terms of minimizing the total time to propagate

updates made to the cached data items by the MH to the server. As the objective of update

propagation algorithms is to minimize the communication cost and to save the battery power of

the mobile device, the primary metric of interest is the total tuning time to propagate all updates

from the MH to the server based on versioning and data broadcasting mechanisms supported by

the server. Specifically, the tuning time is the update propagation time while the MH occupies a

service channel. It represents the battery consumption time of the MH, and, less the processing

time at the MH, also reflects the communication cost. Another metric we are looking at is the total

elapsed time taken for propagating updates. The elapsed time is different from the tuning time

in that it includes the time duration in which the MH is disconnected from the server before all

updates are propagated. For real-time applications with a deadline to propagate updates from the

MH to the server, the elapsed time is an important metric.

The main goal of the update propagation algorithms developed in the paper is to minimize

the tuning time, thereby saving the wireless bandwidth and power consumption of the MH. In the

QOR algorithm, this is achieved by finding the longest disconnection period such that the total

communication cost for propagating updates at the reconnection time is minimized. In the INV

and I+B algorithms, this is achieved by having the MH disconnect and reconnect in cycles to

reload new values and propagate updates of cached data items such that the total tuning time is

minimized. For real-time applications with a deadline by which updates must be propagated, the

goal is to minimize the tuning time while satisfying the real-time requirement such that the total

elapsed time taken for update propagation is less than the deadline.

Here we should emphasize that we intentionally exclude (from the communication time metric

above) certain costs that will always incur irrespective of when the MH is reconnected to the server,

e.g., the connection set-up time, the server processing time, etc. since adding such cost terms to

the cost objective function doesn’t affect the outcome of the analysis. Also, while it is possible that

the MH can employ heuristics to possibly make more intelligent decisions about when it should

reconnect to the server to adapt to resource changes (e.g., wireless bandwidth and server load

changes), we will not consider this possibility in the paper.

8

B bandwidth of a service channel
Bd bandwidth of the broadcast channel
λi update rate for an object i by the MH
λw

i update rate for an object i by the
world (including by the MH)

L length of the disconnection period by the MH
Lb length of the broadcast interval by the application
Ndb size of the database
N number of items prefetched by the MH
so average size of a cached object
sr average size of an acknowledgement or a reply
si average size of an item in the invalidation report

for Invalidation only algorithm
sb average size of an item in the invalidation report

for Invalidation plus Broadcast algorithm
pm fraction of an object being modified by the MH
Dm average time to execute a merge algorithm to

resolve update conflicts
Tdiff average one-way wireless communication time

to propagate differences of two versions of an
object via a service channel

Tack average one-way wireless communication time
to send an ACK/reply via a service channel

Trep average time to read a data item from the
invalidation report

Tread average time to read a broadcast data item
ri probability that object i is updated by the server

within a time period of L
pi probability that object i is updated by the MH

within a time period of L
C total cost (tuning time) for propagating updates to the server

upon reconnection

Table 1: Parameter List.

2.6 Parameter

Table 1 gives the notation of parameters considered in the paper. The parameter list consists

of three groups: (a) wireless mobile system parameters (B and Bd), (b) application parameters

(λi, λ
w
i , L, Lb, Ndb, N , so, sr, si, sb, pm, and Dm) and (c) computable parameters (Tdiff , Tack,

Trep, Tread, ri, pi, and C). In particular, we note that all application parameters except L and N

(determined by the MH at runtime) can be supplied through statistical means from the server to

the MH prior to disconnection so as to allow the MH to compute C under QOR, INV and I+B to

determine the best algorithm for update propagation of disconnected writes.

9

3 Algorithms and Cost Analysis

In this section, We model and analyze the QOR, INV and I+B algorithms. We first derive expres-

sions for ri and pi as defined in Table 1. Suppose that the length of the disconnection period (for

the QOR algorithm) or the broadcast interval (for the INV and I+B algorithms) is L. Upon recon-

nection, the MH will attempt to propagate the update of a modified object. The update request

will be denied, however, if the server has modified the object during L. Thus, ri, the probability

that an update request for object i is rejected by the server upon reconnection after the MH has

been disconnected for a period of L, is given by

ri = 1− e−(λw
i −λi)L (6)

where we assume that updates to object i arrive at the system as a Poisson process, with rates λi

and λwi by the MH and by the world, respectively.
1

Since we are interested in estimating the cost of propagating updates to the server after re-

connection, we like to know the probability that an object has been modified by the MH at the

end of the disconnection phase. Suppose that the length of the disconnection phase (for the QOR

algorithm) or the broadcasting interval is L (for the INV and I+B algorithms) again. Then, pi, the

probability that object i is updated by the MH within a period of L, is simply given by

pi = Prob{update time ≤ L} = 1− e−λiL (7)

3.1 Query on Reconnection (QOR) Algorithm

In the QOR algorithm, we consider the case in which the MH prefetches a set of objects before

disconnection, say, based on a prediction algorithm. All updates occurring before L are staged

and later propagated back to the server at time L relative to the beginning of the disconnection

phase. When the MH reconnects at time L, the server and the MH execute the QOR algorithm

to propagate updates in a batch mode in order to shorten the reconnection time. The MH stays

online until all data items are updated and propagated. Thus, the tuning time is the reconnection

time. The design goal of the QOR algorithm is to shorten the tuning time.

Figure 1 illustrates the steps taken to execute the algorithm:

1. The MH sends to the server a bit vector A (carrying 0 or 1 values) indicating which cached

objects have been updated by the MH, and also a value vector B (carring integer values)

indicating the original version numbers associated with the cached objects prefetched into

the MH before disconnection. This is done by sending a single message from the MH to the

1Note that we don’t necessarily have to use the Poisson arrival assumption to model the server/client update
processes. It is used only to facilitate the estimation of ri and pi; other statistical means based on history or user
profile information can be used to estimate these two probability parameters.

10

MH SERVER
1 0 1 0 0 1 1 0 0

A B

3 3 2 1 4 4 2 3 1

4 3 3 2 4 4 2 2 3
D

1 0 1 1 0 0 0 1 1
C

LOCK + Differences
of rejected objects

Differences of
accepted objects

ACK for
accepted objects

MERGE/UPDATE
operations

Differences of objects
updated after merge
operations

ACK + RELEASE LOCK

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Figure 1: Steps Taken by the Query on Reconnection Algorithm.

server. The time needed for this step is Tack. Note that the server does not need to keep

track of which objects are cached at the MH since it only needs to examine vector A to know

what objects are cached at the MH (for those marked with bit 1), and vector B to know their

version numbers.

2. The server decides accepting or rejecting updates based on vectors A and B received from

the MH, and the current version numbers associated with the requested objects stored in the

server. It then sends a bit vector C indicating which objects can be accepted (for which the

value is 0) and which objects are to be rejected (for which the value is 1). Those objects not

updated by the MH have their corresponding values also marked with 1 in vector C. The

server also sends a separate version number vector D indicating the current version numbers

of the objects stored in the server. All the above information are embedded in a single message

sent from the server to the MH. The time for this step is also Tack.

3. For those objects accepted by the server, the server sets a write lock on them and will commit

11

to the updates as soon as it receives updates from the MH. For those objects not accepted

by the server, the server also locks those objects to prevent them from being updated by

other users in the system. Simultaneously, the server sends to the MH the differences of those

objects rejected by the server (because the server has updated those objects) and also those

objects that have not been updated by the MH but have been updated by the server. The

time for this step is
N

∑

i=1

riTdiff

because on average
∑N

i=1 ri objects (out of N) are updated by the server during [0,L], for

which the server must send the differences to the MH so that the MH can perform forced

updates on the newest version.

4. When the MH receives vectors C and D, it knows immediately which objects are accepted by

the server. Those accepted objects (i.e., those updated by the MH but not updated by the

server during [0,L]) are then sent to the server by means of differencing. The time for this

step is
N

∑

i=1

pi(1− ri)Tdiff

because on average
∑N

i=1 pi(1 − ri) objects are updated by the MH but not updated by the

server (thus are accepted by the server) during [0,L]. The server commits to the updates

immediately when it receives the differences.

5. The server sends an acknowledgement via the service channel to the MH after it receives and

processes the update propagation for those accepted objects. The time for this step is Tack.

6. The MH then performs forced updates for those objects updated by the server, including

objects updated by both the MH and the server, and objects not updated by the MH but

updated by the server. Further, the MH also performs forced updates for those objects not

updated by either the MH or the server due to the forced update policy2 applying to non-

updated objects at time L. For the former case, the MH will receive differences from the

server and a merge operation will be applied to resolve conflicts. For the latter case, the MH

will not receive differences from the server and a forced update will be applied directly to

the prefetched version. With the help of a conflict resolution tool/editor, we assume that the

2Many applications necessitate force updates when the MH is reconnected to the server, i.e. the MH must update
and propagate its updates to the server at an appropriate reconnection time so as not to miss the real-time deadline
requirements. This real-time requirement calls for a special handling protocol for those objects that have not been
updated by the MH at the time of reconnection and also mandates that the MH be reconnected to the server at an
appropriate time prior to the real-time deadline to account for the time needed to propagate updates.

12

time for the MH to inspect the differences (for the former case) and adopt/edit changes is

Dm on average for all cases. Thus, the total time for this step is given by

N
∑

i=1

ri(Dm + Tdiff) +
N

∑

i=1

(1− ri)(1− pi)(Dm + Tdiff)

where the first term accounts for the time taken to generate and propagate updates for the

former case (i.e., for those objects updated by the server during [0,L]) based on the versions

received from the server; the 2nd term accounts for the time taken to generate and propagate

updates for the latter case (i.e., for those objects not updated by either the MH or the server

during [0,L]).

7. The server sends an acknowledgement to the MH after it receives and processes the update

propagation for those objects being forcibly updated by the MH in the previous step. All

locks are also released in this step. The time for this step is Tack.

The total reconnection time to propagate updates of all cached objects is therefore equal to the

sum of all the individual times in steps (1) to (7) above, i.e.,

CQOR
N = 3Tack + Tack +

N
∑

i=1

[riTdiff + pi(1− ri)Tdiff

+ ri(Dm + Tdiff) + (1− ri)(1− pi)(Dm + Tdiff)].

(8)

3.2 Invalidation Only (INV) Algorithm

Here we also consider the case in which the MH prefetches a set of cached objects before discon-

nection. However, in this case the server periodically broadcasts an invalidation report to the MH.

The MH needs to tune in periodically to read the invalidation report on a cycle by cycle basis

until all updated cached objects in the MH are propagated. The INV algorithm requires an update

propagation procedure (described below) to be executed at the beginning of each broadcast cycle.

The MH disconnects right after the procedure is executed and then reconnects to the server at the

beginning of the next broadcast interval if necessary. Initially (in the first iteration), the number

of cached items to be updated and propagated by the MH is the number of prefetched items N .

In the second iteration, the same procedure is repeated, except that the MH only propagates the

remaining items that have not been propagated in the first iteration, and so on. Let Nj be the

remaining number of objects yet to be propagated by the MH to the server in iteration j and

let m be the total number of iterations after which all N items eventually will be updated and

propagated.

The number of items in the database being updated by the server within a broadcast cycle Lb,

13

MH
SERVER

id1 id2 id3 id4 id5
t1 t2 t3 t4 t5

Read invalidation report Differences of
updated valid objects

ACK for requested objects

Uplink request for
invalidated objects

Differences of
requested objects

ACK for updated objects

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 2: Steps Taken by the INV Algorithm During a Broadcast Interval.

regardless of the number of iterations that have been performed, is given by

NL =
Ndb
∑

i=1

ri(Lb) (9)

The number of cached data items among Nj objects stored in the MH that have been updated by

the server during the last broadcast interval in iteration j is given by

NMH,j =

Nj
∑

i=1

ri(Lb) (10)

Therefore, the number of objects updated by the MH, but not by the server in iteration j is given

by

Kj = max(0,

Nj
∑

i=1

pi(Lb)−

Nj
∑

i=1

ri(Lb)) (11)

Figure 2 illustrates the steps taken to execute the update propagation procedure during a

broadcast interval under the INV algorithm:

14

1. At the beginning of the broadcast interval, the MH tunes in to read the invalidation report.

The time for this step is TrepNL where Trep is the time to read an entry broadcast in the

invalidation report as given in Equation 3, and NL is the number of items updated by the

server in the last broadcast period as given in Equation 9. The MH must read all items in

the validation report to know if any of its cached data items is invalidated, although only a

subset of items are cached in the MH.

2. The MH compares the ids and timestamps in the invalidation report with the ids and times-

tamps of its cached data items to determine what items have been invalidated. The MH then

propagates only those items that have been updated and are still valid back to the server.

The time for this step is TdiffKj where Tdiff is the time to send the differences of an object

from the MH to the server via the service channel and Kj is the number of data items updated

by the MH in the last broadcast interval in iteration j, as given in Equation 11. Note that in

cases multiple MHs update the same item concurrently during a broadcast period, the server

will only accept one update request and reject the others.

3. Upon receiving the propagation, the server sends an acknowledgement to the MH for those

objects accepted for update. The time for this step is Tack where Tack is the time for the

server to send an acknowledge to the MH via the service channel.

4. For the items that have been invalidated or rejected, the MH sends a request to the server.

The time for this step is Tack where Tack is the time for the MH to send a query to the server

via the service channel.

5. Upon receiving the request from the MH, the server sends back a reply in the form of dif-

ferences relative to the cached items stored in the MH to the MH. The time for this step is

TdiffNMH,j where Tdiff is the time to transmit differences of a data item from the server

to the MH via the service channel and NMH,j is the number of cached data items among

Nj items stored in the MH that have been updated by the server during the last broadcast

period in iteration j, as given in Equation 10.

6. The MH sends an acknowledgement to the server. The time for this step is Tack.

The total tuning time under the INV algorithm to propagate updates of all cached objects is

equal to the sum of communication times required for all steps in all m iterations, viz.,

CINV
N =

m
∑

j=1

(TrepNL + TdiffKj + TdiffNMH,j + 3Tack) (12)

The value of m can be estimated by defining a Bernoulli random variable Xi for item i such

that Xi is 1 if item i is updated by the MH but not by the server in Lb and 0 otherwise. Then Xi is

15

MH
SERVER

id1 id2 id3 id4 id5
t1 t2 t3 t4 t5
p1 p2 p3 p4 p5

Read invalidation report

Differences of
updated valid objects

ACK for updated objects

Step 1

Step 2

Step 3

Step 4

Read data from
broadcast

Figure 3: Steps Taken by the I+B Algorithm During a Broadcast Interval.

a Bernoulli random variable with probability pi(1−ri). Therefore, the number of broadcast periods

required until item i is updated can be modeled by a Geometric random variable with parameter

pi(1 − ri) having independent Bernoulli trials. The expected number of periods required for item

i to be updated and propagated by the MH is therefore 1/[pi(1 − ri)]. Since m is the number of

periods after which all N items are updated and propagated by the MH, the value of m is given by

the maximum of 1/[pi(1− ri)] for for i, 1 ≤ i ≤ N , i.e.,

m =MAXN
i=1

1

pi(1− ri)
(13)

3.3 Invalidation plus Broadcast (I+B) Algorithm

Here we also deal with the case in which the MH prefetches a set of cached objects before discon-

nection. The differences between I+B and INV is that the server periodically broadcasts not only

the invalidation report, but also the data items that were updated in the last broadcast interval.

The MH needs to tune in periodically to read the invalidation report. Then it uses the pointers to

tune in to read the data items.

Figure 3 illustrates the steps taken to execute the update propagation procedure during a

broadcast interval under the I+B algorithm:

16

1. At the beginning of the broadcast interval, the MH tunes in to read the invalidation report.

The time for this step is TrepNL, where Trep is the time to read the invalidation report as

given in Equation 4 and NL is the number of items updated by the server in the last broadcast

period as given in Equation 9.

2. Based on the ids and the timestamps, the MH determines the items that have been invalidated.

The MH then tunes in to read the data items from the broadcast. The time for this step

is TreadNMH,j where Tread is the time to read the new value of a data item broadcasted as

given in Equation 5, and NMH,j is the number of cached data items among Nj items stored

in the MH that have been updated by the server during the last broadcast period, as given in

Equation 10. This step is different from that in the INV algorithm in that the new data items

are directly retrieved from the data stream broadcast by the server. The difference technique

is not used here, however, because MHs have different copies of the same data item and there

are no common differences that can be applied to all MHs. Thus, in the I+B algorithm, the

MH must read an item’s new value in its entirety from the broadcast data.

3. The MH then propagates the items that it has updated and that are still valid to the server.

The time for this step is TdiffKj , as in step 2 of the INV algorithm.

4. The server sends an acknowledgement to the MH. The time for this step is Tack, as in step 3

of the INV algorithm.

As in the INV algorithm, the above process is repeated until all cached items meant to be

updated by the MH are propagated. The MH disconnects after the above processing steps have

been executed and reconnects to the server at the beginning of the next broadcast interval. Again,

let Nj be the remaining number of items to be propagated by the MH to the server in iteration

j and let m be the total number of iterations after which all N items eventually are updated and

propagated as estimated by Equation 13. Then, the total tuning time under the I+B algorithm to

propagate updates of all cached objects is given by:

CI + B
N =

m
∑

j=1

(TrepNL + TreadNMH,j + TdiffKj + Tack) (14)

4 Performance Analysis

In this section, we present numerical data obtained from applying Equations 8, 12 and 14 to

compare performances of the QOR, INV and I+B algorithms. We compute the tuning time under

QOR, CQOR
N , as a function of the disconnection time period L through Equation 8. The best

disconnection time period Lopt under QOR for the MH to reconnect to the server for update

17

propagation is determined by computing CQOR
N over a range of L values and identifying the one

that yields the smallest tuning time. The tuning time under INV is computed by Equation 12

as a function of the broadcast interval Lb, involving an iterative computational procedure with

the number of iterations m required (as determined by Equation 13) depending on the number of

objects updated by the MH but not updated by the server in iteration j as determined by Equation

11. Lastly, the tuning times under I+B is computed by Equation 14 as a function of the broadcast

interval Lb, by applying a similar iterative computational procedure.

4.1 Parameterization and Baseline Setting

We classify model parameters into two sets. The first set contains those parameters that more or

less assume a constant value regardless of the application, namely, si, sb, and sr. The second set

contains those parameters that are changeable reflecting the characteristics of the environment or

application in question, namely, Ndb, N , so, pm, Dm, B, Bd and λ/λ
w.

We first consider a baseline system reflecting a possible setting of the model parameters in

the second set for a real application. Then, recognizing that those parameters in the second set

will vary depending on the characteristics of a real application, we vary the values of some of the

parameters in the second set, such as the world update rate vs. mobile update rate, the number of

objects in the database, the bandwidth, etc. in Section 4.4 to analyze the sensitivity of the results

with respect to these key parameters.

Our baseline setting considers a server with a small database size of Ndb = 100 items for which

the mobile user prefetches N = 10 items before disconnection. The database size is an important

parameter for INV and I+B. If the database size is too large, then the tuning time overhead for

them to read the invalidation report (plus data in I+B) would be too high particularly if the update

rate of data items is high. Later we will analyze the effect of a larger database size. Each data item

is assumed to be 1024 bytes in length (so = 1024), corresponding to a disk sector size for fast disk

read/write. For the INV algorithm, the size of each <id, timestamp> entry is 8 bytes (si = 8) in

the invalidation report, while for the I+B algorithm, the size of each <id, timestamp, pointer>

entry is 12 bytes (sb = 12) in the invalidation report since a pointer field is required to point to its

updated value in the broadcast data. The size of a reply/ack is 8 bytes (sr = 8). We also consider

on average a fraction of 0.3 of each data item would be updated by the mobile user (pm = 0.3). The

broadcast channel is considered to be substantially larger in capacity than the service channel. We

consider the case in which B = 9.6 kbps and Bd = 56 kbps. For the QOR algorithm, the mobile

user will stay online until all items are updated and propagated after reconnection. We assume

that the merging/update time Dm = 10 seconds. Finally, we consider the case in which the ratio of

the world update rate to the mobile user update rate for each data item is λ/λw = 0.55, with the

absolute value of λw varying in the range of 1-10 updates/hour. This setting reflects an application

18

0

5

10

15

20

25

30

35

100 500 900 1300 1700 2100 2500 2900 3300 3600

Broadcast interval (sec)

T
u

n
in

g
 t

im
e
 (

s
e
c
)

Read report

 Propagation

On-demand Data
Retrieval

Figure 4: Three Components of the Tuning Time for the INV Algorithm.

for which the MH’s update rate is 55% of the overall world update rate.

4.2 Tuning Time Components

We first break up the total tuning time into its constituent components to gain some insight into

which component dominates the tuning time. For the QOR algorithm, the total tuning time is

equal to the update propagation time after reconnection because the MH stays online once it is

reconnected to the server until all its updated data items are propagated.

For the INV algorithm, the tuning time consists of three components: (a) reading invalidation

reports; (b) update propagation (for transmitting differences of updated yet valid items from the

MH to the server); (c) on-demand data retrieval (including the time for the MH to send requests via

the service channel to the server for retrieving new values of updated data items in the last broadcast

interval and the time for the server to send differences to the MH for the new values requested).

For the I+B algorithm the tuning time consists of 3 components: (a) reading invalidation reports;

(b) update propagation; (c) reading broadcast data.

19

0

5

10

15

20

25

30

35

100 500 900 1300 1700 2100 2500 2900 3300 3600

Broadcast Interval (sec)

T
u

n
in

g
 t

im
e

 (
s

e
c

)

 Read report

 Propagation

 Read Broadcast
Data

Figure 5: Three Components of the Tuning Time for the I+B Algorithm.

Figures 4 and 5 show the tuning time components for the INV and I+B algorithms, respectively.

Here, we vary the value of the broadcast interval Lb from 50 to 3600 sec to see its effect on the tuning

time components. The X-coordinate is the broadcast interval in seconds and the Y-coordinate is

the tuning time. Figures 4 and 5 show that the “update propagation” component is insensitive to

the broadcast interval Lb because the total time required to propagate N data items from the MH

to the server via the service channel by means of differencing remains constant regardless of the

magnitude of the broadcast interval and the number of iterations required to eventually propagate

all N items. The “reading invalidation reports” component decreases as the broadcast interval

increases, because the process of propagating updates takes several iterations to complete so the

amortized cost for reading invalidation reports decreases when the broadcast interval increases.

For the I+B algorithm (in Figure 5), the time to read broadcast data increases as the broadcast

interval increases because more data items will be updated by the server when the interval is large

and the probability that cached objects stored at the MH will be invalidated by the server increases

as the interval increases, in which case the MH must spend more time to read new values from the

20

0

10

20

30

40

50

60

70

80

90

100 500 900 1300 1700 2100 2500 2900 3300 3600

Broadcast interval (sec)

T
u

n
in

g
 t

im
e

 (
s

e
c

)

QOR

INV

 I+B

Optimal L for QOR = 78

Figure 6: Comparing the Tuning time of QOR, INV and I+B Algorithms.

broadcast data.

4.3 Tuning Time Comparison in the Baseline System

In Figure 6 we compare QOR, INV and I+B operating under the baseline setting of parameter values

given earlier. Again the X-coordinate is the broadcast interval in seconds and the Y-coordinate is

the total tuning time. Since the QOR algorithm is insensitive to the variation of the broadcasting

interval, we only show its tuning time (i.e., update propagation time) at the optimizing reconnection

time point such that the reconnection time interval is minimized.

The optimizing reconnection time point under QOR can be obtained by varying the value of

L based on Equation 8 and identifying the best L value that minimizes the tuning time. Figure

7 shows an example of this optimal reconnection time for minimizing the tuning time under QOR

as a function of λ/λw. We observe that as the MH’s update rate λ varies from 0.2λw (the top

curve) to λw (the bottom curve), the curves get deeper. This means that when the MH’s update

rate is closer to the world update rate, the MH can save more tuning time by propagating updates

21

0

10

20

30

40

50

60

70

80

90

100

100 500 900 1300 1700 2100 2500 2900 3300 3600

Reconnection time (sec)

T
u

n
in

g
 t

im
e

 (
s

e
c

)
λ = 0.2 λ

λ = 0.4 λ

λ = 0.6 λ

λ = 0.8 λ

λ = 0.9 λ

λ = λ

w

w

w

w

w

w

Figure 7: Optimal Reconnection Time Point under QOR at Various λ/λw Ratios.

at the optimal disconnection time point L. At the extreme case in which λ equals λw such that

cached data objects are updated only by the MH, the optimal disconnection period equals infinity.

In this special case, the MH can connect to the system at a time point (say 3600 as shown in

Figure 7) at which the tuning time is very near to the optimal value so that the elapsed time is

not excessively long. We also observe that the optimal disconnection point shifts toward right as

we go from the top curve to the bottom curve. This indicates that the optimal reconnection time

point for minimizing the tuning time is shorter when the MH’s update rate is far below the world

update rate, and it is longer when the MH’s update rate is close to the world update rate.

For the INV and I+B algorithms, we observe from Figure 6 that there exists a broadcast interval

Lb at which the tuning time is minimized. This is due to the fact that (a) when Lb is small, the

tuning time for reading invalidation reports (for both the INV and I+B algorithms) is excessive

because of the high broadcasting frequency; (b) when Lb is large, most cached data items stored in

the MH have been updated in the last broadcast interval. For the INV algorithm, large Lb results

in an increase of the “on-demand data retrieval” tuning time component. For the I+B algorithm,

22

it results in an increase of the “reading broadcast data” tuning time component. Consequently,

there exists an intermediate Lb value under which the tuning time is minimized.

Under the set of parameter values given, we observe that both the INV and I+B algorithms

perform better than the QOR algorithm. We also observe there is a crossover point in the broadcast

interval over which I+B performs better than INV. The crossover point occurs because when Lb

is small, there is a high probability that the cached data items updated by the MH have not

been updated by the server. In this case the INV algorithm will perform better than the I+B

algorithm as there won’t be too many on-demand data retrieval requests sent to the server using

the relatively low-bandwidth service channel, i.e., the “on-demand data retrieval” tuning time for

the INV algorithm is less than the “reading broadcast data” tuning time for the I+B algorithm.

When Lb is sufficiently large, however, many cached items stored in the MH with a high probability

may be updated by the server, so the MH needs to send more on-demand requests to the server

to retrieve updated data. In this case the I+B algorithm is favored over the INV algorithm since

in I+B, updated data are broadcast directly by the server from which the MH can read directly

by using the pointers embedded in the invalidation report. This results in the existence of a

crossover point in the broadcast interval after which the I+B algorithm performs better than the

INV algorithm.

4.4 Sensitivity Analysis

In the following subsections, we analyze the sensitivity of results with respect to key system param-

eters. Under the baseline setting, we see that INV and I+B perform better than QOR. However,

this observation is not universally true. Below we identify and analyze important model parame-

ters that impact the performance of update propagation algorithms in wireless mobile system with

broadcasting capability.

4.4.1 Effect of Broadcast Channel Bandwidth on Tuning Time

In Figure 8, we lower the broadcast channel bandwidth while keeping all other parameters with

the same values. We observe that when the broadcast channel bandwidth is low at 19.2 kbps

(compared with the service channel bandwidth fixed at 9.6 kbps), the QOR algorithm can perform

better than both the INV and I+B algorithms, especially when the broadcast interval Lb is either

sufficiently small or large. This is attributed to the fact that the tuning time for reading the

invalidation report (in INV and I+B) and broadcast data (in I+B) increases as the broadcast

channel bandwidth decreases. When Lb is sufficiently small, the tuning time of both the INV and

I+B algorithms is high because of the high frequency of reading the invalidation reports and data,

so the QOR algorithm performs the best. As Lb increases, the tuning time reaches its minimum for

either the INV or I+B algorithm, at which point the QOR algorithm is worse than either the INV or

23

0

20

40

60

80

100

120

100 500 900 1300 1700 2100 2500 2900 3300

Broadcast interval (sec)

T
u

n
in

g
 t

im
e
 (

s
e
c

)

QOR

INV

 I+B

Optimal L for QOR = 78

Figure 8: Tuning Time at Low Broadcast Bandwidth (19.2 kbps).

I+B algorithm. When Lb is sufficiently large, the tuning time of both the INV and I+B algorithms

becomes high again, at which point the QOR algorithm performs the best again. Figure 6 (in which

Bd = 56 kbps) and Figure 8 (in which Bd = 19.2 kbps) together show that the broadcast channel

bandwidth can greatly affect the relative performance level of the QOR algorithm compared with

the INV and I+B algorithms. Specifically, the broadcast channel bandwidth can determine if QOR

should be used instead of INV or I+B to propagate updates by the MH even if the system is

broadcasting-enabled.

4.4.2 Effect of λ/λw Ratio on Tuning Time

Figure 9 compares the performances of the QOR, INV and I+B algorithms when the λ/λw ratio per

data item is increased from 0.55 (as shown in Figure 6) to 0.7, while keeping all other parameters

the same. Here we observe both the INV and I+B algorithms will benefit more from the increase of

the λ/λw ratio, because there are fewer update conflicts between the MH and server and thus fewer

cycles will be required for the MH to propagate all N objects to the server. This largely reduces

24

0

10

20

30

40

50

60

70

80

100 500 900 1300 1700 2100 2500 2900 3300 3600

Broadcast interval (sec)

T
u

n
in

g
 t

im
e

 (
s

e
c

)

QOR

INV

 I+B

Optimal L for QOR = 67

Figure 9: Tuning Time at High λ/λw Ratio.

the tuning time to read the invalidation reports (for both INV and I+B) and broadcast data (for

I+B).

Comparing Figure 6 with Figure 9, we also see that a high λ/λw ratio especially favors the I+B

algorithm over the INV algorithm since in Figure 9, the I+B algorithm is at least as good as the

INV algorithm even if the broadcast interval Lb is small. This is because when λ (the MH update

rate on a single item) is high compared with λw (the server update rate on a single item) and Lb is

small, the MH under either INV or I+B can successfully propagate updated items without having

update conflicts with the server with a high probability. As a result, the difference between the “on-

demand data retrieval” cost in INV and the “reading broadcast data” cost in I+B is negligible. As

Lb becomes larger, many cached items stored in the MH will be updated, so the INV algorithm will

incur a higher tuning time to send on-demand data retrieval requests through the low-bandwidth

service channel, resulting in its performance being worse than the I+B algorithm.

25

0

50

100

150

200

250

300

100 500 900 1300 1700 2100 2500 2900 3300 3600

Broadcast interval (sec)

T
u

n
in

g
 t

im
e

 (
s

e
c

)

QOR

INV

 I+B

Optimal L for QOR = 78

Figure 10: Tuning Time at High World Update Rate.

4.4.3 Effect of the World Update Rates λw

Figure 10 compares the performances of the QOR, INV and I+B algorithms when the absolute value

of the world update rate per data item is increased from 1-10 updates/hour (as shown in Figure 6)

to 10-100 updates/hour, while keeping all other parameters the same. Figure 10 correlates well with

other results presented earlier in two ways. First, as the update rate increases, many cached items

stored in the MH may be updated by the server, so the INV algorithm is compared unfavorably

with the I+B algorithm because of the high tuning time to use the service channel to request for

updated items from the server. Second, as the update rate increases, there is a large overhead to

read invalidation reports for both INV and I+B and to read broadcast data for I+B, so the QOR

algorithm may outperform these two broadcast-based update propagation algorithms. Figure 10

suggests that under the condition that the world update rate of data items is high, if Lb is small

then use the I+B algorithm; otherwise, use the QOR algorithm to propagate updates.

26

0

100

200

300

400

500

600

700

800

100 500 900 1300 1700 2100 2500 2900 3300 3600

Broadcast interval (sec)

T
u

n
in

g
 t

im
e

 (
s

e
c
)

QOR

INV

 I+B

Optimal L for QOR = 78

Figure 11: Tuning Time at Large Database Size.

4.4.4 Effect of Database Size Ndb

In Figure 11, we change the database size from 100 (as shown in Figure 6) to 1000 data items. We

observe that when the database size is sufficiently large, the QOR algorithm performs better than

both the INV and I+B algorithms because of a high overhead of reading the invalidation report

and broadcast data for the latter two algorithms. We also observe that between INV and I+B, the

INV algorithm in this case performs slightly better than than the I+B algorithm when Lb is small

due to smaller invalidation reports in size.

4.5 Elapsed Time Analysis for Real-Time Applications

For real-time applications, the actual elapsed time required for the MH to propagate updates to the

server in the face of possible update conflicts may become a more important metric than the tuning

time. Since both the INV and I+B algorithms require multiple cycles to propagate updates, the

elapsed time depends on the length of the broadcast interval. Consequently, they may not be suited

27

0

2000

4000

6000

8000

10000

12000

100 500 900 1300 1700 2100 2500 2900 3300 3600

Broadcast interval (sec)

E
la

p
s
e

d
 t

im
e

 (
s

e
c

)

QOR

INV

I+B

tR = 7200 sec

Optimal L for QOR = 78

Figure 12: Comparing Elapsed Time of QOR, INV and I+B at High World Update Rate.

for real-time applications. For the QOR algorithm, the elapsed time is the sum of the reconnection

time interval L and the time to stay online to propagate updates. For INV and I+B, the elapsed

time is the total duration (including the waiting time for m broadcast cycles) to propagate all

updates.

All the elapsed time vs. Lb graphs can be obtained in the same way as the tuning time vs. Lb

graphs reported earlier. Here we illustrate the tradeoff between tuning time and elapsed time by

Figure 12 in which we compare the elapsed time required by the QOR, INV and I+B algorithms

to propagate updates in the baseline system with the world update rate in the range of 10-100

updates/hour, corresponding to the tuning time vs. Lb graph shown in Figure 10.

We see that the QOR algorithm has the smallest elapsed time among all. The elapsed time

of the INV algorithm is virtually the same as that of the I+B algorithm due to the fact that the

same number of iterations is required by both algorithms to complete the update propagation from

the MH to the server. In particular, Figure 12 shows that the elapsed time for the INV and I+B

algorithms can become very large when Lb is sufficiently large. The reason is that many cached

28

items stored in the MH would be updated by the server during the last broadcast period especially

when the world update date is high, thus resulting in many iterations being required by the INV and

I+B algorithms to eventually propagate all updates made by the MH and, consequently, resulting

in a very high elapsed time.

For applications with a real time deadline tR by which updates of cached items must be propa-

gated back to the server, we would like to minimize the tuning time while satisfying the real-time

constraint. Figure 12 also illustrates a case in which tR is 7200 seconds (or 2 hours) for which

QOR under the optimizing L, as well as INV or I+B under a Lb period in the range of (100, 3000)

seconds, can satisfy the imposed real-time constraint. We make use of the corresponding tuning

time data for the system in the same setting shown in Figure 10 to select one algorithm that would

minimize the tuning time while satisfying the real-time constraint as follows. If Lb is in the range

of (100, 2100) and the server broadcasts changed data objects in addition to invalidation reports,

then the MH would choose I+B over INV and QOR because in this range I+B provides the smallest

tuning time among all (see Figure 10) while satisfying the real-time constraint (see Figure 12); if

the server only broadcasts invalidation reports, then the MH would choose INV over QOR. If Lb

is in the range of (2100, 3000) then the MH would choose QOR over INV and I+B because in this

range QOR provides the smallest tuning time among all. Finally, if Lb is not in the range of (100,

3000) the only choice is QOR since it is the only algorithm among all that can satisfy the real-time

constraint tR.

5 Conclusions and Future Work

In this paper, we developed three update propagation algorithms, namely, QOR, INV and I+B, for

supporting disconnected operations in mobile wireless systems with data broadcasting capability.

We analyzed their performances in terms of the tuning time needed to propagate updates, including

the time needed to detect and resolve conflict if it happens.

Our analysis results showed that for the QOR there exists an optimal disconnection time point,

and for INV and I+B there exists a broadcast interval under which the tuning time of the MH

to propagate all updated items to the server is minimized. We observed that the I+B algorithm

can perform better than the QOR and INV algorithms over a wide range of parameter values,

although the INV algorithm can perform better than the I+B algorithm when the broadcast in-

terval is small and the broadcast channel bandwidth is small. In particular, when the broadcast

channel bandwidth is small, the INV consistently outperforms the I+B algorithm due to the use of

differencing techniques. The QOR algorithm is observed to be worse than the INV and I+B algo-

rithms except when the database size is large as there is no overhead for reading large invalidation

reports. Nevertheless, there exist conditions under which the QOR algorithm performs better than

29

the INV and I+B algorithms, especially when the update rate is high, or the broadcast channel

bandwidth is low. The crossover point depends on the the values of model parameters identified

in the paper. Overall, there is no single algorithm that is always the best among all in terms of

minimizing the tuning time. The analysis performed in the paper allows the MH to select the best

update propagation algorithm to apply to minimize the tuning time when given a set of parameter

values by the server characterizing the operating conditions.

Finally, we note that for real-time applications where the elapsed time metric is considered

important, the QOR algorithm in general is observed to be the best algorithm since it does not

propagate updates in cycles as in the INV and I+B algorithms. Thus it is able to complete the

propagation of updates within the smallest possible elapsed-time period. We also observe that

there exists a tradeoff between tuning time and elapsed time in INV and I+B. By making use

of the tuning time vs. Lb and the elapsed time vs. Lb analysis results for QOR, INV and I+B,

one could select the best algorithm that can minimize the tuning time while satisfying a real-time

deadline constraint.

There are some possible future research directions extended from this work, including (a) ex-

tending the analysis to the case where the invalidation report may contain information regarding

recently updated data items in the last w report intervals; (b) analyzing the total tuning time in

situations where a MH may not be able to get a service channel when it reconnects to the server;

(c) aggressively determining the best server broadcast interval applying to a large number of MHs

for supporting disconnected write operations such that the cumulative tuning times from all MHs

to propagate their updates is minimized; and (d) applying similar modeling methods to analyze

performances of update propagation algorithms for supporting disconnected transactions in mobile

wireless system with or without data broadcasting.

References

[1] S. Acharya, R. Alonso, M. Franklin and S. Zdonik, “Broadcast disks: data management for asymmet-
ric communication environments,” 1995 ACM SIGMOD International Conference on Management of
Data, New York, 1995, pp. 199-210.

[2] H. Chang, et al., “Web browsing in a wireless environment: disconnected and asynchronous operation
in ARTour Web Express,” 3rd ACM/IEEE Conf. Mobile Computing and Networking (MobiCom’97),
Budapest, Hungary, Sept. 1997, pp. 260-269.

[3] G. Cao, “On improving the performance of cache invalidation in mobile environments,” ACM/Kluwer
Mobile Networks and Applications, Vol. 7, 2002, pp. 291-303.

[4] I.R. Chen, N.A. Phan and I.L. Yen, “Algorithms for supporting disconnected write operations for
wireless web access in mobile client-server environments,” IEEE Transactions on Mobile Computing,
Vol. 1, No. 1, 2002, pp. 46-58.

[5] L.A. DaSilva, S.F. Midkiff and I.R. Chen, ”A Hands-on course on wireless and mobile systems design,”
2nd IEEE Annual Conf. on Pervasive Computing and Communications - Workshops (PerEd’04), Or-
lando, FL, March 2004, pp. 241-246.

30

[6] A. Datta, A. Celik and V. Kumar, “Broadcast protocols to support efficient retrieval from databases
by mobile users,” ACM Transactions on Database Systems, Vol. 24, No. 1, March 1999, pp. 1-79.

[7] R. Floyd, R. Housel and C. Tait, “Mobile web access using eNetwork Web Express,” IEEE Personal
Communications, Vol. 5, No. 5, Oct. 1998, pp. 47-52.

[8] J. Hoe, J. Yang, S. Papavassiliou, “Integration of pricing with call admission control to meet QoS
requirement in cellular networks,” IEEE Trans. on Parallel and Distributed Systems, Vol. 13, No. 9,
Sept. 2002, pp. 898-910.

[9] T. Imielinski, S. Vishwanathan and B.R. Badrinath, “Energy efficient indexing on air,” 1994 ACM
SIGMOD International Conference on Management of Data, Minneapolis, May 1994, pp. 25-36.

[10] T. Imielinski, S. Vishwanathan and B.R. Badrinath, “Data on air: Organization and access,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 9, No. 3, 1997, pp. 353-372.

[11] Z. Jiang and L. Kleinrock, “Web prefetching in a mobile environment,” IEEE Personal Communica-
tions, Vol. 5, No. 5, Oct. 1998, pp. 25-34.

[12] J. Jing, A.S. Helal and A. Elmagarmid, “Client-server computing in mobile environments,” ACM
Computing Survey, Vol. 31, No. 2, June 1999, pp. 117-157.

[13] A.D. Joseph, J.A. Tauber and M.F. Kaashoek, “Mobile computing with the Rover tool-kit,” IEEE
Transactions on Computers, Vol. 46, No. 3, 1997, pp. 337-352.

[14] J.J. Kistler and M. Satyanarayanan, “Disconnected operation in the Coda file system,” ACM Trans.
Computer Systems, Vol. 10, No. 1, Feb. 1992, pp. 3-25.

[15] V.C.S. Lee, K.W. Lam, S.H. Son and E.Y.M. Chan, “On transaction processing with partial validation
and timestamp ordering in mobile broadcast environments,” IEEE Transactions on Computers, Vol.
51, No. 10, 2002, pp. 1196-1211.

[16] E. Liebmann and S. Dustdar, “Adaptive data dissemination and caching for edge service architectures
built with the J2EE,” 2004 ACM symposium on Applied Computing, Nicosia, Cyprus, 2004, pp. 1717-
1724.

[17] M.S. Mazer and C.L. Brooks “Writing the web while disconnected,” IEEE Personal Communications,
Vol. 5, No. 5, Oct. 1998, pp. 35-41.

[18] E. Pitoura and G. Samaras, Data Management for Mobile Computing, Kluwer Academic Publishers,
1998.

[19] E. Pitoura and P.K. Chrysanthis, “Multiversion data broadcast,” IEEE Trans. on Computers, Vol. 51,
No. 10, 2002, pp. 1224-1230.

[20] K.L. Tan, J. Cai and B.C. OOi, “An evaluation of cache invalidation strategies in wireless environ-
ments,” IEEE Transactions on Parallel and Distributed Systems, Vol. 12, No. 8, Aug. 2001, pp. 789-807.

[21] A. Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani, “A strategy to manage cache consistency in a
disconnected distributed environment,” IEEE Transactions on Parallel and Distributed Systems, Vol.
12, No. 7, July 2001, pp. 686-700.

[22] S. Saha, M. Jamtgaard, and J. Villasenor, “Bringing the wireless Internet to mobile devices,” IEEE
Computer, Vol. 34, No. 6, June 2001, pp. 54-58.

[23] M. Satyanarayanan, “The evolution of Coda,” ACM Transactions on Computer Systems, Vol. 20, No.
2, May 2002, pp. 85-124.

[24] D.B. Terry, et al., “Managing update conflicts in Bayou, a weakly connected replicated storage system,”
ACM SIGOPS Operating Systems Review, Vol. 29, No. 5, Dec. 1995, pp. 172-182.

31

