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It is essential to base instruction on a foundation of understanding of children’s thinking,
but it is equally important to adopt the longer-term view that is needed to stretch these
early competencies into forms of thinking that are complex, multifaceted, and subject to
development over years, rather than weeks or months. We pursue this topic through our
studies of model-based reasoning. We have identified four forms of models and related
modeling practices that show promise for developing model-based reasoning. Models have
the fortuitous feature of making forms of student reasoning public and inspectable—not
only among the community of modelers, but also to teachers. Modeling provides feedback
about student thinking that can guide teaching decisions, an important dividend for improv-
ing professional practice.

We study the early emergence and subsequent development of model-based reason-
ing in mathematics and science. In their book Fearful Symmetry, Stewart and
Golubitsky (1992) effectively explained the significance of this form of thinking:

Scientists use mathematics to build mental universes. They write down mathematical
descriptions—models—that capture essential fragments of how they think the world be-
haves. Then they analyze their consequences. This is called ‘theory.” They test their theories
against observations: this is called ‘experiment.” Depending on the result, they may modify
the model and repeat the cycle until theory and experiment agree. Not that it’s really that
simple, but that’s the general gist of it, the essence of the scientific method (p. 2).

Like others, we have noted the discrepancy between this description and typical
school science and mathematics, especially at the elementary grades. If Stewart and
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Golubitsky are correct, it is a distortion of mathematics and science to present them
as bodies of finished knowledge, rather than as activities centered around the
ongoing production of knowledge. Modeling should be central from the earliest
years of instruction, not postponed until high school or beyond. Consistent with
this perspective, we have been working closely with elementary school teachers in
four schools in a district near Madison, Wisconsin, who are reorienting their science
and mathematics instruction from computation of algorithms and learning of “facts”
to an approach that emphasizes the construction, evaluation, and revision of models.

At least one person has suggested to us that children are natural modelers. We
agree—in part. It is certainly true, borne out richly by the developmental literature,
that there are myriad ways in which even very young children come to regard one
thing as representing another. Consider, for example, deLoache’s (1989) work on
children’s understanding of pictures and scale models, Gentner and Toupin’s (1986)
work on analogy, and Leslie’s (1987) work on pretend play. Collectively, this work
illuminates the impressive cognitive achievement that happens when a child pretends
that a banana is a telephone, elaborates the function and use of the banana as a
telephone, and yet knows very well that after all, it remains just a banana. These
same early forms of competence also play out more specifically in the origins of
model-based reasoning. Even preschoolers can use counters for “direct modeling” to
solve simple early number problems involving grouping and separating. Increasingly,
instructional programs are capitalizing on these features of young children’s thinking
(Carpenter & Fennema, 1992).

But these early foundations do not entail all the features of “model” that are
needed for developing a deep understanding of mathematics and science. Using
one system to represent another is certainly part of what constitutes modeling. But
what we will call Big-M modeling also includes the self-conscious separation of a
model and its referent, the explicit consideration of measurement error, and the
understanding, based on analysis of model-world residuals, that alternative models
are possible and may in fact be preferable. Nor are young children typically aware
of the role of rival models in evaluating alternative hypotheses. In sum, it is essential
to base instruction on a foundation of understanding of children’s thinking, but it
is equally important to adopt the longer-term view that is needed to stretch these
early competencies into forms of thinking that are complex, multifaceted, and
subject to development over years, rather than weeks or months.

Although children spontaneously use objects to “stand in” for others, they
don’t necessarily select representations for the purpose of highlighting objects and
relations that are theoretically important. They need experience with conventional-
izing those representations in inscriptions or notations, that is, with using representa-
tional artifacts that are adopted as matters of convention for supporting the reason-
ing of a practicing community. Modeling must be practiced systematically so that
the forms and uses of a variety of models are explored and evaluated. Lesh (personal
communication, June, 1995) suggested that being a good modeler is in large part a
matter of having a number of fruitful models in your “hip pocket.” Acquiring such
a collection almost certainly requires sustained work in a context where modeling
has a purpose and a payoff.

Because these forms of thinking do not progress very far without explicit instruc-
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Figure 1. Child’s Model of the Elbow.

tion and fostering, the study of model-based reasoning must be pursued in contexts
that give it a central place. That is why we are working with teachers simultaneously
to foster and study it. Interestingly, the focus on models helps with the teacher
agenda, too. Models have the fortuitous feature of making forms of student reason-
ing public and inspectable—not only among the community of modelers, but also
to teachers. Modeling provides feedback about student thinking that can guide
teaching decisions, an important dividend for improving professional practice.

Because we are interested in the development of these forms of reasoning, and
not their full-blown practice as realized in the professional work of scientists and
mathematicians, we collaborate with teachers to establish a variety of modeling
practices that educate children about the nature and functions of models. We have
identified four forms of models and related modeling practices that show promise
for developing model-based reasoning (Lehrer, Schauble, & Penner, 1995).

ForMs OF MODELING
Physical Models

Physical models, like models of solar systems or elbows, are microcosms of
systems that draw heavily on children’s intuitions about resemblance to sustain the
relationship between the world being modeled and the model itself. Figure 1 displays
a child’s model of the elbow. Note the inclusion of features like “fingers” (the
wooden Popsicle sticks) and the protrusion of the elbow (the Styrofoam ball).
Although the model maps iconically from the world to the model, it also embodies
hypotheses about unseen function. Note, for instance, the rubber bands that mimic
the connective function of ligaments and the wooden dowels that are arranged so
that their translation in the vertical plane cannot exceed 180 degrees. Although the
search for function is supported by initial resemblance, what counts as resemblance
typically changes as children revise their models. For example, attempts to make
models exemplify elbow motion often lead to an interest in the way muscles may
be arranged.

Representational Models

Representational models, like maps, diagrams, and related forms of display
notations, are often based at first on overt resemblance. However, extended work
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Figure 2. Two “Maps” of the Schoolyard Developed by a Third Grade Child.

with them typically fosters children’s understanding of the need to establish conven-
tions that make explicit the relationship between the model and the world (Lehrer,
Jacobson, Kemeny, & Strom, 1999). For example, Figure 2 displays two “maps” of
the school yard developed by a third-grade child. Figure 2a is more like a drawing.
It conveys a picture of the playground anchored in this child’s interest in a piece
of apparatus. (In this sense, the child’s view of the playground echoes the Manhattan-
ite’s view of the world first published in The New Yorker.) On further consideration
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of the large-scale structure of the playground, the child revised his map (Figure
2b) to reflect a more accurate but also more conventional view of the configuration
of the playground space. Note the use of scale and the establishment of a simple
polar coordinate system. Knowledge of these conventions helps establish the map
as a microcosm of the space. Without them, we could take the revision as artistic
expression, rather than model.

Syntactic Models

Syntactic models exchange resemblance for analogy. In a syntactic model, the
epistemological claim is that one system functions much like another. In our class-
rooms, these analog systems range from Logo (e.g., Does a program describing
recursive growth of a quadrilateral provide a good model of the growth of a cham-
bered nautilus?) to coin flips (e.g., Is a bird’s preference for a type of seed modeled
by a random coin flip, or can the bird be making a decision?). Although this form
of modeling may appear to be exotic for elementary grade students, we believe it
is necessary for grasping important ideas like biologic diversity, animal foraging,
and other natural phenomena in which understanding is dependent on sampling
models.

Hypothetical-Deductive Models

Hypothetical-deductive models, the kind referred to by Stewart and Golubitsky,
move beyond the realm of describing the observable. These models embody unseen
hypothetical entities that interact to produce emergent behavior. This form of
modeling is particularly difficult for children, partly because there is no direct
connection between any single hypothetical entity and the observed world, and
partly because the very idea of emergence may be problematic for people of all
ages. For example, the kinetic theory of gases invokes hypothetical entities—
molecules—that do not map directly onto the behavior of a gas. Yet, when they
interact in the manner of Newtonian billiard balls, molecules account for relation-
ships observed among temperature, pressure, and volume. Interestingly, although
we have ways of indexing and measuring these variables, none of them is directly
observed, either.

We have begun to approach this form of modeling gingerly but straightfor-
wardly, using Resnick’s (1995) ideas of agency. For example, in a classroom of
second-grade children investigating termite mound construction, each child acted
like a termite. Carrying slips of paper to represent particles and obeying a simple
set of rules, children were surprised to find that after a number of cycles, the random
interaction of many agents (each child in the classroom) resulted in the emergence
of piles of paper analogous to termite mounds.

LESSONS LEARNED

We have been working for 2 years to introduce these four forms of modeling
practices into elementary school classrooms. This work provides us with a research
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context for studying the development of model-based reasoning in young children.
Here, briefly, are some of the major things we have learned so far in this work.

New Forms of Mathematics

Modeling relies on forms of mathematics that are not typically taught in elemen-
tary school. These include spatial reasoning and geometry, uncertainty and probabil-
ity, measure, data and data structure, and ways of thinking about function, such as
rates of change. Interestingly, the National Council of Teachers of Mathematics
has been arguing convincingly that these noncomputational forms of mathematics
must be introduced much earlier in the curriculum and in an integrated fashion,
not as isolated mathematical topics.

Classroom Roles of Tools, Talk, and Notation

A classroom focus on modeling highlights events and artifacts that embody
concrete examples of the theoretical concepts and relations of interest. These events
and artifacts may include classroom tools (from rulers to computers), notations and
inscriptions (from “number sentences” to graphs and diagrams), and talk (especially
modes and means of argumentation). As just one example, students’ use of class-
room tools like rulers can be very revealing of their emerging theories of measure.
A ruler encapsulates a number of concepts about measure that adults take for
granted but that children apparently do not—for example, that measure entails use
of equal-size units, iteration without overlap or gaps, and a zero point. The work
of Lehrer, Jenkins, and Osana (1998) with primary grade children shows that
children’s work with rulers often obscures these fundamental ideas because the
power of the tool makes these concepts transparent to users. Interestingly, for all
the “measuring” practice that occurs in elementary school, these underlying con-
cepts are rarely explicitly discussed or debated, and many students fail to understand
their importance until quite late in elementary school, if then.

Modeling in Mathematics and Science

Modeling in mathematics and modeling in science have some interesting charac-
teristic differences and entail different kinds of hurdles for children. Our work to
date suggests that for children, modeling in science raises some additional demands
over modeling in mathematics. For one thing, children’s beliefs about cause and
mechanism can support effective modeling but can also interfere on occasion with
data-based reasoning. Students often have difficulty reasoning about relations be-
tween cases, with their local properties, and the larger patterns in which those cases
participate (Lehrer & Romberg, 1996). For example, children sometimes focus
unduly on one particularly salient object or event, ignoring others that bear equally
on a question or issue under investigation. They often interpret patterns of data
quite differently when those data confirm or disconfirm their favored beliefs (Kuhn,
Amsel, & O’Loughlin, 1988; Schauble, 1990, 1996). Moreover, children find espe-
cially challenging the failure of models to fit exactly the phenomena being modeled.

This past year, a class of third graders was working on ideas about geometric
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similarity. The children constructed a graph on which they plotted the circumference
and height of a variety of “families” of cylinders. (Along the way they debated a
number of related issues about graphical conventions, such as what the scale should
be and where the origin should be located and why.) Each “family” of similar
cylinders was eventually represented as a series of points that fell on a straight line,
and the third graders argued that the lines could be considered a “system” for
generating all possible members of a family of cylinders. Soon after, the children
made another graph to plot the relationship between weight and volume for 36
objects made of 4 different materials. Generating values for the points on the graph
was not a trivial feat, because these young children had to estimate the volumes
of the objects by finding or estimating the surface area of the bases, then considering
the three-dimensional solids as “layers” of N height. This approach was reasonably
precise with rectangular prisms, but generated more error with cylinders and
spheres. The children’s original intention was to explore whether the 36 objects
could be grouped into “families” of brass, aluminum, Teflon, and wood, but they
were highly disconcerted by the fact that some of their plotted points did not fall
exactly on the line. In fact, there was some slight mismatch between the expected
values and observed values, and some children were prepared to discard the hypoth-
esis of “families” of materials. Several children eventually noted that the discrepanc-
ies between the line and the points representing each object were related to measure-
ment error, so the possibility of parsimonious description was preserved. However,
the object lesson for us was in considering the potential epistemological divide
between modeling in mathematics and modeling in science.

Cycles of Modeling

It is important to ensure that the cyclical property of modeling is preserved in
classroom practice. Modeling does not end with the first model; instead, students
must evaluate models, especially when several alternatives are “on the table,” and
revise them, an activity that frequently initiates a new round of inquiry. Work in
our lab (Penner, Giles, Lehrer, & Schauble, 1997) suggested that even first-grade
students can come to understand the value of repeated iterations and revisions of
modeling. When they evaluate a model against its referent, children receive explicit
feedback about how and whether their ideas are working; inevitably, new questions
are raised. Not just within a model-construction cycle, but across grades, models
must cumulate and go somewhere. A model that is explored in first grade should
have “pay-off” beyond its original context of development. Educators must become
aware of the kinds of models most likely to be useful across a variety of situations—in
fact, this may be one basis for evaluating and pruning the elementary science
curriculum, which is presently too broad and too shallow in its content focus.

Choosing Situations With Interesting Problems

Inscriptions, models, and other symbols are powerful, but if they are not intro-
duced with discretion, their very power can lead to obfuscation. Because models
condense a history of cognitive work into a relatively compact inscription, diagram,
or formula, they can render invisible the history of cognitive work that created
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Figure 3. A Series of Right Triangles to Illustrate the Concept of Steepness.

them. An excellent example, mentioned above, is the ruler. Rulers encapsulate a
history of decisions about measure. Because these decisions are built into the tool,
they also effectively hide from teachers whether children understand the basis for
those decisions. For example, it is difficult to tell whether a student understands
the need for constant iteration, because rulers incorporate a solution to that problem
in their very design. We are not arguing here that children should reinvent civiliza-
tion, but we have learned the need for careful consideration before providing
children with solutions to problems that they do not yet regard as problems. It may
be a mistake to give models or other symbolic artifacts to students before the need
for them has “ripened” in the classroom and is widely apparent to students; the
result may be manipulation of the symbols without understanding.

Recently we asked second graders to look carefully at the inclined planes they
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were using for experiments with rolling objects (Lehrer, Schauble, Carpenter, &
Penner, in press). One of us asked if the planes of various lengths and steepness
reminded the children of a geometric figure. Although most of the children looked
bewildered, one child announced that the planes reminded him of triangles. Around
the room, light bulbs went on: “Triangles! That’s what I thought, too!” We next
asked the children to draw what an inclined plane looks like when it “isn’t very
steep.” One by one, children came to the blackboard and drew right triangles to
illustrate the concept of steepness. As Figure 3 shows, over a series of drawings,
children increasingly emphasized the distance between the bottom edge of the plane
and the crates propping up the board—the dimension that the children called “the
amount of push-out.”

This discussion seemed very fruitful, so we tried to repeat it with a new instruc-
tional group. However, in the course of doing so, we made an error that turned
out to be disastrous. Instead of asking children what geometric figure the planes
looked like, as we had with the first group, we asked these children to “draw us a
triangle that shows what the plane looks like when it isn’t very steep.” They drew
triangles, but all of them were prototypical equilateral or isosceles triangles sitting
on their bases. In our view, these triangles do not represent anything in the situation
at all; they are just triangles. Lacking a clear understanding of the problem that
we intended these inscriptions to solve, the children instead defaulted to an activity
that they understood: drawing triangles.

In sum, we believe that although children readily adopt many kinds of symbolic
systems for purposes of representing, these early forms of competence are only the
beginning of a long journey. To understand the journey, we must attend not only
to recognizing the kinds of work accomplished by the travelers, but also to mapping
out appropriate roadways, and especially to engineering forms of teaching and
other supports that keep the trajectory on course. Perhaps amid this talk of highway
and trajectory, we must keep in mind the back roads and byways, for our work
may well lead to diversity and growth in forms of model-based reasoning not easily
encapsulated in curriculum traditions that assume there is one “best sequence” to
support children’s learning. Better that than the road not taken.
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