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Introduction

Six years ago, Jeannette Wing’s succinct and influential article, 
“Computational Thinking,” appeared in the Viewpoint section 
of the March 2006 edition of the Communications of the ACM 
with the pronouncement: “It represents a universally applicable 
attitude and skill set everyone, not just computer scientists, 
would be eager to learn and use” (p. 33).

Wing’s arguments caught the attention of a broad academic 
community. Prompted by her article and a growing community of 
researchers, educators, and policymakers, computational thinking 
(or CT) as a concept and associated research agenda has witnessed 
increasing attention and research. The tailwinds in the larger envi-
ronment have fanned this growing interest. The issue of Computer 
Science (CS) Education in K–12 took center-stage following a 
stark report titled Running on Empty: The Failure to Teach K–12 
Computer Science in the Digital Age (Wilson, Sudol, Stephenson, & 
Stehlik, 2010) revealed precipitously low numbers for women in 
computing and that more than two thirds of the country had few 
computer science standards at the secondary school level. Concerns 
about these statistics deepen given projections from the Bureau of 
Labor Statistics (http://www.bls.gov/ooh/) that computing is one 
of the fastest-growing job markets through 2018. This CS educa-
tion imperative has dovetailed with the science policy attention to 
science, technology, engineering, and mathematics (STEM) learn-
ing in the United States since the turn of the 21st century. With 
CT being viewed as at the core of all STEM disciplines (Henderson, 
Cortina, Hazzan, & Wing, 2007) it appears that computing in 
K–12 is an idea whose time has come.

Of course, the idea of CT is not new. Back in the 1960s, Alan 
Perlis argued for the need for college students of all disciplines to 
learn programming and the “theory of computation” (Guzdial, 
2008). However, in the context of K–12 education, computing 
first gained popular traction around Seymour Papert’s MIT work 
in the 1980s. Papert pioneered the idea of children developing 
procedural thinking through LOGO programming (Papert, 
1980, 1991). This recent resurgence takes a fresh, “21st century” 
perspective on the topic, and Wing’s 2006 article forms a logical 
starting point for our critical examination of the current state of 
the field of CT in K–12 education. The following sections exam-
ine mostly recently published, salient, academic literature that 
has used Wing’s article as a springboard. The article will also 
report on key efforts around computing education in K–12.

Given the definitional confusion that has plagued CT as a 
phrase and how imperative it is for school education, the next 
section looks deeply at the varied perspectives and evolving defi-
nitions of CT, the rationale for building CT among school chil-
dren, and common criticisms against CT in schools. The article 
then surveys recent research investigating CT (including some 
that do not use the phrase computational thinking per se but 
nonetheless examine computational competencies in children), 
the various environments and tools that are believed to foster CT 
development, and studies attempting to assess CT are appraised. 
Finally, the article lays out priorities for broadening the K–12 CT 
discourse on the basis of the gaps in current research.
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The What and Why of Computational Thinking

According to Wing (2006), “computational thinking involves 
solving problems, designing systems, and understanding human 
behavior, by drawing on the concepts fundamental to computer 
science” (p. 33). CT’s essence is thinking like a computer scientist 
when confronted with a problem.

Wing’s call to action for CT in school education served as the 
starting point for two National Academy of Sciences workshops 
convening leading researchers from education, learning sciences 
and computer science departments, and leaders from the com-
puting industry, to explore “the nature of computational think-
ing and its cognitive and educational implications” (National 
Research Council [NRC], 2010, p. viii) and the pedagogical 
aspects of computational thinking (NRC, 2011). In the first 
workshop, early notions of CT that focused on procedural 
thinking and programming (Papert, 1980, 1991), though still 
considered valid, were revisited and broadened to encompass 
several core concepts of computer science that take it beyond 
“just programming.” The workshop, however, threw into sharp 
relief the lack of consensus that seems to have bedeviled this 
space. Some of the central questions left unanswered by the 
workshop included the following: How can CT be recognized? 
What is the best pedagogy for promoting CT among children? 
Can programming, computers, and CT be legitimately sepa-
rated? (NRC, 2010). Some of these questions were reexamined 
in the follow-up workshop that focused on better defining the 
space by gathering and synthesizing insights from educators 
addressing CT in their work with K–12 teachers and learners. 
The aim of the workshop was to share examples and best prac-
tices of pedagogies and environments for teaching CT and 
revealed a plethora of perspectives that reflected several tools and 
pedagogies that are legitimate candidates for use in developing 
these competencies.

Wing (2011) revisited the topic and clarified, “Computational 
thinking is the thought processes involved in formulating prob-
lems and their solutions so that the solutions are represented in a 
form that can be effectively carried out by an information-pro-
cessing agent.” Aho (2012) simplified this further by defining 
CT as the thought processes involved in formulating problems so 
“their solutions can be represented as computational steps and 
algorithms” (p. 832).

Recently, the Royal Society (2012) also offered a succinct  
and tractable definition that captures the essence of CT— 
“Computational thinking is the process of recognising aspects of 
computation in the world that surrounds us, and applying tools 
and techniques from Computer Science to understand and rea-
son about both natural and artificial systems and processes”  
(p. 29).

A valuable perspective that breaks down the meaning of CT, 
especially for high school curricula, comes from the CS Principles 
course being piloted by the College Board and the National Science 
Foundation (NSF) (http://www.csprinciples.org/). The course 
focuses on the practices of computational thinking and is based on 
the seven “big ideas” of computing:

1. Computing is a creative human activity
2. Abstraction reduces information and detail to focus on 

concepts relevant to understanding and solving problems

3. Data and information facilitate the creation of knowledge
4. Algorithms are tools for developing and expressing solu-

tions to computational problems
5. Programming is a creative process that produces computa-

tional artifacts
6. Digital devices, systems, and the networks that intercon-

nect them enable and foster computational approaches to 
solving problems

7. Computing enables innovation in other fields, including 
science, social science, humanities, arts, medicine, engi-
neering, and business.

Following workshops organized by the Computer Science 
Teachers Association (CSTA) and the International Society for 
Technology in Education (ISTE), Barr and Stephenson (2011) 
provided a similar “operational definition of CT” aimed at K–12 
teachers that comprised an explanatory checklist for what CT 
means along with an enumeration of core CT concepts and capa-
bilities, and examples of how they might be embedded in activi-
ties across multiple disciplines.

It is worth noting here that the potent idea of “computational 
literacy” (diSessa, 2000) pre-dates Wing’s charter for CT for all. 
Although the essence of both concepts targets this new digital age 
competency, diSessa separates the “material” tools such as pro-
gramming environments, from the “cognitive” and the “social” 
aspects of computational literacy. Furthermore, diSessa under-
scores the use of “computing as a medium” for exploring other 
domains such as math and science, much like Kay and Goldberg 
(1977) explored math, science, and art via programming in 
Smalltalk. This notion is often neglected in popular definitions of 
CT. The term computational literacy is perhaps susceptible to con-
fusion with earlier ones like computer literacy, information literacy, 
and digital literacy that have assumed various meanings over the 
years and fall well short of what diSessa demands of computational 
literacy. Although the phrase and notion of computational thinking 
now seems to be preferred over computational literacy, in research 
and practice today the two phrases are often used interchangeably.

Procedural literacy is another avatar of CT that was first pro-
posed in 1980 by B. A. Sheil at Xerox PARC. In our reading, 
there is little to distinguish between procedural literacy and CT 
applied mostly to creating video games and other computational 
media artifacts or, more broadly, the practice of CT in the context 
of new media art and design.

Researchers and CS educators for the most part now work 
broadly with the aforementioned recent descriptions of CT. The 
value of abstraction as CT’s keystone (distinguishing it from 
other types of thinking) is undisputed. Abstraction is “defining 
patterns, generalizing from specific instances,” and a key to deal-
ing with complexity (Wing, 2011). The following elements  
are now widely accepted as comprising CT and form the basis of 
curricula that aim to support its learning as well as assess its 
development:

• Abstractions and pattern generalizations (including models 
and simulations)

• Systematic processing of information
• Symbol systems and representations
• Algorithmic notions of flow of control
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• Structured problem decomposition (modularizing)
• Iterative, recursive, and parallel thinking
• Conditional logic
• Efficiency and performance constraints
• Debugging and systematic error detection

Programming is not only a fundamental skill of CS and a  
key tool for supporting the cognitive tasks involved in CT but a 
demonstration of computational competencies as well. 
Noteworthy efforts like CS Unplugged (http://csunplugged 
.org/) that introduce computing concepts without the use of a 
computer, while providing valuable introductory activities for 
exposing children to the nature of CS, may be keeping learners 
from the crucial computational experiences involved in CT’s 
common practice.

Finally, although there is broad acknowledgement that com-
puting pervades all aspects of the global economy, its place as a 
mandatory part of the school curriculum is far from secure. 
Many criticisms have revolved around these multiple interpreta-
tions of CT and a lack of clarity among educators on CS as a 
discipline. Another valid concern is whether there is a compel-
ling rationale for all children, including those who allege no 
interest in pursuing CS and STEM careers, to develop compu-
tational competencies in school. In the zero-sum school curricu-
lum map, how should curriculum policymakers make room in 
already packed school curricula? There is also lack of agreement 
on whether CT should ultimately be incorporated into educa-
tion as a general subject, a discipline-specific topic, or a multi-
disciplinary topic (NRC, 2011). Lastly, there is some question 
whether CT is distinct enough from other forms of thinking 
that children are developing. Advocates of CT concede that 
although it shares elements with mathematical, engineering, and 
even design thinking, and draws on a rich legacy of related 
frameworks, it also extends each of those thinking skills in a 
unique way (Lee et al., 2011). Denning and Freeman (2009) 
observe that although the computing paradigm “contains echoes 
of engineering, science, and mathematics, it is distinctively dif-
ferent because of its central focus on information processes” (p. 
30) and that Wing’s CT interpretation embeds well into this 
system of practice.

We claim that the approach to problem solving generally 
described as CT is a recognizable and crucial omission from the 
expertise that children are expected to develop through routine 
K–12 Science and Math education (although CT has finally 
been mentioned, albeit briefly, in the 2012 NRC K–12 Science 
Education framework). If basic literacy in Math and Science can 
be considered essential for all children to understand how our 
world works, why should school education not lift the hood  
on all-pervasive computing devices as well? We believe that those 
in possession of computational competencies will be better  
positioned to take advantage of a world with ubiquitous com-
puting. Early experiences with this way of problem solving  
will not only alleviate problems in introductory CS courses 
undergraduates have been known to face but also generate inter-
est and prime students for success in this growing field rife with 
opportunity.

Recent news from media and industry suggest that the move 
to make programming a more commonplace skill for everyone 

and introducing ’rithms (short for algorithms) as the fourth “r” 
for 21st-century literacy is gaining momentum globally. Israel has 
long boasted an exemplary mandatory high school CS curricu-
lum. Countries such as Russia, South Africa, New Zealand, and 
Australia have already made room for CS in the K–12 curricu-
lum. More recently, the United Kingdom has piloted programs 
to teach computing to all schoolchildren following a bold 2012 
policy charter from the Royal Society.

Summary of Pertinent Research on CT in K–12

With broadly agreed on definitions of CT in K–12 education, 
focus has recently shifted to tackling the more practical questions 
of how to promote and assess the development of CT. There is 
extensive literature from the last three decades tackling issues of 
teaching and learning programming and CS. The bulk of CS 
education research, however, is set in the context of undergradu-
ate classrooms. Although there is much to learn about CT in 
K–12 both from studies of kids and programming in the 1980s 
(using languages such as LOGO and BASIC) as well as early 
programming and CS experiences of college students, the space 
constraints imposed by the essay as well as a focus on the recent 
resurgence of CT force the review to be limited to recent research 
involving 21st-century tools and school-age children.

Environments and Tools That Foster CT

The idea of “low floor, high ceiling” as one of the guiding prin-
ciples for the creation of programming environments for children 
has been around since the days of LOGO. It essentially means 
that though it should be easy for a beginner to cross the threshold 
to create working programs (low floor), the tool should also be 
powerful and extensive enough to satisfy the needs of advanced 
programmers (high ceiling). Computationally rich environments 
and effective CT tools for school children must have low thresh-
old and high ceiling, scaffold, enable transfer, support equity, and 
be systemic and sustainable (Repenning, Webb, & Ioannidou, 
2010). Several programming tools fit these criteria to varying 
degrees. Popular among these are graphical programming envi-
ronments such as Scratch, Alice, Game Maker, Kodu, and 
Greenfoot; Web-based simulation authoring tools such as 
Agentsheets and Agentcubes; and robotics kits and tangible 
media such as Arduino and Gogo Boards. Graphical program-
ming environments are relatively easy to use and allow early expe-
riences to focus on designing and creating, avoiding issues of 
programming syntax. By allowing novices to build programs by 
snapping together graphical blocks that control the actions of 
different dynamic actors on a screen, environments like Scratch, 
MIT’s popular offering, quite literally make programming  
a snap.

Several of these introductory computational experiences use 
the three-stage “use–modify–create” progression to help the 
learner go from user to modifier to creator of computational arti-
facts (Lee et al., 2011), a progression first broadly used in Apple’s 
Hypercard application in the mid-1980s to early 1990s. 
Curricular activities such as game design and robotics have typi-
cally served well as a means for the iterative exploration of CT, 
making them ideal not only for motivating and engaging school 
children but for introducing them to computer science. Visual 
and tangible programming experiences are often followed by 
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exposure to high-level programming languages such as Python, 
Java, and Scheme.

Recommendations for engaging girls through computing  
in context (Margolis & Fisher, 2002; also see Cooper & 
Cunningham, 2010) provide a compelling rationale for tools 
that strive to bridge the gender gap in the computing field. 
Emerging computational environments are poised to provide 
more opportunities for engagement in CT in formal and infor-
mal settings while also engaging girls as well. E-textiles and other 
“computational craft” kits that use small, powerful hardware, 
such as the Lilypad Arduino, allow children to combine tradi-
tional arts and crafts such as sewing and sketching with compu-
tation and electronics. MIT App Inventor, a visual programming 
environment that uses Scratch-like graphical blocks of code for 
building Android mobile apps, is more gender neutral and com-
plete than most tools. It sets a low floor for allowing creative app 
building (something all teens, including girls, are eager to do) 
while still engaging with complex CT concepts including proce-
dural and data abstraction, iterative and recursive thinking, 
structured task breakdown, conditional and logical thinking, 
and debugging.

Despite its growing popularity for promoting many 21st-
century competencies in K–12 (NRC, 2012), video gaming as a 
platform for examining CT among children has been underuti-
lized in recent research. Holbert and Wilensky (2011) success-
fully developed and tested a prototype video game, FormulaT, 
which aimed to serve as a platform for learning principles of kine-
matics as well as “systematic computational strategies.” FormulaT 
used NetLogo, a computational environment for agent-based 
modeling. The activities of abstracting pertinent behaviors into 
agents, applying rules, and evaluating the results via modeling 
and simulation are key ways of engaging in CT. Blikstein (2010) 
demonstrates leveraging Netlogo computational models for sci-
ence learning in secondary-level classrooms. Agent-based model-
ing, however, remains relatively underused in CT research.

Not surprisingly, current computational tools vary in their 
effectiveness in allowing for engagement with the various compo-
nent elements of CT. Maloney, Peppler, Kafai, Resnick, and Rusk 
(2008) reported demonstration of several CT elements such as 
conditional logic, iterative and parallel thinking, and data 
abstraction in Scratch programs created by urban youth in after-
school settings. However Scratch lacks the means to abstract 
functionality into functions and procedures, prompting a version 
called Snap! from Berkeley that seeks to address this. Perhaps an 
imperative for CS in K–12 will fuel the development of new tools 
built expressly for fostering CT among school-age children. 
These should not only embody all the characteristics of effective 
CT tools and promote the development of all the competencies 
now identified as elements of CT but also be guided by recent 
research on commonsense human understanding of computing 
and how children explain their approaches to problem solving 
(Pane, Ratanamahatana, & Myers, 2001; Simon, Chen, 
Lewandowski, McCartney, & Sanders, 2007).

Lastly, despite the variety of environments in which current 
CT research is situated, many promising spaces are still untapped; 
Fab Labs, Makerspaces, and DIY movements, such as Maker 
Faire and Instructables, that promote construction of tangible 
computational artifacts, informal “hacker” events for kids, as well 

as ubiquitous and powerful smartphones, all present exciting pos-
sibilities.

Assessment of CT

Without attention to assessment, CT can have little hope of mak-
ing its way successfully into any K–12 curriculum. Furthermore, 
to judge the effectiveness of any curriculum incorporating CT, 
measures that would enable educators to assess what the child has 
learned need to be validated.

Most recent research addressing questions of CT assessment, 
such as Werner, Denner, Campe, and Kawamoto’s (2012) Fairy 
Assessment in Alice, has used either student-created, or prede-
signed programming artifacts to evaluate students’ understand-
ing and use of abstraction, conditional logic, algorithmic 
thinking, and other CT concepts to solve problems. Ideas of 
deconstruction, reverse engineering, and debugging to assess 
children’s understanding in computational contexts have long 
enjoyed educational appeal. Fields, Searle, Kafai, and Min (2012) 
evaluated students’ engineering and programming skills as they 
debugged prebuilt faulty e-textile projects. Han Koh, 
Basawapatna, Bennett, and Repenning (2010) attempted with 
some success to assess the thorny issue of transfer to answer ques-
tions like “Now that the student can program Space Invaders, can 
the student program a science simulation?”

In the past two decades, “academic talk” has been leveraged 
for promoting and assessing math and science literacy. The devel-
opment in the student use of the vocabulary and language of CS 
over the course of engaging in computationally rich activities 
provides an additional instrument for measuring the growth of 
CT (Grover, 2011).

Computing Education in K–12

Wilson and Guzdial (2010) maintain that although the national 
urgency for strengthening STEM in K–12 has translated into 
billions of dollars in funding, research explicitly in computing 
education remains underfunded. NSF initiatives such as CPATH, 
BPC, and most recently, CE21 have gone a long way in energiz-
ing projects aimed at bringing CT/CS concepts to the secondary 
level. An additional boost for guiding interested middle and high 
school students into CS careers comes from DARPA’s initiatives 
such as CS-STEM and Carnegie Mellon University’s FIRE 
(Fostering Innovation through Robotics Exploration).

Although ongoing research in development of CT will help 
inform computing curricula throughout K–12, preparing teach-
ers for computing education and ensuring gender equity remain 
huge challenges. The NSF’s CS10K initiative aims to add 10,000 
new CS teachers in U.S. high schools by 2015. The Georgia 
Computes! alliance is at the forefront of nationwide efforts for 
teacher preparation, development of CT/CS K–12 curricula as 
well as motivating female students in CS. Georgia Tech’s Guzdial 
argues in his blog (http://computinged.wordpress.com/) that 
challenges to meeting the CS10K deadline include answering 
questions like the following: What do teachers need in order to 
develop into successful computer science teachers? What kind of 
pedagogy will fit into the lives of in-service high school teachers? 
What is Computer Science Pedagogical Content Knowledge?

In terms of curriculum, besides CS Principles for AP CS, the 
Exploring CS curriculum (http://www.exploringcs.org) is 
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intended to be a 1-year college preparatory curriculum for high 
school students. Other initiatives aimed at introducing CS  
into schools include CS4HS (http://www.cs4hs.com/) and 
Computing in the Core (http://www.computinginthecore 
.org/)—both of which represent collaborations between aca-
demia, national bodies, and organizations such as Microsoft and 
Google. CSTA’s Model Curriculum for K–12 Computer Science 
provides curricular suggestions to help build interest, engage, and 
motivate students in CS. In addition, Google’s Exploring 
Computational Thinking website (www.google.com/edu/ 
computational-thinking) has a wealth of links to CT resources on 
the web. ACM has also recently introduced a new thread, 
EduBits, in its ACM Inroads quarterly that highlights principal 
educational activities within ACM and affiliated organizations.

Broadening the Scope of the Discourse and 
Priorities for Empirical Inquiry

It is thus quite evident that much of the recent work on CT has 
focused mostly on definitional issues, and tools that foster CT 
development. Some strides have been made in the realm of defin-
ing curricula for nurturing computational competencies, and 
assessing their development. Large gaps, however, still exist that 
call out for empirical inquiries.

In a view that was echoed by Alfred Aho, Wing argued, “an 
application of the science of learning research in designing grade- 
and age-appropriate curricula for computational thinking is nec-
essary to maximize its impact on and significance for K–12 
students” (NRC, 2011, p. 4). Barring some recent studies, such 
as Fadjo, Lu, and Black (2009) and Berland and Lee (2011), few 
others have taken into account contemporary research in the 
learning sciences in socio-cultural and situated learning, distrib-
uted and embodied cognition, as well as activity, interaction and 
discourse analyses. Cognitive aspects of children and novices 
learning computational concepts were studied extensively in the 
1980s—issues such as development of thinking skills (Kurland, 
Pea, Clement, & Mawby, 1986); debugging (Pea, Soloway, & 
Spohrer, 1987); problems with transfer (Clements & Gullo, 
1984; Pea & Kurland, 1984); use of appropriate scaffolds for 
successful transfer (Klahr & Carver, 1988), to name a few. That 
body of literature should be brought to bear on 21st-century CT 
research.

Also underinvestigated is the idea of computing as a medium 
for teaching other subjects—dovetailing the introduction of CT 
at K–12 with transfer of problem-solving skills in other domains. 
Past work includes demonstrations of children successfully 
designing LOGO software to teach fractions (Harel & Papert, 
1990) and science (Kafai, Ching, & Marshall, 1997), and using 
modeling software in science (Metcalf, Krajcik, & Soloway, 
2000).

Empirical studies on CT in schoolchildren could leverage 
extensive research on the types of problems beginner CS under-
graduates face in their early programming experiences that  
go beyond syntactical issues: Are there well-defined hurdles or 
targets of difficulty that exist in the path of developing some ele-
ments of CT in children (e.g., recursion)? If so, what are these 
and how can they be addressed?

Also largely untapped is the territory of dispositions for, atti-
tudes toward, and stereotypes concerning CT and CS, and how 

they relate to the development of learner identity (Mercier, 
Barron, & O’Connor, 2006). How crucial are these as we strive 
to provide both girls and boys with learning experiences that aim 
to nurture CT competencies? Recent incipient work on surveys 
of student attitudes toward computing represents a start in gain-
ing a better understanding of this.

Clearly, much remains to be done to help develop a more 
lucid theoretical and practical understanding of computational 
competencies in children. What, for example, can we expect  
children to know or do better once they’ve been participating in 
a curriculum designed to develop CT and how can this be evalu-
ated? These are perhaps among the most important questions 
that need answering before any serious attempt can be made to 
introduce curricula for CT development in schools at scale. It is 
time to redress the gaps and broaden the 21st-century academic 
discourse on computational thinking.
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