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Abstract. We propose and analyze call admission control algorithms integrated with pricing for revenue optimiza-
tion with QoS guarantees to serve multiple service classes in mobile wireless networks. Traditional admission
control algorithms make acceptance decisions for new and handoff calls to satisfy certain QoS constraints such as
the dropping probability of handoff calls and the blocking probability of new calls being lower than a pre-specified
threshold. We analyze a class of partitioning and threshold-based admission control algorithms that make accep-
tance/rejection decisions not only to satisfy QoS requirements but also to optimize the revenue of the system by
taking prices and arrival/departure information of service calls into account. We show that for a “charge-by-time”
pricing scheme, there exist optimal resource allocation settings under which the partitioning and threshold-based
admission control algorithms would produce the maximum revenue obtainable by the system without sacrificing
QoS requirements. Further, we develop a new hybrid admission control algorithm which outperforms both par-
titioning and threshold-based admission control algorithms over a wide range of input parameters characterizing
the operating environment and service workload conditions. Methods for utilizing of the analysis results for real-
time admission control for revenue optimization with QoS guarantees are described with numerical data given to
demonstrate the applicability.
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1. Introduction

Next generation wireless networks will carry real-time multimedia services such as video and
audio and non-real-time services such as images and files. Increasing demands from individuals
and businesses with different profiles expect a network that can easily adapt to user needs
and growing population without compromising the Quality of Service (QoS), while they are
traveling away from office or home.

Two of the most important QoS measures in cellular networks are percentages of new and
handoff calls blocked due to unavailability of channels. Mobile users in a cellular network
establish a connection through their local base station. A base station may support only a
limited number of connections (channel assigned) simultaneously due to bandwidth limita-
tions. Handoff occurs when a mobile user with an ongoing connection leaves the current cell
and enters into another cell. Thus an ongoing, incoming connection may be dropped during
a handoff if there is insufficient bandwidth in the new cell to support it. We can reduce the
handoff call drop probability by rejecting new connection requests. Reducing handoff call
drop probability could result in an increase in the new call blocking probability. As a result,
there is a tradeoff between the handoff and new call blocking probabilities.
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Thus far a single class of network traffic, such as voice (real-time), has been studied
extensively. The Guard channel algorithm [1] assigns a higher priority to handoff calls where
a fixed number of channels are reserved for handoff requests. Hong and Rappaport [2] proposed
a cutoff threshold algorithm with no distinction made initially between new and handoff calls
which are treated equally on a FCFS basis for channel allocation until a predetermined channel
threshold is reached. When the threshold is reached, new calls are blocked (cutoff), allowing
only handoff calls. They also [3] proposed a priority oriented algorithm where queuing of
handoff calls is allowed. Guerin [4] demonstrated queuing of both new and handoff calls
improves channel utilization while reducing the call blocking probabilities. Most of the above
mentioned research methods focus on voice-based cellular systems.

Fang [5] presented a thinning algorithm which supports multiple types of services by
calculating the call admission probability based on the priority and the current traffic situation.
When network approaches congestion, call admissions are throttled based on the priority
levels of calls, i.e., lower priority calls are blocked, and hence thinned to allow higher priority
calls. Wang, Zeng and Agarwal [6] classified traffic as real-time and non-real time traffic and
divided the channels in each cell into three parts, namely, new and handoff real-time calls, new
and handoff non-real-time calls. For overflow of real-time and non-real-time service handoff
requests from the first two groups of channels, real-time handoff service requests are given a
higher priority than non-real-time service requests.

Li, Lin and Chanson [7] proposed a hybrid cutoff priority algorithm for multimedia ser-
vices. Different cutoff thresholds are assigned to individual services. Handoff calls are given
a higher threshold while new calls, controlled by a lower threshold, are served only if there
are still channels available bounded by the lower threshold. Each service class is charac-
terized by its QoS requirements in terms of the number of channels required. Ye, Hou and
Papavassilliou [8] proposed a bandwidth reservation and reconfiguration mechanism to fa-
cilitate handoff processes for multiple services. In general these algorithms make acceptance
decisions for new and handoff calls to satisfy QoS requirements in order to keep the dropping
probability of handoff calls and the blocking probability of new calls lower than pre-specified
thresholds.

In this paper, we propose and analyze a class of partitioning and threshold-based admission
control algorithms and their hybrids that will make acceptance/rejection decisions not only to
satisfy QoS requirements but also to optimize the revenue of the system based on charge-by-
time pricing algorithms defined by the service provider. By “partitioning” we mean a number
of channels are specifically reserved to serve handoff (or new) calls of a particular service type
and calls from other service types would not use the reserved channels. By “threshold-based”
we mean handoff (or new) calls of a service type are given a threshold and as long as the
threshold is not reached and there are still channels available in the cell, handoff (or new) calls
of that service type can be admitted. The threshold-based algorithm derives from [7] augmented
with the concepts of revenue optimization consideration and QoS guarantees; it will be used as
a baseline algorithm against which performance characteristics are compared. Compared with
partitioning algorithms, threshold-based algorithms have an inherent multiplexing property
that results in a large shared partition to be opened to accommodate multiple service classes as
long as the thresholds are not reached. To take advantage of both partitioning and threshold-
based admissions, we develop a hybrid admission control algorithm which outperforms both
partitioning and threshold-based admission control algorithms over a wide range of parameter
values characterizing operating environment and service workload conditions of a mobile
wireless network.
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Our work is different from previous ones as we develop partitioning and threshold-based
algorithms and their hybrids to target real-time admission control for revenue optimization
with QoS guarantees. The goal of revenue optimization with QoS guarantees is achieved by
integrating pricing with call admission control to meet QoS requirements. We do not deal
with dynamic pricing as proposed in [9] because we believe dynamic pricing (changing the
charge rate dynamically) receives little acceptance in user or provider communities. Rather
we integrate a static “charge-by-time” pricing algorithm with admission control to maximize
the revenue generated subject to the constraints that system imposed QoS requirements are
satisfied.

The rest of the paper is organized as follows. Section 2 states the system model and gives
assumptions used in characterizing the operational environment of a wireless network. Section
3 develops a methodology for cells in the wireless network to gather input information from
individual mobile users and neighbor cells to run the proposed admission control algorithms
at runtime. Section 4 describes a class of partitioning and threshold-based admission control
algorithms and a hybrid algorithm integrated with pricing for revenue optimization with QoS
guarantees for mobile wireless networks. Performance models are developed for assessing and
comparing the performance characteristics and these algorithms. Section 5 presents numerical
data and provides physical interpretation of the results. It shows that there exists an optimal set-
ting under which the revenue collected is maximized for both partitioning and threshold-based
admission control algorithms. Moreover, the hybrid algorithm is demonstrated to outperform
both partitioning and threshold-based algorithms. Finally, Section 6 discusses applicability,
summarizes the paper, and outlines future research areas.

2. System Model

A cellular network is modeled by a flat architecture in which cells are connected consecutively.
In the center of each cell, a base station is used to provide network services to mobile hosts
within the cell. We assume there exists a number of distinct service classes, S1, S2, . . . , Sn ,
which are characterized by the service type attribute. For example, the service types can be
realtime and non-real time. Further, there are handoff and new calls for each service type with
handoff calls having a higher priority than new calls. Each service type, other than requiring
a number of bandwidth channels for the intrinsic bandwidth QoS requirement, can possibly
impose a system-wide QoS requirement. For example, the handoff call drop probability of a
service type being less than 5% could be a QoS requirement. Dropped handoff calls dissatisfy
users more than blocked new calls do. Assume that for each service class, say i, a QoS constraint
exists on the handoff call blocking probability Bi

ht and the new call blocking probability
Bi

nt .
From the perspective of a single cell, each service class is characterized by its arrival rate

(including new service connections initiated by mobile users in the cell and for handoff service
connections from neighbor cells), and departure rate (of leaving the cell). Let λi

n denote the
arrival rate of new calls of service class i and μi

n , be the corresponding departure rate. Similarly,
let λi

h denote the arrival rate of handoff calls of service class i, and μi
h be the corresponding

departure rate. These parameters can be determined by inspecting statistics collected by the
base station in the cell and by consulting with base stations of neighbor cells. In Section 3,
we describe a method for estimating these parameters. Without loss of generality we assume
that a cell has C channels where C can vary depending on the amount of bandwidth available
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in the cell. When service class i enters a handoff area from a neighboring cell, a handoff call
request is generated. Each call has its specific QoS bandwidth requirement dictated by its
service traffic type attribute. Assume that a service call of service class i (regardless of handoff
or new) requires ki channels.

From the perspective of a cellular network service provider, each service class also has a
“price” associated with it such that the system receives some revenue corresponding to the price
associated when the service is rendered. The service provider would like to maximize the total
revenue obtained by the system by means of optimal pricing for service classes and performing
admission control functions subject to the bandwidth resources available in the system. The
system achieves total revenue maximization in a distributed manner by maximizing each
individual cell’s revenue. That is, each cell makes admission control decisions for new and
handoff call requests taking into consideration of the price rate information of these service
calls in order to maximize the revenue received from servicing new and handoff calls in the
cell.

The total revenue obtained by the system is inherently related to the pricing algorithm
employed by the service provider. While many pricing algorithms exist [10], the most prevalent
with general public acceptance to date is the “price-rate” scheme by which a user is charged by
the amount of time in service. We assume that such a “price-rate” pricing scheme is adopted
by the service provider such that a call of service class i has a “charge-rate” of vi per time unit.
That is, if a call of service class i is admitted into a cell, and subsequently handed off to the
next cell or terminated in the cell, a reward of vi multiplied with the amount of time the service
is rendered in the cell will be “earned” by the system. There is no distinction for handoff vs.
new calls in pricing as long as the call is in the same service class. We conjecture that the
network service provider will assign proper values vi to each service class. The performance
model developed in the paper will allow the service provider to calculate the revenue earned
per unit time under an admission control algorithm by each individual cell such that the
revenue obtained by the system is maximized while satisfying some system imposed QoS
constraints.

3. Mobility and Service Call Pattern

We propose to use a simple yet efficient learning mechanism to estimate the values of λi
n, μ

i
n, λ

i
h

and μi
h of service class i from a cell’s perspective. This learning mechanism involves a mobility

and service call pattern recognition algorithm being executed on individual mobile devices
for scalability reasons. The algorithm summarizes mobility and service call information of
each individual mobile user in two data structures, namely, a mobility probability matrix and
a service call table.

Specifically, the mobility probability matrix summarizes the probability of the mobile user
going from one cell to the next cell and the residence time (distribution) of each cell, given
that the mobile user comes from a previous cell. Specifically, the matrix stores PBCD and
TBCD where PBCD is the probability of the mobile user entering into cell D (the next cell)
from cell C (the current cell), given that the previous cell is B, and TBCD is the average dwell
time of the mobile user in cell C, given that the previous cell is B and the next cell is D.
For resource management, the information summarized in the mobility probability matrix is
provided to the cells when the mobile user migrates into them. A design variation is to con-
sider not only the previous cell but also a path consisting of the previous cell and the second
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previous cell. In this design variation, the probability matrix will store PABCD and TABCD for
the probability of the mobile user entering into cell D (the next cell) from cell C (the current
cell), given that the previous two cells are A and B in the sequence, and the average dwell
time of the mobile user in cell C, given that the next cell is D and the previous two cells are
A and B. This design variation trades off storage and processing requirements for informa-
tion accuracy and improves the accuracy in summarizing the mobility behavior of a mobile
user.

Certainly any method used to summarize mobility and service call patterns of a mobile
user must be light-weight, given the small processing, storage and communication capabilities
of a mobile device nowadays. We propose to adopt a light-weight yet effective self-learning
mechanism [11] originally designed for wireless LANs and now applied to cellular networks
based on rewarding the correct state transition and penalizing incorrect state transitions such
that the sum of all probabilities is one. Consider the design that takes the previous state, the
current state and the next state into account. Also suppose for convenience that a cell has 6
neighbors. If the previous cell is B and the current cell is C, then in the mobility probability
matrix we would have entries for PBCD1, PBCD2, PBCD3, PBCD4, PBCD5, and PBCD6 for six
possible next cells D1, D2, D3, D4, D5 and D6 as neighbors to cell C. Suppose that the mobile
user actually goes to cell D4 from cell C. Then, PBCD4 would be rewarded with a probability
increment while all others would be penalized with a probability decrement such that the
probability sum is still 1.

For a mobile user that exhibits a certain degree of regularity for movements and calls, even-
tually the mobility probability matrix will concentrate on certain state transition probabilities
with values close to 1, while most others will have probabilities close to 0 due to the reward-
penalty learning mechanism applied. Thus the mobility probability matrix will summarize the
regular paths taken by the mobile user. On the other hand, TBCD1, TBCD2, TBCD3, TBCD4, TBCD5,
and TBCD6 are updated accordingly depending on the actual path taken by the mobile user.
This can be determined by each mobile user easily by keeping track of the average dwell time
that the mobile user stays in a particular cell, given the history of the previous cell and the next
cell.

The second data structure, a service call table also maintained by individual mobile devices
to summarize call patterns, is to be populated as the mobile device goes through a sequence of
calls. Specifically, for each cell visited by the mobile device, the table stores four “rate” values
related to calls, namely, the arrival rate of a new call made by the mobile device in cell C,
denoted by �n(C), the departure rate of a new call by the mobile device at cell C, denoted by
θn(C), the arrival rate of a handoff call from cell C into its neighbor cells, denoted by �h(C),
and the departure rate of a handoff call in cell C, denoted by θh(C). These four rate values
reflect the frequency at which new calls are initiated and terminated, and also the frequency
at which handoff calls arrive from neighbor cells and terminated by the mobile device, thus
summarizing the call patterns of a mobile device. The computational procedure for obtaining
the values of these rate parameters is also very lightweight, involving only a few variables to be
kept in the mobile device’s memory which are being updated as calls are made and terminated
by the mobile user roaming across cells in the wireless network.

Our approach is to have each cell make admission control decisions to allocate resources to
calls based on summarized mobility and service call patterns of those mobile users currently
in the cell to intelligently know their call expected arrival and departure rates, as well as of
those mobile users in the neighbor cells in order to know their expected handoff call arrival
rate. From a cell’s perspective (say, cell C), the arrival rate of handoff calls from mobile users
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in all the neighbor cells (say, B’s), denoted by λh(C), is given by:

λh(C) =
∑
B∈M

∑
all

users
inB

�h(B) × PBC

Here M is the set of neighbor cells of cell C and PBC is the probability that if the mobile
user is in cell B it will go to cell C as the next cell, which can be calculated easily by each
individual mobile user through a look-up of its mobility probability matrix by summarizing
the probabilities of PABC, i.e.,

PBC =
∑
all A

PABC

Let λn(C) denote the arrival rate of new calls, μn(C) denote the departure rate of a new
call in cell C, and μh(C) denote the departure rate of a handoff call in cell C. Then,

λn(C) =
∑

all
users
inC

�n(C)

μn(C) =
∑

all
users
inC

θn(C)

number of users

and

μh(C) =
∑

all
users
inC

θh(C)

number of users

Note that the arrival rate of all new calls is an aggregate measure summing all new call arrival
rates by individual users in the cell, while the departure rate per call is an average parameter,
averaging over all the mobile users in the cell.

The design of resource management for revenue optimization hinges on the adaptive ad-
mission control algorithm executed by individual cells. A cell, say C, will dynamically collect
mobility and service call patterns in the form of �n(C), θn(C), �h(B), where B is a neighbor
cell of C , and θh(C) from mobile users of a service class currently in its cell and will commu-
nicate with neighbor cells regarding the handoff arrival rate to have knowledge of the expected
arrival and departure rates of new calls and handoff calls from these mobile users. Then each
cell can intelligently allocate resources to serve new and handoff calls of various service types
of different charge rates (i.e., a call of service class i has a “charge-rate” of vi per time unit)
to maximize the revenue obtainable, limited by the amount of resources available (bandwidth
channels).

4. Admission Control for Revenue Optimization with QoS Guarantees

In this section we develop admission control algorithms integrated with pricing for revenue
optimization with QoS guarantees in wireless mobile environments. For ease of presentation,
we assume that there are two service types, class 1 (high-priority) and class 2 (low-priority),
distinguished primarily by their traffic type, i.e., real-time and non-real-time respectively.
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These algorithms can be easily applied to the case in which more than two service classes
exist. The traffic input parameters λ1

n, μ
1
n, λ

1
h and μ1

h for class 1 and λ2
n, μ

2
n, λ

2
h and μ2

h for class
2 are obtained as described in Section 3. The superscript in the notation denotes the class type;
the cell id (X) in the notation is dropped as we now refer to a general cell in the system.

4.1. PARTITIONING ADM ISSION CONTROL

A partitioning call admission control policy divides the total number of channels in a cell into
several fixed partitions with each partition specifically reserved to serve a particular service
class (real-time vs. non-real-time) and call type (new vs. handoff). Thus for our example
system there exist four partitions: high-priority handoff calls, high-priority new calls, low-
priority handoff calls, and low-priority new calls, as illustrated in Figure 1.

By “partitioning” here we mean that a fixed number of channels are allocated to a specific
service type and a call type and it cannot be used or shared by others. In calculating the expected
revenue we assume that we have a priori knowledge of the arrival rate of calls and the service
class to which it belongs. This knowledge is essential to justify the admission of a call into a
cell in order to maximize the revenue of a cell at any given point of time. The network service
provider normally has specified the desired threshold blocking probability for both new and
handoff calls for different service classes in order to satisfy QoS constraints.

With the scenario of two service types, the following are the input parameters to a cell: C ,
λ1

h, μ
1
h, λ

1
n, μ

1
n, λ

2
h, μ

2
h, λ

2
n, μ

2
n, v

1, v2, k1, k2, B1
h t , B2

h t , B1
n t , and B2

n t where k1 and k2 are the
number of channels used by class 1 and class 2 calls, and B1

h t , B2
h t , B1

n t , and B2
n t are threshold

blocking probability of high-priority handoff, low-priority handoff, high-priority new, and
low-priority new calls, respectively.

Under the partitioning admission control algorithm, the total number of channel C is divided
into C1

h , C1
n , C2

h , and C2
n channels for high-priority handoff calls, high-priority new calls, low-

priority handoff calls, and low-priority new calls, respectively, as shown in Figure 1. These
parameters are subject to the constraint:

C1
h , C1

n , C2
h , C2

n ≤ C (1)

Let (n1
h , n1

n , n2
h , n2

n) be the numbers of calls corresponding to the four fixed partitions denoted
by (C1

h , C1
n , C2

h , C2
n ). Then n1

h k1 = C1
h , n1

n k1 = C1
n , n2

h k2 = C2
h , and n2

n k2 = C2
n subject to

the constraint that:

C1
h + C1

n + C2
h + C2

n = C (2)

C

C2
nC2

hC1
nC1

h

Channels for low-priority new calls 

Channels for low-priority handoff calls 

Channels for high-priority new calls 

Channels for high-priority handoff calls 

Figure 1. Partitioning admission control.
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The QoS constraints to be satisfied are the blocking probability of new and handoff calls
for both classes 1 and 2 calls. That is, we would like to partition C channels such that the
following QoS constraints are satisfied:

B1
h < B1

h t (3)

B1
n < B1

n t (4)

B2
h < B2

h t (5)

B2
n < B2

n t (6)

The revenue that a successfully terminated or handed-off call brings to the cell is cal-
culated by the product of the call’s price rate parameter vi with the duration of the call in
the cell. Specifically, suppose that the partitioning algorithm reserves (C1

h , C1
n , C2

h , C2
n ) chan-

nels for revenue optimization, resulting in N 1
h , N 1

n , N 2
h , and N 2

n high-priority handoff calls,
high-priority new calls, low-priority handoff calls, and low-priority new calls, respectively,
successfully terminated or handed off per unit time in the cell. Then the cell will receive the
following revenue per unit time due to the deployment of the partitioning admission control
algorithm:(

N 1
h

μ1
h

+ N 1
n

μ1
n

)
v1 +

(
N 2

h

μ2
h

+ N 2
n

μ2
n

)
v2 (7)

Thus the optimization problem for the partitioning algorithm is to identify the best parti-
tion (C1

h , C1
n , C2

h , C2
n ) that would maximize the cell’s revenue subject to the imposed QoS

constraints defined by Conditions 3 through 6.
Under the partitioning algorithm, if a new high-priority (i.e., class 1) call arrives at a cell

and all the channels allocated to serve high-priority new calls are used up, then the call is
rejected. Similar reasoning applies to other service classes, too. No sharing is allowed among
multiple partitions that exist. In this case the system behaves as if it is managing four concurrent
queues: an M/M/n1

h/n1
h queue to serve high-priority handoff calls with arrival rate λ1

h , service
rate μ1

h , and the number of call slots allocated being n1
h (such that n1

hk1 = C1
h ), an M/M/n1

n/n1
n

queue to serve new high-priority new calls in a cell with arrival rate λ1
n , service rate μ1

n , and
the number of call slots allocated being n1

n (such that n1
nk1 = C1

n ), an M/M/n2
h/n2

h queue to
serve low-priority handoff calls with arrival rate λ2

h , service rate μ2
h , and the number of call

slots being n2
h (such that n2

hk2 = C2
h ), and an M/M/n2

n/n2
n queue to serve low-priority new

calls with arrival rate λ2
n , service rate μ2

n , and the number of call slots being n2
n (such that

n2
nk2 = C2

n ).
The call dropping probabilities for handoff calls for various service classes (i.e., B1

h and
B2

h ) and the blocking probability for new calls for various service classes (i.e., B1
n and B2

n )
can be determined easily by calculating the probability of the partition allocated to serve the
specific calls being full. We can calculate the revenue generated per unit time by the partition
reserved to serve only high-priority handoff calls by associating a reward of i ∗ v1

h for state i in
the M/M/n1

h/n1
h queue. The same way applies to other partitions. Specifically, we can compute

the revenue per unit time to the cell by:

PR
(
C, λ1

h, λ
1
n, λ

2
h, λ

2
n

) = PR1
h + PR1

n + PR2
h + PR2

n (8)
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where the notation PR(C, λ1
h, λ

1
n, λ

2
h, λ

2
n) is used to stand for the revenue rate earned by the

partitioning algorithm as a function of C, λ1
h, λ

1
n, λ

2
h, λ

2
n (with other parameters not listed),

while PR1
h + PR1

n + PR2
h and PR2

n , stand for the revenues generated per unit time due to high-
priority handoff calls, high-priority new calls, low-priority handoff calls, and low-priority new
calls, respectively, as given by (only PR1

h is shown below since expressions for others are
similar):

PR1
h =

n1
h∑

i=1

iv1
h

1
i!

(
λ1

h

μ1
h

)i

1 + ∑n1
h

j=1
1
j!

(
λ1

h

μ1
h

) j (9)

A partitioning solution is “legitimate” if B1
h , B2

h , B1
n and B2

n obtained satisfy Conditions 3
through 6. A partitioning admission control integrated with pricing for revenue optimization
with QoS guarantees aims to find the optimal set (C1

h , C1
n , C2

h , C2
n ) that will yield the maximum

revenue obtained among all legitimate solutions.

4.2. THRESHOLD-BASED ADM ISSION CONTROL

In the threshold-based admission control algorithm, we select a threshold CT to separate class 1
from class 2 based on the service type, i.e., real-time vs. non-real time. The meaning of the
threshold is that when the number of channels used in the cell exceeds CT then new or handoff
calls from service class 2 (low-priority) will not be admitted. Within each service class, we
further create thresholds to differentiate handoff from new calls such that C1

hT is the threshold
for class 1 high-priority handoff calls; C1

nT is the threshold for class 1 high-priority new calls;
C2

hT is the threshold for class 2 low-priority handoff calls; and C2
nT is the threshold for class 2

low-priority new calls.
Figure 2 illustrates the threshold-based admission control algorithm. Since we give handoff

calls a higher priority than new calls, the following additional conditions must also be satisfied:

C1
nT ≥ CT , C1

hT ≥ CT (10)

C2
nT ≤ CT , C2

hT ≤ CT (11)

A threshold-based admission control integrated with pricing for revenue optimization with
QoS guarantees thus aims to find the optimal set (C1

hT , C1
nT , C2

hT , C2
nT ) satisfying Conditions

10 and 11 that would yield the highest revenue while satisfying the QoS constraints specified
by Conditions 3 through 6.

CT

C2
nT ≤ CT

C2
hT ≤ CT

C
C1

hT ≥ CT

C1
nT ≥ CT

High Priority Handoff Calls 

High Priority New Calls 

Low Priority Handoff Calls 

Low Priority New Calls 

0

Figure 2. Threshold-based admission control.



366 I.-R. Chen et al.

We analyze the threshold-based admission control algorithm by using an SPN model.
An SPN model is used rather than a Markov model because of the interdependency between
thresholds assigned to handoff and new calls of various service classes. The SPN model adopts
the idea from [7] and is generically applicable to multiple service classes. Figure 3 shows an
SPN model for the threshold-based admission control with two service classes.

The transitions and places shown in Figure 3 are described as follows. For transitions,
Ei

n models new call arrivals of service class i at rate λi
n; Ei

n models handoff call arrivals of
service class i at rate λi

h; Si
n models service of new calls of service class i with a service rate of

M(UCi
n) multiplied with μi

n where M(UCi
n) stands for the number of tokens in place UCi

h; and
Si

h models service of handoff calls of service class i with a service rate of M(UCi
h) multiplied

with μi
h where M(UCi

h) stands for the number of tokens in place UCi
h . For places, UC1

n models
the execution state of service class 1 new call; UC1

h models the execution state of service class
1 handoff calls; UC2

n models the execution state of service class 2 new calls; and UC2
h models

the execution state of service class 2 handoff calls.
A new service request arrival is admitted only if the threshold assigned is not yet reached.

Therefore we assign an enabling predicate to guard E1
n, E1

h, E2
n , and E2

h , with thresholds
C1

n , C1
h , C2

n , and C2
h , respectively. Consequently, the enabling predicate of E1

n is [M(UC1
n) +

M(UC1
h)] k1+k1+[M(UC2

n)+M(UC2
h)] k2 ≤ C1

n . The enabling predicate of E1
h is [M(UC1

n)+
M(UC1

h)] k1 +k1 +[M(UC2
n)+ M(UC2

h)]k2 ≤ C1
h . The enabling predicate of E2

n is [M(UC1
n)+

M(UC1
h)] k1 + k2 + [M(UC2

n) + M(UC2
h)]k2 ≤ C2

n . Finally, the enabling predicate of E2
n is

[M(UC1
n) + M(UC1

h)] k1 + k2 + [M(UC2
n) + M(UC2

h)]k2 ≤ C2
h .

The blocking probability B1
n , B1

h , B2
n and B2

h are calculated from the SPN model by:

B1
n =

(
λ1

n − rate
(
E1

n

))
λ1

n

B1
h =

(
λ1

h − rate
(
E1

h

))
λ1

h

B2
n =

(
λ2

n − rate
(
E2

n

))
λ2

n

B2
h =

(
λ2

h − rate
(
E2

h

))
λ2

h

Figure 3. An SPN model for threshold-based admission control with two service classes.
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Figure 4. Partitioning-threshold hybrid admission control.

where rate (Ei
c) is calculated by finding the expected value of a random variable X defined

as X = λi
c if Ei

c is enabled; 0 otherwise. A “legitimate” solution from a threshold admission
control algorithm must generate B1

n , B1
h , B2

n , and B2
h to satisfy the QoS constraints specified

by Conditions 3 through 6 discussed earlier.
We compute the revenue generated per unit time from the threshold-based admission control

algorithm to the cell by:

TR
(
C, λ1

h, λ
1
n, λ

2
h, λ

2
n

) = TR1
h + TR1

n + TR2
h + TR2

n (12)

Here TR1
h, TR1

n, TR2
h , and TR2

n stand for the revenues generated per unit time due to high-
priority handoff calls, high-priority new calls, low-priority handoff calls, and low-priority new
calls, respectively, given by:

TRi
h = (

1 − Bi
h

)
λi

h vi/μi
h (13)

TRi
n = (

1 − Bi
n

)
λi

n vi/μi
n. (14)

4.3. HYBRID PARTITIONING AND THRESHOLD-BASED ADMISSION CONTROL

We devise a hybrid admission control algorithm to take advantage of both partitioning and
threshold-based. The hybrid algorithm also divides the channels into fixed partitions the same
way as the partitioning algorithm does. However, to take advantage of multiplexing, a “shared”
partition is reserved to allow calls of all service classes/types to compete for its usage in
accordance with the threshold algorithm. Figure 1 illustrates the hybrid algorithm. The shared
partition is available for use by a service class/type only if the partition reserved for that service
class/type is used-up. For example, class 1 handoff calls are allowed to use the channels in the
shared partition only if all the channels reserved for class 1 handoff calls in the C1

h partition
have been used up.

Let n1
hs, n1

ns, n2
hs, n2

ns be the numbers of high-priority handoff calls, high-priority new calls,
low-priority handoff calls, and low-priority new calls, respectively, in the shared partition. Let
Cs be the number of channels allocated to the shared partition under the hybrid algorithm.
Then, the number of calls of various service classes and types admitted into the shared partition
are limited by Cs channels allocated to the shared partition, that is,

n1
hsk1 + n1

nsk1 + n2
hsk2 + n2

nsk2 ≤ Cs (15)
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subject to the constraint that:

C1
h + C1

n + C2
h + C2

n + Cs = C (16)

The QoS constraints specified by (3) through (6) and the revenue earned per unit time as
specified by Equation (7) remain applicable to the hybrid partitioning algorithm.

Note that the hybrid algorithm encompasses the partitioning algorithm as a special case in
which Cs = 0 and also the threshold-based algorithm as another special case in which C1

h ,
C1

n , C2
h , and C2

n are all zero. The performance model for the hybrid algorithm is composed of
two submodels: one for the partitioning algorithm with the four fixed partitions C1

h , C1
n , C2

h ,
and C2

n and one for the threshold-based algorithm for which C = Cs . Since the fixed partitions
are modeled as M/M/n/n queues, the arrival rates into the shared partition from high-priority
handoff calls (λ1

hs), high-priority new calls (λ1
ns), low-priority handoff calls (λ2

hs), and low-
priority new calls (λ2

ns) are simply the spill-over rates from their respective M/M/n/n queues,
e.g.,

λ1
hs = λ1

h

1
n1

h !

(
λ1

h

μ1
h

)n1
h

1 + ∑n1
h

j=1
1
j!

(
λ1

h

μ1
h

) j (17)

Here only λ1
hs is shown since expressions for λ1

ns , λ2
hs , and λ2

ns are similar.
From the perspective of the shared partition, the arrival rates are thus λ1

hs , λ1
ns , λ2

hs and λ2
ns

and the total number of channels available is Cs with all other parameters remained the same.
Hence we compute the revenue generated per unit time from the hybrid admission control
algorithm to the cell by the sum of revenue earned from the fixed partitions plus that from the
shared partition:

HR
(
C, λ1

h, λ
1
n, λ

2
h, λ

2
n

) = PR
(
C − Cs, λ

1
h, λ

1
n, λ

2
h, λ

2
n

)
+ TR

(
Cs, λ

1
hs, λ

1
ns, λ

2
hs, λ

2
ns

)
(18)

The optimization problem for the hybrid algorithm is to identify the best partition (C1
h , C1

n ,
C2

h , C2
n , Cs) that would maximize the cell’s revenue subject to the imposed QoS constraints

defined by Conditions 3 through 6.

5. Numeric Data and Analysis

In this section we report numerical data obtained from applying Equations 8, 12 and 18
derived for partitioning, threshold-based and hybrid admission control algorithms for revenue
optimization with QoS guarantees and compare their performance characteristics with physical
interpretations of the results. The charging rate model is based on the popular “charge-by-time”
scheme for which a call is charged by time with a fixed rate per time unit. The analysis considers
two classes with class 1 (real-time) demanding more resources with higher QoS constraints
than class 2 (non-real-time), so class 1 has a higher charging rate per unit time and more
stringent thresholds on both the new and handoff call blocking probabilities than class 2.
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The input parameters are C , λ1
h, μ

1
h, λ

1
n, μ

1
n, λ

2
h, μ

2
h, λ

2
n, μ

2
n, v

1, v2, k1, k2, B1
h t , B2

h t , B1
n t ,

and B2
n t . We set C = 80, k1 = 4 and k2 = 1 for a typical cell in mobile wireless networks to

service realtime and non-real-time traffic such that there are 80 channels in the cell with a class
1 call (realtime) consuming 4 channels and a class 2 call (non-real-time) consuming 1 channel.
We vary the values of other model parameters, such as the arrival rates of new/handoff calls for
different classes, pricing values (v1 vs v2), and threshold blocking probabilities (B1

h t and B2
h t)

to analyze their effects on the maximum revenue obtainable subject to the QoS constraints
specified in terms of Conditions 3 through 6 being satisfied.

Table 1 compares the optimal revenue obtained per unit time while the QoS constraints
specified are satisfied, under partitioning, threshold-based and hybrid admission control al-
gorithms at optimal settings as a function of the high-priority handoff call arrival rate λ1

h ,
with all other parameter values being listed at the bottom of the table. The corresponding
optimal (C1

h , C1
n , C2

h , C2
n ) settings under partitioning, optimal (C1

hT , C1
nT , C2

hT , C2
nT ) settings

under threshold-based and (C1
h , C1

n , C2
h , C2

n , Cs) settings under hybrid admission control al-
gorithms are also listed in the table to reveal the trend exhibited in resource allocation by
these algorithms. One should note that a difference of even 1 unit of revenue per unit time
earned by the system as a result of adopting different admission control algorithms could
be considered significant because the revenue accumulated over a period of time would be
significant.

The data in Table 1 indicate that as λ1
h increases, the revenue rate obtainable also in-

creases as long as the QoS constraints can still be satisfied given the amount of resources
available (C = 80). Nevertheless, as λ1

h increases further past a threshold value, all al-
gorithms eventually fail to yield a legitimate solution because the workload is too heavy
to satisfy the imposed QoS constraints, as indicated in the table by “None”. One can see
that hybrid admission control is the most tolerant algorithm among all in terms of being
able to yield a solution under high workload situations, followed by threshold-based and
partitioning.

We see that in response to a high arrival rate of λ1
h , hybrid admission control (in the middle

column) tends to increase the size of two partitions, that is, it tends to increase C1
h to satisfy the

stringent QoS constraint of B1
h t = 0.02 for class 1 handoff calls, and it also tends to increase Cs

to exploit the multiplexing power of the shared partition by means of threshold-based admission
control to satisfy QoS constraints of all other service calls. The multiplexing power of the shared
partition is clearly demonstrated by the fact that hybrid significantly outperforms partitioning in
terms of revenue obtainable over a range of λ1

h values, while being able to sustain a higher work-
load of λ1

h and provide QoS guarantees. As the arrival rate of class 1 handoff calls increases,
on the other hand, threshold-based admission (in the last column) control tends to decrease the
threshold values of C1

nT , C2
hT and C2

nT while keeping C1
hT as high as possible to satisfy the strin-

gent QoS constraint of B1
h t = 0.02. We observe that the performance of threshold-based admis-

sion control is comparable to hybrid admission control until λ1
h becomes high enough, beyond

which threshold-based performs significantly worse and eventually fails to yield a legitimate
solution compared with hybrid admission control. We attribute the superiority of hybrid admis-
sion control over partitioning and threshold-based admission control to the ability to optimally
reserve dedicated resources for high-priority classes through fixed partitioning to reduce inter-
ference from low-priority classes, and to optimally allocate resources to the shared partition in
accordance with threshold-based admission control to exploit the multiplexing power for all
classes.
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Next we test the sensitivity of the results with respect to the traffic load of class 2 (low-
priority) calls Table 2 shows the revenue rate earned by the system as a function of λ2

h and
λ2

n . Here we see that as the arrival rate of the low-priority class increases (shown in the first
column), hybrid admission control (shown in the middle column) tends to decrease the number
of dedicated channels allocated to high-priority calls, while at the same increasing the number
of shared channels to exploit the multiplexing power in the shared partition. The reason is
that as the arrival rate of low-priority calls increases the system will gain most of its revenue
from low-priority calls. Thus hybrid admission control tempts to allocate as much resources to
low-priority calls as possible, to the extent that QoS constraints for both high and low priority
calls are satisfied. Since the QoS constraint of high priority handoff calls is stringent (2% drop
probability), we see from Table 2 that even when the arrival rate of low-priority class is very
high, hybrid admission control still allocates some designated channels to the C1

h partition. In
all cases we observe that hybrid admission control performs the best among all over a wide
range of arrival rate of low-priority calls.

Two other important parameters significantly affect the behavior of admission control
for revenue optimization with QoS guarantees. One is the ratio of v1: v2; the other is QoS
constraints. We present sensitivity analysis of these two parameters below.

Table 3 shows the effect of v1: v2 (by varying v1 while setting v2 to 10). The results show
that hybrid admission control outperforms or is at least as good as partitioning and threshold-
based admission control. Moreover, we observe that the difference in revenue earned becomes
more significant as the v1: v2 ratio increases. This effect is especially pronounced when the
system is heavily loaded (shown in the bottom half of Table 3) under which it is necessary
to optimally allocate channels to calls of different priority types and service charge rates to
maximize the revenue earned by the system while at the same time satisfying the imposed
QoS constraints.

Table 4 shows the effect of QoS constraints. We tighten the QoS constraints of handoff
calls for both classes 1 and 2 (B1

h t , and B2
h t) by a multiplicative factor of 2 successively to see

how these admission control algorithms would respond to the change. We observe that under
light-load conditions (the first half of Table 4) all three algorithms can reasonably adapt to the
QoS change in order to satisfy the QoS constraints. However, partitioning admission control
generates relatively lower revenue because without multiplexing power it needs to trade revenue
off for QoS satisfaction. When the QoS constraints of handoff calls become extremely tight,
both partitioning and threshold-based admission control algorithms fail to provide a legitimate
solution, while hybrid admission is still able to provide a legitimate solution due to its ability
to exploit the multiplexing power in the shared partition and to reserve dedicated resources
for individual service classes.

The adaptability of hybrid admission control with respect to more stringent QoS constraints
is especially pronounced under heavy-load situations (shown at the bottom half of Table 4).
In response to more stringent QoS constraints on handoff calls under heavy-load conditions,
hybrid admission control allocates more channels in the C1

h partition and conversely fewer
channels in the C1

n partition to satisfy the most stringent QoS constraint imposed on class
1 handoff calls. Further, it also allocates more channels in the shared partition to satisfy
the stringent QoS requirement of class 2 handoff calls, which through multiplexing also has
the benefit of compensating class 1 and class 2 new calls to satisfy their QoS constraints. We
conclude that the channel allocation made by the hybrid admission control algorithm represents
the best possible way to satisfy varying QoS requirements while maximizing revenue earned
by the system.
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6. Applicability and Summary

In this paper we have proposed and analyzed the design concept for the integration of pricing
with admission control algorithms with QoS guarantees in a cellular wireless network. The
design concept is based on the idea that an admission control algorithm in deciding which calls
to admit should consider not only the QoS constraints imposed by the system, but also the
revenue that the admission of such a call will bring to the system. In illustrating our concept,
we test a “charge-by-time” pricing scheme being used by the service provider where a user
is charged by the amount of time in service. Three admission control algorithms for handling
multiple classes of traffic were proposed, namely, partitioning, threshold-based, and hybrid
admission control with the intention of maximizing revenue generated by a cell while still
satisfying the QoS constraints imposed by the system for distinct service classes. Our analysis
results indicated that at optimizing conditions the hybrid admission control algorithm can
generate higher revenue with QoS guarantees than the other two admission control algorithms.
We attribute the superiority of the hybrid algorithm to the existence of fixed partitions reserved
for specific classes/types to avoid interference from other classes/types so as to satisfy the
respective QoS requirements, and a shared partition which provides great multiplexing power
for sharing the bandwidth among calls of different classes and services. The hybrid algorithm
encompasses both the partitioning and threshold-based algorithms as special cases.

To apply the results obtained in the paper, a cell dynamically communicates with mo-
bile users in its cell and neighboring cells to obtain values of arrival and departure rates of
new/handoff calls of various service classes periodically and performs a simple table look
up at runtime to obtain the optimal (C1

h , C1
n , C2

h , C2
n , Cs) under hybrid admission control for

revenue optimization with QoS guarantees.
Some possible future research directions extending from this work include (a) considering

other pricing models and investigating optimal resource allocation settings under which hybrid
partitioning threshold-based admission control algorithms can yield the highest revenue with
QoS guarantees; (b) considering other revenue collection model, e.g., revenue is collected only
on call termination or revenue is lost when a call is terminated prematurely; (c) exploring the
relationship between QoS and pricing and determining the optimal pricing for calls of various
service classes and types such that the revenue is maximized with QoS guarantees based on
anticipated workload conditions and resource availability.
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