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ABSTRACT 
Experience with the first offering of a computational thinking 
course for computer science (CT4CS) students is reported. The 
course is grounded in student interaction with fundamental, 
recurring concepts suggested by comparison with two sets of 
computer science principles. By using specialized, freely 
available tools and physical simulations it is possible to provide 
concrete, tangible learning experiences that neither require 
knowledge of nor the overhead of programming. Student end-of-
term reflections indicate that the course deepened and broadened 
their understanding of computer science even when they had 
previously encountered a topic, and improved their computer 
science vocabulary.  

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education  

General Terms 
Design, Experimentation 

Keywords 
Computational thinking, curriculum,CS0, pedagogy 

1. INTRODUCTION 
Like many departments across the country, the Department of 
Computer Science at Virginia Tech has worked to revamp the 
entry points to its undergraduate curriculum. A particular focus 
of concern has been the widespread perception that computer 
science is “just details of programming.” This effort has 
included restructuring the sequence of programming courses, 
introducing an optional media computation first course, and 
adding an early required non-programming course in problem-
solving.  
Another, as yet experimental, approach is a “computational 
thinking” first course referred to as CT4CS. The name CT4CS is 
used because the conception of this course draws on the general 
computational thinking concern for promoting an early and 
deeper understanding of critical notions of computation [7, 10, 

20, 21]. But this project differs from other efforts because it 
focuses on students interested in computer science as a likely 
area of study. Thus, rather than developing computational 
thinking for and embedded in other disciplines, we are interested 
in computational thinking as a core component and attractive 
aspect of computer science itself. Courses in computational 
thinking that target other fields of study (science, engineering, 
liberal arts, etc.) are clearly needed and well motivated. While 
the goal of computational thinking to help students develop 
“ways to think like a computer scientist” [20] is universally 
valuable, this goal is especially critical to students learning to 
become practicing computer scientists.  
The overarching goal of this course is to create learning 
experiences that allow prospective computer science majors to 
encounter recurring, fundamental concepts in computer science 
early in their study. Through these experiences students 
explicitly learn a number of critical principles but, perhaps more 
importantly, develop a cognitive model for and underlying 
intuitions and mental models about computational phenomenon. 
In this way, students develop an initial, albeit incomplete, 
framework for their future study of computer science, a 
framework that aids them in recognizing connections across 
courses which may otherwise go unnoticed. From a pedagogical 
standpoint, this approach builds on Bransford’s notion of 
contrasting cases [1] which emphasizes that learning is aided by 
seeing the introduction of new ideas as a solution to a pre-
existing problem. Students, therefore, are better positioned to 
recognize key ideas later on, integrate them into the particulars 
of more advanced courses, and enrich their epistemologies 
throughout the course of their studies. Instructors across the 
computer science curriculum can also assist students integrate 
and deepen their understanding by explicitly referencing the 
concepts. The course objectives were to: 
• better inform prospective majors about the nature of computer 

science, 
• engender a set of intuitions, perspectives, thought processes, 

or mental models that are indicative of how computer 
scientists view the world and conduct the practice of their 
work,  

•  introduce recurring, fundamental concepts and structures – 
ideas that appear, perhaps implicitly, in several different 
contexts in computer science, and 

• develop a more sophisticated computer science epistemology, 
including key vocabulary.  

These goals are, of course, to be understood in the context of a 
single semester introductory course.  
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A feature of CT4CS is that it does not require prior knowledge 
of and does not use programming. The decision to avoid 
programming was motivated by four considerations. First, to 
convincingly illustrate that computer science is “more than just 
programming,” the course allows students to encounter basic 
principles of computation without reference to programming. 
Second, in the absence of programming, the students’ full time 
and energy is focused more clearly on the concepts because 
these concepts are not confounded with the extraneous details of 
how these concepts are expressed in a given programming 
language. Third, avoiding programming helps to diminish the 
effect of the students’ prior, usually programming experience on 
their opportunity to learn the concepts presented in the course. 
The course can deepen the knowledge of students with prior 
experience and simultaneously reach students without such 
background. Fourth, the strict avoidance of programming was 
adopted to ensure that the course design would explore the 
curriculum space as distinct from possible from programming 
approaches, including media computation style approaches.  
Nonetheless, CT4CS allows concrete and tangible work to be 
done involving material drawn from every level of the 
curriculum. The work is described as concrete and tangible for 
three reasons. First, in some cases the students are able to 
construct artifacts or systems of interacting elements and 
explore their behavior. Students encounter not only the abstract 
idea but are able to undertake practical work that embodies and 
explores the idea. Second, in some cases the students are 
introduced to a specific encoding (notation) so that their 
thinking about an idea can be externalized, shared, and comment 
on. Third, in some cases the students were involved in 
conducting physical simulations that engaged them in 
manipulating physical objects representing aspects of a concept 
in material form. Examples of the concrete and tangible work 
included in the course are: using a finite-state machine simulator 
to develop a gene acceptor based on the genetic code presented 
in a junior level computational biology course, using a 
taxonomy modeling tool to represent the relationships of real-
world examples that students would encounter in senior level 
courses in databases or information retrieval, using a Petri net 
simulator to study classical synchronization and protocol 
problems that students encounter in junior or senior level 
operating systems and networking courses, and using a lambda 
calculus evaluator to deal with issues of binding that are explicit 
in junior or senior level courses in programming languages or 
compilers and which are implicit in programming courses.  
Section 2 provides a description of the course topics and tools. 
Section 3 compares CT4CS to other related approaches. Section 
4 evaluates the course using student feedback from an end-of-
term questionnaire. Section 5 draws some conclusions based on 
the evaluation and the comparison to other approaches.  

2. COURSE DESCRIPTION  
The course was offered as an alternative to an existing required 
introductory class. Students self-selected to register for the 
course which met over a 15-week semester in two 75-minute 
sessions each week. The room was outfitted with small round 
tables to accommodate in-class work by teams of two or three 
students. An overview of the course topics is given in Table 1. 
The time devoted to each topic is measured in weeks. One week 
consists of two 75-minute classes and the associated time 

students spend working on assignments and readings outside of 
the class meetings. Additional information can be found at: 
http://www.cs.vt.edu/~kafura/ComputationalThinking . 
Broadly, the topics are divided into two categories were based 
on a definition of computer science that emphasizes the 
representation (modeling) and manipulation (via engineered 
systems) of information that is inherent to scientific, natural, 
social, and others kinds of systems. The modeling topics focus 
on how information is used to represent the attributes and 
relationships of real-world artifacts and systems. The 
engineering topics focus on issues related to the construction of 
computational systems.  

2.1 Modeling Topics  
The modeling topics focused on state and behavior, abstraction, 
and relationships. Finite state machine diagrams were used to 
explore the importance of stateful behavior, recognizing that in a 
given state the system is only capable of certain actions, that the 
observed behavior of a system arises from its transitions among 
its possible states, and that reactive behavior occurs when the 
system interacts with an external world that drives the system 
from one state to the next. A particular kind of state-oriented 
system is an acceptor. Using a tool (JFLAP [11]), the students 
were able to build and test acceptors for various kinds of 
structured data including one that performed a simple form of 
gene recognition (allowing a discussion of the relationship of 
computer science to biology). The graphical form of an acceptor 
was also related to a text-based form using BNF grammars. The 
abstraction topic studied how artifacts have a rich set of 
attributes, that representing an artifact depends on the point of 
view of the modeler, and that there are a variety of graphical and 
textual forms for representing the abstraction. A physical 
simulation engaged the students in the modeling of a book: 
identifying different modeler points of view and creating 
attributes that are relevant from each point of view. The 
relationships topic looked at very basic ideas of knowledge 
representation. Using Protégé [14], the students were able to 
define the attributes of a collection of entities (pizzas) and 
observe what inferences could be made automatically about the 
categorization of the entities.  

2.2 Engineering Topics 
The engineering part of the course consisted of five topics. The 
notion of concurrency and the problems of concurrency control 
were introduced by a physical simulation where the students 
acted out a scenario of updating a shared memory and observing 
the loss of consistency. The modeling of the correct 
synchronization for several problems (traffic lights, reader-
writer) was done using a graphical tool (Snoopy [15]) for 
editing and executing Petri nets. Snoopy was also used to 
illustrate “layers of abstraction.” A simple layered system was 
built for the AB protocol. Using the Petri net tool, the students 
modeled a noisy channel, the AB protocol layer, and a bi-
directional channel layer. The last four engineering topics 
focused on concepts related to programming languages and 
software systems. First, the lambda calculus was used both to 
explore the ideas of binding and scope as well as give some 
insight into the theory of programming languages and 
computation. A graphical tool for composing and evaluating 
lambda expressions (LambdaTeacher [12]) was used. Second, 
testing of software systems was undertaken using two exercises. 
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The first exercise allowed the students to enter test cases for a 
program to classify triangles (as equilateral, isosceles, or 
scalene). The tool used provided code coverage statistics and 
error detection percentages against a hidden collection of 
correctly and incorrectly programmed solutions. The second 
exercise involved the development of test cases for a grammar-  
based sentence parser. An automated system (WebCAT [19]) 
developed at Virginia Tech was used to run the test cases against 
a model solution and provide code coverage feedback. The third 
topic, debugging, explored unwinding a sequence of decisions 
to find a flawed decision that led to an erroneous state. A system 
for solving Sudoku puzzles [18] was used to present the students 
with an incorrectly solved puzzle. The tool provided a history 
and navigation controls so that students could “debug” the 
puzzle’s incorrect solution. The last of the four topics was data 
structures. A physical simulation of a linear computer-like 
memory was conducted. The students were engaged in finding 
ways to map a tree structure (built of index cards and strings) 
into a linear memory. Notions of representing relationships via 
adjacency in memory and pointers arose from this simulation. 
The syntax of C was used to show how these ideas could be 
represented in a programming language.  

3. COMPARISON 
The CT4CS course can be compared with other computational 
thinking courses, definitions of the principles of computation, 
and repositories that provide resources for teaching topics in 
computer science.  
CT4CS differs from other computational thinking approaches in 
one or both of two ways. First, some computational thinking 
courses are focused on students majoring in fields other than 
computer science (e.g, [8] focusing on science majors). These 

courses are valuable and seek to portray computation through 
topics and terms meaningful to other fields. CT4CS focuses 
exclusively on computer science majors and the terms of 
reference and topics that have the most impact on their future 
learning. Second, many courses use some form of programming 
either in lexical (e.g., [6]) or graphical (e.g., [17]) form. CT4CS 
explicitly avoids the use of programming languages so that the 
students can be engaged in topics that might be difficult to 
approach via programming. Admittedly the absence of a 
programming capability also limits some topics that can be 
approached in CT4CS. However, this is a tradeoff that seems 
reasonable given the topics that are addressed and the fact that 
the students will have multiple subsequent chances to encounter 
other important computing ideas. The specific computational 
thinking courses cited above are only representatives of many 
other similar courses from which CT4CS is differentiated in the 
ways just noted.  
In comparison to principles of computing, CT4CS embodies five 
of the seven Big Ideas defined in the College Board’s CS 
Principles and employed five of their seven computational 
thinking practices [2]. Specifically, CS4CS shows that 
computing is a creative human activity (Principle 1) by the 
creation of tangible artifacts, involved the use of abstraction to 
reduce information and detail (Principle 2), demonstrated 
knowledge creation (Principle 3) via ontologies, examined 
systems and networks (Principle 6) via concurrency and 
protocols, and illustrated how computing enables innovation in 
other fields via the use of examples from, for example, biology 
in the gene recognizer. The course used abstraction and models 
(Practice 3), analyzed problems and artifacts (Practice 4), 
connected computation with other fields (Practice 6), and 
engaged students in teamwork (Practice 7). Additionally, the 
course involved the creation of computation artifacts (Practice 

Weeks Topic Tools/Methods 
.5 

M
od

el
in

g 
Definition of computer science Guided discussion 

2 State and Behavior 
Applet; tool for creating and exercising an acceptor (JFLAP); 
BNF grammar; BNF visualizer 

2 Abstraction: modeling/design 
perspective Physical simulation; UML diagrams, Venn diagrams, XML, tree diagrams 

1.5 Relationships Tool (Protégé) for representing, inferring, and visualizing relationships; ontologies 

1       Midterm exam and return/review  

1.5 

E
ng

in
ee

ri
ng

 

Concurrency Physical simulation; tool (Snoopy) to create and simulate Petri nets 

1 Abstraction: engineering 
perspective Layered systems; tool (Snoopy) to build layered protocol 

2 Binding, scope, theory:  lambda 
calculus Tool (Lambda Teacher) for editing and evaluating lambda expressions 

1 Testing 
Testing applet for simple (triangle classification) problem; 
Exercise (Web-CAT) for more complex (sentence parsing) problem 

1 Debugging Puzzle (Sudoku) tool with history and backtracking 

1 Memory, pointers, data 
structures Physical simulation; C syntax 

.5      Review, Course evaluation  

Table 1: CT4CS Course Overview 
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2). While programming artifacts were not created, numerous 
other computation artifacts were created among which were test 
cases, UML diagrams, XML encodings, data structure 
declarations, BNF grammars, Petri nets, acceptors, lambda 
expressions, and an ontology. We believe that these kinds of 
artifacts deserve to be considered on an equal par with 
programming artifacts for several reasons. First, doing otherwise 
devalues the real work that computer scientists invest in the 
creation and use of these artifacts. Second, we are trying to 
counter the stereotype that limits computer science to 
programming. This stereotype is reinforced when we value only 
programming artifacts. Furthermore, we often deny students’ 
early exposure to the very elements that make computer science 
of enduring interest during the bulk of most computer scientists’ 
careers. Last, our experience in the course indicates that these 
non-programming artifacts enable student learning.  
Another set of principles is Denning’s framework [4], one axis 
of which is a set of computing practices and the other axis of 
which is a set of principles for design and mechanics. The topics 
in the CT4CS course have strong overlap with the elements of 
this framework. Specifically, the coordination and 
communication elements of mechanics resonate with the 
concurrency and engineering abstractions in the CT4CS class; 
the automation element is reflected in the relationships topic 
where automatic deduction of relationships is seen; to a lesser 
extent the computation element is touched on by the lambda 
calculus and the recollection element by the topic on data 
structures. The relationship of the CT4CS topics to the design 
aspects was centered on the simplicity element, showing how 
abstraction is used to simplify the description of artifacts. The 
practices axis contained two elements that related to topics in 
CT4CS. Many of the topics in the “engineering” half of the 
course relate well to the “engineering systems” practice. 
Similarly, many of the topics in the “modeling” half of the 
course relate well to the “modeling and validation” practice.  
Finally, there are repositories of materials for teaching 
computing, perhaps the best exemplar of which is the Computer 
Science Unplugged collection [3]. CT4CS shares with the 
“unplugged” materials the goal of providing tangible and 
concrete experience about computing concepts without 
programming. A important difference between the two is the 
academic level of the audience which dramatically influences 
the level of sophistication of the topics and the presentation of 
these topics. Nonetheless, there might be contributions that 
CT4CS can make to the unplugged repository and there may be 
materials or ideas that can be adapted from the repository for use 
in future offerings of CT4CS. 

4. EVALUATION  
The observations reported in this section are based on the 
students’ answers to a questionnaire. All of the 15 students, 
three of whom were female, were in their second semester at 
Virginia Tech. The questionnaire was administered on the last 
regularly scheduled class meeting. The students were told in 
advance of the general nature of the questionnaire (though not 
the specific questions). The questionnaire was distributed in 
electronic form and completed anonymously by students using 
their personal laptops. The students were not provided lists of 
course objectives or the course topics. The students had the full 
class period (75 minutes) to complete the questionnaire along 

with two other short standard course evaluations. All of the 
students completed the questionnaire before the end of the class. 
The questionnaire was divided into two parts: a student profile 
and student reflections. The student profile consisted of five 
questions about the student’s background and interests in 
computer science. The student reflections contained eleven free 
response questions about various aspects of the course.  The 
number of students in the class is not sufficient for statistical 
analysis but qualitative analysis of the results and the student 
reflections offers insights into student experiences. Furthermore, 
the argument for this approach lies only partially in precisely 
what was learned during the semester, and more fully in the way 
it is thought to smooth the path towards the future. However, the 
reflections offer important insight into the students’ experience, 
and if their experiences are insufficiently good, then the long-
term benefits of the approach are moot.  
The students as a whole had substantial prior experience in 
computer science. Two-thirds of the class had programming 
experience of at least one semester and almost half of the class 
(7 of 15) had at least a full year of experience. This experience 
was typically described as an AP CS course using Java. There 
were only two students who had neither high school CS 
experience or completed a CS class at VT. There was only one 
student who had no prior CS coursework (in high school or at 
VT) and was not taking another CS class concurrently. 
Observation 1: The students reported that the course topics 
deepened their knowledge and perspective on computer science. 
A third of the students (5 of 15) indicated that the course had a 
deep impact on their appreciation for or approach to computer 
science. This was expressed variously as gaining insight into the 
“why” behind programming, better understanding of what it 
means to be a computer scientist, or enabling future problem-
solving with a deeper understanding of computing. Another 
group (3 of 15) reported more generically that they learned new 
concepts related to computing. A third group (3 of 15) reported 
that the course reaffirmed or clarified concepts that they already 
understood.  
Observation 2: The students reported that the course offered a 
number of new (to them) concepts and/or improved their 
understanding of concepts they had already seen. Eight specific 
ideas were mentioned as being new. Four of these ideas 
(grammars/acceptors, finite state machines, Petri nets and 
concurrency, lambda calculus) were identified in this way by 
over half of the class (at least 8 out of 15). A minority  (5 out of 
15) identified two other topics (abstraction, ontologies) in this 
way. Two other topics were identified as new to the students by 
smaller groups (testing – 3 out of 15, debugging 2 out of 15). A 
strong majority (10 of 15) of the class reported that the class had 
improved their understanding of a concept that they had 
previously encountered. Students (6 out of 15) also reported that 
they had previously encountered the concepts of abstraction, 
generalization, or modeling but found that the course improved 
their understanding of these concepts.  
These responses are meaningful in two ways. First, the identified 
concepts are fundamental to computing and, thus, progress in 
deepening students’ understanding of these concepts is 
meaningful. Second, despite the high overall level of experience, 
the students found the course presented a number of new ideas 
or deepened their appreciation of ideas they had already 
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encountered. Thus, the course content seemed to “stretch” 
and/or deepen the students’ understanding of computer science. 
For example, one student reported that the course provided a 
“deeper look into not only how to model things, but why we 
model them that way” (italics in student’s comment). A smaller 
group (3 of 15) reported similar gains in understanding of 
concurrency issues and another group (3 of 15) cited 
improvement in their understanding of testing/debugging. There 
was a small amount of overlap among these three groups (due to 
students citing more than one topic area); in total the three 
groups above accounted for two-thirds of the class (10 of 15).  
Observation 3: The students reported that a number of course 
topics strongly engaged their interest. Overall, there were 22 
reasons given for why a particular idea was cited by a student as 
being of interest. The number or reasons is more than the 
number of students because some students citied more than one 
idea as being interesting.  
A majority of the students (8 of 15) reported that concurrency 
was the most interesting idea they encountered in the class. The 
reasons for their choice of this idea varied and included: utility 
(dealing with real life or practical situations), challenging, 
involved logic or problem solving, novelty (something not 
thought about before). Another group (4 of 15) identified the 
ideas of grammars and finite state machines as among the most 
interesting. The given reasons behind their choice included logic 
and problem-solving, and utility (dealing with real life or 
practical situations). A smaller group (3 of 15) identified data 
structures as the most interesting topic citing utility (2 of 3) and 
novelty as their reasons. These same reasons were cited by a 
similarly sized group (3 of 15) for the ideas related to 
testing/debugging. 
These reasons can be categorized as utility (can be applied to 
real-life problems, will be useful in future work), logic/problem-
solving (can be approached in a logical fashion, requires 
structured thinking, engages problem-solving skills), challenge 
(offered a mental challenge to think about), and novel (the idea 
or some aspect of the idea was new, a new way of thinking 
about the idea). The distribution of the reasons suggests that the 
students found interesting ideas that they could see as having 
high utility (cited 9 of 22 times), novelty (6 of 22), logic-
problem solving (5 of 22), or challenging (2 of 22).  While these 
results had a high degree of overlap, their diversity is very 
important.  There is no single reason that a person should be 
interested in computer science.  To the contrary, the goals of this 
class and of other changes to our computer science curriculum, 
is to bring people with a wide scope and perspective as well as 
deep engineering capabilities into computer science.  
Furthermore, it is interesting to note that a single topic (e.g., 
concurrency) may appeal to different students for different 
reasons, making the task of designing an appropriate set of 
topics more promising -- and more challenging. The student 
feedback also gave good guidelines for determining how to 
improve the presentation of current topics or what aspects to 
look for in new topics. 
Observation 4: The students reported that the course helped 
them develop a better vocabulary for explain computer science 
issues. A strong majority of students (12 of 15) reported that the 
course had improved their technical vocabulary. The degree of 
improvement was variously described, ranging from “definitely” 

to “somewhat”.  Two students did not believe that their 
vocabulary was improved and one student was not sure.  This 
spread in reactions may be due to the fact that the word 
“vocabulary” means different things to different people.  
Vocabulary is an interesting metric because it represents utility 
both for itself and also as an indicator of the students’ 
epistemology, that is, their notions about the interconnected web 
of ideas inherent in computer science, some of which are well 
captured in particular specialized words or phrases. 
Observation 5: The students reported that the physical 
simulations were useful to their learning. As described in 
Section 2, the course pedagogy included three physical 
simulations illustrating ideas related to abstraction, concurrency, 
and data structures. The students unanimously believed that the 
physical simulations were useful. Eighty percent (12 of 15) of 
the students gave unqualified support for the value of the 
physical simulations. Twenty percent (3 of 15) noted that the 
simulations took too much time to conduct or were seen as 
being useful only to those who had not yet taken a CS class. 
This feedback is meaningful because it might be the case that 
(relatively) new university students would find the activity of a 
physical simulation not sufficiently sophisticated for a college-
level course. 
Observation 6: The students expressed divided opinions on the 
ordering of this course with respect to an introductory 
programming course in computer science. The single strongest 
opinion (7 of 15) was that this course should come before a 
programming course. Three of these students believed that this 
course would help form ways of thinking that would make a 
programming course easier. Two students believed that the ideas 
in this course were presented in a more abstract or less detailed 
way than these concepts would appear in a programming course 
so it was useful (or necessary) to take this course first. Two 
students gave no reason. However, others (4 of 15) indicated 
that there was equal value in taking this course before or after an 
introductory programming class. The one student who explained 
this choice pointed to the mutual reinforcing of concepts 
between this course and a programming course, believing that 
there was value in such reinforcement working in either 
direction. Two students believed that this course should be taken 
after a programming class. Both these students believed that the 
practical grounding achieved in a programming course was 
necessary before approaching these concepts in a more abstract 
way in this course. One student found it useful to be taking this 
class concurrently with a media computation programming 
class. One student offered no opinion.  
While there was a near majority who favor taking this course 
before a programming course, the variety of opinion and reasons 
suggested that there is some latitude in where the course could 
be positioned in the overall curriculum. The students’ reasons 
could be interpreted to mean that the choice depends on a 
student’s learning style more than any prior study, or that the 
students, most of whom had taken programming before or 
concurrently, had difficulty imagining the counter-factual case. 
Pragmatically, other scheduling constraints (on the individual 
student or the institution) may also play a role in determining 
when the course is taken.  
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5. CONCLUSIONS 
The experience with the initial course offering convinced us that 
a computational thinking course for computer science students 
was a viable concept. We found it possible to provide practical, 
concrete, learning experiences about a variety of important 
computing concepts using tools and physical simulation rather 
than programming. Student feedback suggests that the course 
fulfilled its specific course objectives to: 

• better inform students about the nature of computer science 
(observation 1) 

• to help develop intuitions and mental models (observation 2) 

• present fundamental concepts as gauged by the comparison 
with two sets of principles of computing (see section 3) 

• develop better epistemologies, as indicated by vocabulary 
(observation 4) 

The student feedback also indicated that the physical 
simulations were very useful to student learning (observation 5), 
and that a course like this one could be flexibly positioned with 
respect to a programming course (observation 6). 
Our own experience in teaching went beyond these specifics to 
suggest that students used the experience to encounter ideas in a 
way that would more firmly fix elements of computational 
thinking in their minds and render the treatment of these ideas in 
subsequent courses more tractable, more marked, and more 
profound.   
We do not believe that the particular set of topics used in this 
first offering is the “right” set; but the experience seems to 
confirm the notion that a non-programming computational 
thinking course for computer science students is viable. 
We are exploring the development of CT4CS in two ways. First 
the collection of topics presented in the course can be expanded.  
Other topics that we are investigating are in machine learning 
[16], natural language processing [13], ideas related to networks 
and behavior [5], and social networks [9]. Second, the examples 
used in class and in assignments can be enriched to better 
illustrate the connections of computation with other interesting 
problem domains similar to the use of gene recognition in 
conjunction with acceptors. We are interested in receiving 
suggestions and ideas on either of these improvements from the 
community. 
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