Lecture 10: Query Expansion & Relevance Feedback
Recap: Clustering & Cluster in IR

• Clustering
 • Goal: to group similar things together

• “Hard” clustering
 • Each instance (document) belongs to only one cluster
 • e.g., K-means

• “Soft” clustering
 • Each instance (document) can belong to different clusters
 • e.g., topic models such as PLSI and LDA
 • Important components of topic models (PLSI and LDA)
 • Topics (z) and topic representation, e.g., P(w|z)
 • Topic document association, e.g., P(d|z) or P(z|d)
Recap: Cluster-based Document Model

- Smoothing a document D’s MLE model by
 - The corpus model
 - The model of the cluster that D belongs to

$$P(t | D) = \lambda_1 P_{MLE}(t | D) + \lambda_2 P(t | cluster) + (1 - \lambda_1 - \lambda_2) \cdot P(t | corpus)$$

- Issues of hard clustering
 - Each document belongs to one cluster
 - A binary weight: 1 or 0
 - Borderline documents get inaccurate smoothing
Recap: LDA-based Document Model

• Smoothing a document D’s MLE model by
 • The corpus model
 • The model of the topics that D belongs to

 \[
P(w \mid D) = \lambda \left(\frac{N_d}{N_d + \mu} P_{ML}(w \mid D) + (1 - \frac{N_d}{N_d + \mu}) P_{ML}(w \mid coll) \right)
 + (1 - \lambda) P_{lda}(w \mid D) \tag{7}
\]

• Addressing a few issues of hard clustering
 • LDA can be considered as a soft clustering technique
 • Each document can belong to multiple topics with different weight
 • $P(\text{topic} \mid D)$ can be the weight of the topic in smoothing
 • Outperforms the cluster-based smoothing method
Outline Today

• *Query expansion: an overview*
• Relevance-based language model
• Alternatives of RM
Query Reformulation

• Users often need to use multiple rounds of searches (multiple queries) to satisfy an information need
 • Query reformulation: issue a new query (when there was an old one)

• Many possible reasons for reformulation
 • Limited search performance: to refine query
 • Can be the fault of the system, the user, or both
 • High complexity of search problem, e.g., relevant docs belong to multiple topics such that it is difficult to find all using a single query
 • Sometimes a search strategy: e.g., berry-picking (Bates, 1989)
 • User’s information need is evolving (Belkin, 1982)

• To support users’ need of query reformulation
 • Interactive techniques, e.g., offering suggestions & let users choose
 • Automatic techniques, e.g., query expansion, spelling correction, etc.
Automatic Query Expansion

• Adjusting and reweighting query terms, e.g.,:
 • *Original*: information retrieval
 • *Expanded*: 0.8 information 1.0 retrieval 0.6 search 0.3 BM25 ...

• Based on “semantic” analysis
 • Latent semantic indexing
 • Word co-occurrence, e.g., at document or passage level
 • Using external source, e.g., thesaurus or knowledge base

• Based on users’ relevance feedback
 • *Explicit* feedback, e.g., explicitly marking up which results are relevant and not relevant.
 • *Implicit* feedback, e.g., based on user behavior that may denote relevance information
 • *Pseudo*-relevance feedback, e.g., assuming top-ranked results by an initial search as relevant
Explicit Relevance Feedback

• Explicit relevance feedback
 • Users explicitly assess the relevance of the search results they visited and inform the system
 • The system improves results after receiving users’ feedback
 • IR is a binary classification if we have enough training data ...
 • BIM was proposed to make use of explicit feedback
 • A little bit recap of BIM ...
Recap: BM25 Parameter Estimation

Let \(p_i = P(X_i = 1 \mid R, q) \) and \(q_i = P(X_i = 1 \mid NR, q) \).

RSJ weight: \(w_i = \log \frac{p_i(1-q_i)}{(1-p_i)q_i} = \log \frac{(r+0.5)(N-n-N_R+r+0.5)}{(N_R-r+0.5)(n-r+0.5)} \)

- **Croft & Harper (1979)**
 - **Assumption 3**: \(p_i \) is a constant.
 - **Assumption 4**: the number of relevant documents (\(N_R \) and \(r \)) is a small number comparing to the size of the corpus (\(N \) and \(n \)).

A3: \(\frac{p_i}{(1-p_i)} \) is constant and does not affect ranking

A4: \(\frac{N-n-N_R+r+0.5}{n-r+0.5} \approx \frac{N-n+0.5}{n+0.5} \), very similar to IDF \(\log \frac{N}{n} \)

Without any relevance information, we can estimate \(w_i = \log \frac{N-n+0.5}{n+0.5} \)

Rank results by \(\sum_{t \in D \cap q} \log \frac{N-n_t+0.5}{n_t+0.5} \) or \(\sum_{t \in q} TF_{binary}(t,d) \cdot \log \frac{N-n_t+0.5}{n_t+0.5} \)
Explicit Relevance Feedback

- **Explicit relevance feedback**
 - Users explicitly assess the relevance of the search results they visited and inform the system
 - The system improves results after receiving users’ feedback
 - IR is a binary classification if we have enough training data ...
 - BIM was proposed to make use of explicit feedback

- **A few practical issues**
 - Increases cost of users; users are unwilling to assess
 - Requires a certain amount of judgments to work
 - Improve after interaction? Novelty of results?
 - Can improve over the current query, but users may formulate a new query, which may outperform the improvements
Rocchio Algorithm

• Consider query and document vectors
• A set of relevance judgments R and NR
• Modifying the original query Q by
 • Positive Feedback: moving the query vector closer to the centroid of the judged relevant documents
 • Negative Feedback: keeping the query vector away from the centroid of the judged non-relevant documents
• Can be applied to VSM and BM25

\[Q' = Q + \alpha \frac{1}{|R|} \sum_{D_j \in R} D_j - \beta \frac{1}{|NR|} \sum_{D_j \in NR} D_j \]
Rocchio Algorithm: An Example

Original Query:
(5, 0, 3, 0, 1)

Document D_1, Relevant:
(2, 1, 2, 0, 0)

Document D_2, Non-relevant:
(1, 0, 0, 0, 2)

$\alpha = 0.50$, $\beta = 0.25$

Relevance Feedback Formula:

$$Q' = Q + \alpha \frac{1}{|R|} \sum_{D_j \in R} D_j - \beta \frac{1}{|NR|} \sum_{D_j \in NR} D_j$$

$Q' = Q + 0.5 \, D_1 - 0.25 \, D_2$

$$= (5, 0, 3, 0, 1) + 0.5 \, (2, 1, 2, 0, 0) - 0.25 \, (1, 0, 0, 0, 2)$$

$$= (5.75, 0.50, 4.00, 0.0, 0.5)$$
Implicit Relevance Feedback

- **User behaviors that may indicate relevance**
 - Click vs. skip: users’ preference of results based on snippets
 - Click dwell time: the longer the time spent on a webpage is, the more likely the webpage is relevant (often consider $t > 30s$)
 - Past search queries
 - Social website share; social bookmark; ...
 - ...
 - The key (real) secret for IR system improvements since 2005

- **When to apply**
 - While users issue a query, directly apply previous queries’ relevance feedback
 - Requires search log ...

- **Lecture 20 (10/30)**
An Example: Context-sensitive Feedback

- KL-divergence model; estimate a query model using
 - The current search query
 - Past search queries $P(w|H_Q)$
 - Past clicked results $P(w|H_C)$

$$p(w|\theta_k) = \alpha p(w|Q_k) + (1 - \alpha)[\beta p(w|H_C) + (1 - \beta)p(w|H_Q)]$$

$$p(w|Q_i) = \frac{c(w, Q_i)}{|Q_i|}$$

$$p(w|H_Q) = \frac{1}{k-1} \sum_{i=1}^{k-1} p(w|Q_i)$$

$$p(w|C_i) = \frac{c(w, C_i)}{|C_i|}$$

$$p(w|H_C) = \frac{1}{k-1} \sum_{i=1}^{k-1} p(w|C_i)$$

$$p(w|H) = \beta p(w|H_C) + (1 - \beta)p(w|H_Q)$$

$$p(w|\theta_k) = \alpha p(w|Q_k) + (1 - \alpha)p(w|H)$$

Pseudo-relevance Feedback

• Pseudo-relevance feedback (PRF); blind feedback; ...
 • Do an initial search using a regular approach, such as QL
 • Assume the top \(k \) ranked results as relevant
 • Perform relevance feedback based on the top \(k \) results
 • Normally by query expansion
 • Re-run the query

• A few practical issues
 • The assumption ...
 • Efficiency concerns: expand a short query (2-3 words) into a long one (e.g., \(~50\) words)
 • Practically effective for improving overall search effectiveness (in terms of the mean values of effectiveness metrics)
 • Our focus today
Outline Today

- Query expansion: an overview
- **Relevance-based language model**
- Alternatives of RM
Relevance-based Language Model

• Lavrenko & Croft, SIGIR ’01
• Usually called Relevance Model or RM
 • Four variants: RM1, RM2, RM3 (the most popular), and RM4
• RM is a pseudo-relevance feedback (PRF) approach
 • Assumes the top-ranked results by QL as relevant
 • Estimates a query language model $P(t|q)$ based on top results
 • The de facto standard PRF approach for language modeling IR
 • Works reasonably well (in terms of improving search effectiveness metrics such as AP)

Relevance-based Language Model

• Assumes there exists some relevance LM $P(t|R)$
 • R generates both the query and the relevant documents
 • Based on an observed query q, make our best estimation of $P(t|R) \Rightarrow P(t|R,q)$
 • We can simply consider $P(t|R,q)$ as a query model $P(t|q)$

$$P(t|R,q) = \frac{P(t,q|R)}{P(q|R)} \propto P(t,q|R)$$
\textbf{RM1} \quad P(t, q \mid R)

\[
= \sum_{D \in \{D_R\}} P(D \mid R) P(t, q \mid D, R)
\]

\[
= \sum_{D \in \{D_R\}} P(D \mid R) P(t \mid D, R) P(q \mid D, R)
\quad \text{A3}
\]

\[
= \sum_{D \in \{D_R\}} P(D \mid R) P(t \mid D, R) \prod_{q_i \in q} P(q_i \mid D, R)
\quad \text{A4}
\]

\[
\propto \sum_{D \in \{D_R\}} P(t \mid D) \prod_{q_i \in q} P(q_i \mid D)
\quad \text{A1, A2}
\]

• Assumptions

 • A1: \(P(D \mid R) \) is uniform
 • A2: \(P(t \mid D, R) = P(t \mid D) \) and \(P(q_i \mid D, R) = P(q_i \mid D) \)
 • A3: \(P(t, q \mid D, R) = P(t \mid D, R) P(q \mid D, R) \)
 • A4: \(P(q \mid D, R) = \prod_{q_i \in q} P(q_i \mid D, R) \)
RM1

RM1: \(P(t \mid q, R) \propto P(t, q \mid R) \propto \sum_{D \in \{D_R\}} P(t \mid D) \prod_{q_i \in q} P(q_i \mid D) \)

- **Computation**
 - Iterate over each feedback document (source) \(D \)
 - Assign a weight \(P(q \mid D) = \prod_{q_i \in q} P(q_i \mid D) \) to \(D \)
 - In terms of PRF, we just retrieve top \(k \) results by QL and weight each document by QL probability
 - Higher-ranked results get more weights
 - Expand a term \(t \) from \(D \) by the weight \(P(t \mid D)P(q \mid D) \)
 - Sum up terms’ weights in each feedback document \(D \)
 - Normalize the terms’ weights to probability

\[
P(t \mid q, R) = \frac{\sum_{D \in \{D_R\}} \left(P(t \mid D) \prod_{q_i \in q} P(q_i \mid D) \right)}{\sum_{t_j} \sum_{D \in \{D_R\}} \left(P(t_j \mid D) \prod_{q_i \in q} P(q_i \mid D) \right)}
\]
\textbf{RM2}

\[
P(t,q \mid R) = P(t \mid R)P(q \mid t, R)
\]

\[
= P(t \mid R) \prod_{q_i \in q} P(q_i \mid t, R) \quad \text{A5}
\]

\[
= P(t \mid R) \prod_{q_i \in q} \sum_{D \in \{D_R\}} P(q_i \mid D, t, R)P(D \mid t, R)
\]

\[
= P(t \mid R) \prod_{q_i \in q} \sum_{D \in \{D_R\}} P(q_i \mid D, R) \frac{P(t \mid D, R)P(D \mid R)}{P(t \mid R)} \quad \text{A6}
\]

\[
= \left(\sum_{D_j} P(t \mid D_j, R)P(D_j \mid R) \right) \cdot \prod_{q_i \in q} \sum_{D \in \{D_R\}} P(q_i \mid D, R) \frac{P(t \mid D, R)P(D \mid R)}{\sum_{D_j} P(t \mid D_j, R)P(D_j \mid R)}
\]

\[
\propto \left(\sum_{D_j} P(t \mid D_j) \right) \cdot \prod_{q_i \in q} \sum_{D \in \{D_R\}} P(q_i \mid D) \frac{P(t \mid D)}{\sum_{D_j} P(t \mid D_j)} \quad \text{A1, A2}
\]

- A1: \(P(D \mid R)\) is uniform; A2: \(P(t \mid D, R) = P(t \mid D)\) and \(P(q_i \mid D, R) = P(q_i \mid D)\)
- A5: \(P(q \mid t, R) = \prod_{q_i \in q} P(q_i \mid t, R)\); A6: \(P(q_i \mid D, t, R) = P(q_i \mid D, R)\)
RM2

RM2: $P(t \mid q, R) \propto \left(\sum_{D_j} P(t \mid D_j) \right) \cdot \prod_{q_i \in q} \sum_{D \in \{D_R\}} P(q_i \mid D) \frac{P(t \mid D)}{\sum_{D_j} P(t \mid D_j)}$

- **Computation**
 - Iterate over each query term q_i
 - Iterate over each feedback document D
 - Assign a weight $P(q_i \mid D)$ to D
 - Expand a term t from D by $P(t \mid D)P(q_i \mid D)$: if both t and q_i occur frequently in D, t gets a greater weight
 - Sum up the weight in each document
 - Multiply the expansion weight for each q_i
 - Normalize the terms’ weights to probability
RM1 vs. RM2

- All assumptions
 - A1: \(P(D|R) \) is uniform
 - A2: \(P(t|D, R) = P(t|D) \) and \(P(q_i|D, R) = P(q_i|D) \)
 - A3: \(P(t, q|D, R) = P(t|D, R)P(q|D, R) \)
 - A4: \(P(q|D, R) = \prod_{q_i \in q} P(q_i|D, R) \)
 - A5: \(P(q|t, R) = \prod_{q_i \in q} P(q_i|t, R) \)
 - A6: \(P(q_i|D, t, R) = P(q_i|D, R) \)

- RM1: A1, A2, A3, A4
 - Only assumes the independence between \(t \) and \(q \) (as a whole)

- RM2: A1, A2, A5, A6
 - Assumes the independence between \(t \) and each \(q_i \)
 - Separately expand by each individual terms in the original query
 - (Many believe this is) a stronger independence assumption
RM3 and RM4

- Sometimes the original query terms do not have the highest weights in the expanded query model ...
 - Seems risky and problematic
- Interpolate the expanded model with the query’s MLE
 - RM3: original query’s MLE + RM1
 - RM4: original query’s MLE + RM2

\[
P_{RM3} (t \mid q) = (1 - \lambda) \cdot P_{MLE} (t \mid q) + \lambda \cdot P_{RM1} (t \mid q)
\]

\[
P_{RM4} (t \mid q) = (1 - \lambda) \cdot P_{MLE} (t \mid q) + \lambda \cdot P_{RM2} (t \mid q)
\]
Model Estimation Details

- \(P(w|d) \) and \(P(q_i|d) \) can have different settings
 - E.g., using different smoothing parameters
 - Many suggest that keeping \(P(q_i|d) \) the same as QL
 - Often do not use smoothing for \(P(w|d) \) – to avoid assigning a high probability to the common terms

- A few practical settings
 - RM3 is the most popular one
 - Top \(k \) results: \(k \) typically ranges from 5 – 50
 - Only using the top \(n \) terms; \(n \) typically 5 – 100
 - Related to search efficiency issues if using the expanded query for a new search
 - Reranking the original results or a new search?
 - Needs careful training
Outline Today

• Query expansion: an overview
• Relevance-based language model
• Alternatives of RM
Alternatives of RM

• The query model used in the original KL-divergence model paper by Lafferty & Zhai in SIGIR ’01.

• Query expansion using global word co-occurrence
 • $t(q_i \mid w)$: the probability of “translating” a word w into each q_i
 • Often estimated based on word co-occurrence & context similarity

$$P(w \mid q) \propto P(q \mid w)P(w) = \prod_{q_i \in q} t(q_i \mid w)P(w)$$

<table>
<thead>
<tr>
<th>q</th>
<th>$t(q \mid w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>everest</td>
<td>0.439</td>
</tr>
<tr>
<td>climb</td>
<td>0.057</td>
</tr>
<tr>
<td>climber</td>
<td>0.045</td>
</tr>
<tr>
<td>whittaker</td>
<td>0.039</td>
</tr>
<tr>
<td>expedition</td>
<td>0.036</td>
</tr>
<tr>
<td>float</td>
<td>0.024</td>
</tr>
<tr>
<td>mountain</td>
<td>0.024</td>
</tr>
<tr>
<td>summit</td>
<td>0.021</td>
</tr>
<tr>
<td>highest</td>
<td>0.018</td>
</tr>
<tr>
<td>reach</td>
<td>0.015</td>
</tr>
<tr>
<td>$w =$ everest</td>
<td>$w =$ wildlife</td>
</tr>
<tr>
<td>wildlife</td>
<td>0.705</td>
</tr>
<tr>
<td>fish</td>
<td>0.038</td>
</tr>
<tr>
<td>acre</td>
<td>0.012</td>
</tr>
<tr>
<td>species</td>
<td>0.010</td>
</tr>
<tr>
<td>forest</td>
<td>0.010</td>
</tr>
<tr>
<td>environment</td>
<td>0.009</td>
</tr>
<tr>
<td>habitat</td>
<td>0.008</td>
</tr>
<tr>
<td>endangered</td>
<td>0.007</td>
</tr>
<tr>
<td>protected</td>
<td>0.007</td>
</tr>
<tr>
<td>bird</td>
<td>0.007</td>
</tr>
</tbody>
</table>
Alternatives of RM

- The query model used in the original KL-divergence model paper by Lafferty & Zhai in SIGIR ’01.
- Query expansion using local PRF documents
 - Similar to RM1, but uses $P(w)P(d|w)$ instead of $P(w|d)$

$$P(w|q) \propto P(w)P(q|w) = P(w) \sum_{d_i} P(q|d_i)P(d_i|w)$$

$$P(d_i|w) = \frac{P(w|d_i)P(d_i)}{\sum_{d_j} P(w|d_j)P(d_j)}$$

| w | $p(w|q)$ |
|------------------|---------|
| virus | 0.275 |
| ebola | 0.197 |
| hoax | 0.051 |
| viruses | 0.034 |
| outbreak | 0.034 |
| fever | 0.033 |
| disease | 0.024 |
| haemorrhagic | 0.023 |
| gabon | 0.022 |
| infected | 0.019 |
| aids | 0.016 |
| security | 0.014 |
| monkeys | 0.013 |
| hiv | 0.011 |
| zaire | 0.011 |

$q = ebola$ $virus$ (Web)

| w | $p(w|q)$ |
|----------|---------|
| star | 0.361 |
| wars | 0.217 |
| rpg | 0.058 |
| trek | 0.033 |
| starwars | 0.032 |
| movie | 0.023 |
| episode | 0.020 |
| movies | 0.015 |
| war | 0.014 |
| character| 0.013 |
| tv | 0.013 |
| film | 0.012 |
| fan | 0.012 |
| reviews | 0.012 |
| jedi | 0.008 |

$q = star$ $wars$ (Web)
Alternatives of RM

- Zhai & Lafferty, CIKM ’01.
- A Simple mixture model (SMM) approach
 - Similar to the parsimonious language model last week ...
 - Factor out corpus model (an approximation of NR) from pseudo-relevant documents’ language models using EM

\[
\log p(F|\theta_F) = \sum_{w \in V} c(w, F) \log((1 - \lambda)p(w|\theta_F) + \lambda p(w|C))
\]
Alternatives of RM

- Zhai & Lafferty, CIKM ’01.
- Divergence Minimization Model (DMM)
 - Similar to Rocchio algorithm (the language model version)
 - Approximate non-relevant (NR) using the corpus model

\[
p(w|\theta_F) \propto \exp \left[\frac{1}{1 - \lambda} \left(\frac{1}{|F|} \sum_{i=1}^{F} \log p(w|\theta_i) - \lambda \log p(w|C) \right) \right]
\]
Comparing different approaches

- Lv & Zhai, CIKM ’09

<table>
<thead>
<tr>
<th>S.w.</th>
<th>Metric</th>
<th>MLE</th>
<th>RM3</th>
<th>RM4</th>
<th>DMM</th>
<th>SMM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trained on AP1 and Tested on AP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/</td>
<td>AvgPr</td>
<td>0.220</td>
<td>0.295</td>
<td>0.301</td>
<td>0.290</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>Pr@10</td>
<td>0.386</td>
<td>0.408</td>
<td>0.418</td>
<td>0.422</td>
<td>0.400</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>3074</td>
<td>3810</td>
<td>3892</td>
<td>3681</td>
<td>3933</td>
</tr>
<tr>
<td>w/o</td>
<td>AvgPr</td>
<td>0.231</td>
<td>0.312</td>
<td>0.321</td>
<td>0.289</td>
<td>0.324</td>
</tr>
<tr>
<td></td>
<td>Pr@10</td>
<td>0.398</td>
<td>0.436</td>
<td>0.448</td>
<td>0.424</td>
<td>0.432</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>3154</td>
<td>3913</td>
<td>3908</td>
<td>3674</td>
<td>3921</td>
</tr>
<tr>
<td></td>
<td>Trained on TREC6 and Tested on TREC78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/</td>
<td>AvgPr</td>
<td>0.217</td>
<td>0.249</td>
<td>0.242</td>
<td>0.235</td>
<td>0.251</td>
</tr>
<tr>
<td></td>
<td>Pr@10</td>
<td>0.437</td>
<td>0.438</td>
<td>0.426</td>
<td>0.443</td>
<td>0.443</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>5114</td>
<td>5805</td>
<td>5739</td>
<td>5476</td>
<td>5821</td>
</tr>
<tr>
<td>w/o</td>
<td>AvgPr</td>
<td>0.217</td>
<td>0.251</td>
<td>0.243</td>
<td>0.235</td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td>Pr@10</td>
<td>0.434</td>
<td>0.454</td>
<td>0.446</td>
<td>0.433</td>
<td>0.441</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>5107</td>
<td>5799</td>
<td>5776</td>
<td>5500</td>
<td>5896</td>
</tr>
<tr>
<td></td>
<td>Well-Tuned on WT2G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/</td>
<td>AvgPr</td>
<td>0.293</td>
<td>0.338</td>
<td>0.319</td>
<td>0.327</td>
<td>0.330</td>
</tr>
<tr>
<td></td>
<td>Pr@10</td>
<td>0.450</td>
<td>0.500</td>
<td>0.470</td>
<td>0.494</td>
<td>0.496</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>1830</td>
<td>1822</td>
<td>1806</td>
<td>1843</td>
<td>1856</td>
</tr>
<tr>
<td>w/o</td>
<td>AvgPr</td>
<td>0.306</td>
<td>0.344</td>
<td>0.328</td>
<td>0.326</td>
<td>0.331</td>
</tr>
<tr>
<td></td>
<td>Pr@10</td>
<td>0.456</td>
<td>0.490</td>
<td>0.490</td>
<td>0.476</td>
<td>0.476</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>1870</td>
<td>1862</td>
<td>1879</td>
<td>1873</td>
<td>1889</td>
</tr>
</tbody>
</table>
Pseudo-relevance Feedback

• “Usually” believed to be a useful technique
• But somewhat controversial …
 • Recall oriented; limited improvements in precision at the top
 • Making good queries bad; making bad queries worse
 • “Overall” improvements: average values of metrics?
 • But improving bad/difficult queries may be more important
 • Search efficiency concern
 • Difficult to control; unpredictable for the user

• Difficult to improve in noisy corpus (such as web corpus)
 • Using some clean corpus for query expansion, e.g., Wikipedia
Next two weeks

- Machine learning for IR (learning-to-rank)
- Representation learning, e.g., word embeddings
- Deep neural nets for IR ranking