
V
viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 25

DOI:10.1145/1378704.1378713 Mark Guzdial

Education
Paving the Way for
Computational Thinking
Drawing on methods from diverse disciplines—including computer science,
education, sociology, and psychology—to improve computing education.

T
EACHING EVERyONE ON cam-
pus to program is a noble
goal, put forth by Alan Per-
lis in 1962. Perlis, who was
awarded the first ACM A.M.

Turing Award, said that everyone
should learn to program as part of a
liberal education. He argued that pro-
gramming was an exploration of pro-
cess, a topic that concerned everyone,
and that the automated execution of
process by machine was going to
change everything. He saw program-
ming as a step toward understand-
ing a “theory of computation,” which
would lead to students recasting their
understanding of a wide variety of top-
ics (such as calculus and economics)
in terms of computation.4

Today, we know that Perlis was pre-
scient—the automated execution of
process is changing how profession-
als of all disciplines think about their
work. As Jeanette Wing has pointed
out, the metaphors and structures of
computing are influencing all areas of
science and engineering.6 Computing
professionals and educators have the
responsibility to make computation
available to thinkers of all disciplines.

Part of that responsibility will be
met through formal education. While
a professional in another field may be
able to use an application with little
training, the metaphors and ways of
thinking about computing must be
explicitly taught. To teach computa-
tional thinking to everyone on campus

may require different approaches than
those we use when we can assume our
students want to become computing
professionals. Developing approaches
that will work for all students will re-
quire us to answer difficult questions
like what do non-computing students
understand about computing, what

will they find challenging, what kinds
of tools can make computational think-
ing most easily accessible to them, and
how should we organize and structure
our classes to make computing acces-
sible to the broad range of students.

Through a few brief examples, I
will show in this column how these

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 C
H

R
I

S
T

O
P

H
E

R
 S

I
L

A
S

 N
E

A
L

1_CACM_V51.8.indb 25 7/21/08 10:12:49 AM

26 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

questions are being addressed by re-
searchers in the field of computing
education research. Researchers in
computing education draw on both
computer science and education—
neither field alone is sufficient. While
we computer scientists understand
computing from a practical, rational,
and theoretical perspective, ques-
tions about education are inherently
human questions. Humans are often
impractical, irrational, and difficult
to make predictions or proofs about.
Computing education researchers are
using experimentation and design to
demonstrate we can address impor-
tant questions about how humans
come to understand computing, and
how we can make it better. Research
in computing education will pave the
way to make “computational think-
ing” a 21st century literacy that we can
share across the campus.

understanding computing
Before Programming
A research theme in the early 1980s
was how to design programming lan-
guages so they would be more like nat-
ural languages. An obvious question,
then, is how people specify processes
in natural language. Lance A. Miller
asked his study participants to specify
file manipulation tasks for another
person. A task might be “Make a list of
employees who have a job title of pho-
tographer and who are rated superior,
given these paper files.” Miller studied
the language used in his participants’
descriptions.2

One of Miller’s surprises was how
rarely his participants explicitly speci-
fied any kind of control flow. There
was almost no explicit looping in any
of their task descriptions. While some
tested conditions (“IF”), none ever
specified an “ELSE.” He found this so

surprising that he gave a second set of
participants an example task descrip-
tion, without looping and no ELSE
specification. The second set of par-
ticipants easily executed the task de-
scription. When asked what they were
doing if the condition was not met, or
if data was exhausted, they replied (al-
most unanimously, Miller reports), “Of
course, you just check the next person,
or if there are no more, you just go on.”

Miller’s results predict some of the
challenges in learning to program—
challenges that are well-known to
teachers of introductory classes today.
While process descriptions by novices
tend not to specify what to do under
every condition, computers require
that specificity. Miller’s results suggest
what kinds of programming languages
might be easier for novices. Program-
ming languages like APL and MATLAB,
and programming tools for children
like Squeak’s eToys use implicit loop-
ing, as did the participants in Miller’s
studies.

Twenty years later, John Pane and
his colleagues at Carnegie Mellon Uni-
versity revisited Miller’s questions,
in new contexts.3 In one experiment,
Pane showed his subjects situations
and processes that occur in a Pacman
game, then asked how they would spec-
ify them. The subjects responded with
explanations like, “When Pacman gets
all the dots, he goes to the next level.”
Like Miller, Pane found that partici-
pants rarely used explicit looping and
always used one-sided conditionals.
Pane went further, to characterize the
style of programming that the partici-
pants used. He found that over half
of the participants’ task statements
were in the form of production rules,
as in the example. He also saw the use
of constraints and imperative state-
ments, but little evidence of object-ori-
ented thinking. Participants did talk
about accessing behaviors built into
an entity, but rarely from the perspec-
tive of that entity; instead, it was from
the perspective of the player or the
programmer. He found no evidence of
participants describing categories of
entities (defining classes), inheritance,
or polymorphism.

Pane’s results suggest that object-
oriented thinking is not “natural,” in
the sense of being characteristic of
novices’ task descriptions. Since ob-

figure 1: traditional conditional structure.

if (value < 10)
then value = value + 10;
else sum = sum + value;
end if

figure 2: new conditional structure.

if (value < 10): value = value + 10;
not (value < 10): sum = sum + value;
end (value < 10)

www.acm.org/dl

ACM Digital Library

TheUltimateOnline
INFORMATIONTECHNOLOGY

Resource!

• NEW! Author Profile Pages
• Improved Search Capabilities
• Over 40 ACM publications, plus
conference proceedings
• 50+ years of archives
• Advanced searching capabilities
• Over 2 million pages of
downloadable text

Plus over one million
bibliographic citations are
available in the ACM Guide
to Computing Literature

To join ACM and/or subscribe to
the Digital Library, contact ACM:

Phone: 1.800.342.6626 (U.S. & Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., EST
Email: acmhelp@acm.org

Join URL:www.acm.org/joinacm

Mail: ACMMember Services
General Post Office
PO Box 30777
NewYork, NY 10087-0777 USA

DL_one-third_page_4C:Layout 1 6/26/08 4:05 PM Page 1

1_CACM_V51.8.indb 26 7/21/08 10:12:49 AM

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 27

jects are the foundation of most mod-
ern software today, his results point out
where we can expect to find challenges
in explaining objects to students. Both
Miller’s and Pane’s results encourage
us to think how we might design lan-
guages for novices that play to their
natural ways of thinking about specify-
ing computation, like the use of event-
based programming in MIT’s Scratch.

In the last four years, a multination-
al group of researchers has explored
“Commonsense Computing”: what
do our students know before we teach
them? Given a complex task, how do
people without programming knowl-
edge specify an algorithm for that task?
In one paper, Lewandowski et al.1 ex-
plore concurrency—in a complex task
of multiple box offices selling tickets
for a theater, how well do non-program-
ming students avoid selling the same
seat twice? The results showed that 97
solutions (69% of the total, drawn from
five institutions) were correct; only 31%
of the solutions (45% of the correct so-
lutions) were distributed, so teachers
of algorithms classes need not worry
about being put out of business. Non-
computing students do not naturally
come up with the elegant solutions
that computer scientists have devised.
However, these results suggest that
students can “naturally” think about
concurrency correctly. Problems with
implementing concurrent programs
might stem more from the challenges
in specifying those algorithms in cur-
rent programming languages, rather
than from the complexity of the algo-
rithms themselves.

Redesigning
Programming Languages
Both Pane’s and Miller’s results make
suggestions about the design of pro-
gramming languages if the goal is to
make computational ideas more acces-
sible to novices. Testing new forms of
programming languages was an area
of active exploration by Thomas R.G.
Green, Elliot Soloway, and others.

In one paper, Green and his col-
leagues explored alternatives to the
traditional conditional structure.5 A
typical structure might look like the
structure shown in Figure 1. They test-
ed a new structure where this would be
written as shown in Figure 2. This new
structure makes explicit the condition

for the execution of each clause of the
condition. Green and his colleagues
found that novices were able to cor-
rect mistakes using the second form 10
times faster than programs using the
first form.

Miller and Pane found that their
participants simply never used an else
clause. Instead, it seemed obvious (“of
course”) what to do when the tested
condition wasn’t true. Miller’s and
Pane’s subjects were doing something
different than Green’s. Writing a task
description is different than reading
and fixing a task description. Green’s
results complement Miller’s and
Pane’s. Novices do not naturally write
the else clause—they think it’s obvi-
ous what to do if the test fails. How-
ever, conditionals in programs are not
always obvious, and it’s easier for the
novices trying to read those programs
if the conditions for each clause’s ex-
ecution are explicit.

Paving the Way for
“computational thinking” for all
To make “computational thinking” ac-
cessible to students across the entire
campus, we need to understand how
to teach computing better. Computing
education researchers explore how hu-
mans come to understand computing,
and how to improve that understand-
ing. Computing education research is a
close cousin to human-computer inter-
action, since HCI researchers explore
how humans interact with computing
and how to improve that interaction.
Computing education researchers

have found a home in the International
Computing Education Research (ICER)
workshop (whose fourth annual meet-
ing will be held this September in Syd-
ney, Australia; see www.newcastle.edu.
au/conference/icer2008/) and in jour-
nals like Computer Science Education
and Journal on Educational Resources
in Computing.

Computing education research
draws on a variety of disciplines to
make computing education better. So-
cial scientists like Jane Margolis, Lecia
Barker, and Carsten Schulte help us to
understand how students experience
our classes (which often differs from
what we might expect as teachers)
and how we can change our classes to
make them more successful for all stu-
dents. Computing education research-
ers draw on methods from education,
sociology, and psychology in order to
measure learning about computing
and understand the factors that influ-
ence that learning. By making comput-
ing education better, we can broaden
access to computing ideas and ca-
pabilities. When we can teach every
student programming and the theory
of computation in a way that makes
sense to them for their discipline, we
will see how ubiquitous understanding
of computing will advance the entire
academy, just as Perlis predicted over
45 years ago.

References
1. Lewandowski, G. et al. Commonsense computing

(episode 3): Concurrency and concert tickets. In
Proceedings of theThird International Workshop on
Computing Education Research (2007), 133–144.

2. Miller, L.A. Natural language programming: Styles,
strategies, and contrasts. IBM Systems Journal 29, 2
(1981), 184–215.

3. Pane, J.F., Ratanamahatana, C., and Myers, B.A.
Studying the language and structure in non-
programmers’ solutions to programming problems.
International Journal of Human-Computer Studies 54
(2001), 237–264.

4. Perlis, A. The computer in the university. In M.
Greenberger, Ed., Computers and the World of the
Future, MIT Press, Cambridge, MA, 1962, 180–219.

5. Sime, M.E., Arblaster, A.T., and Green, T.R.G.
Structuring the programmer’s task. Journal of
Occupational Psychology 50 (1977), 205–216.

6. Wing, J. Computational thinking. Commun. ACM 49,
3 (Mar. 2006), 33–35.

Mark Guzdial (guzdial@cc.gatech.edu) is a professor
in the College of Computing at Georgia Institute of
Technology in Atlanta, GA.

The Communications “Education” column will feature
commentary on education issues, presenting research
results and opinions that inform how the challenges of
computing education can be best addressed.

© 2008 ACM 0001-0782/08/0800 $5.00

Research in
computing
education will pave
the way to make
“computational
thinking” a 21st
century literacy that
we can share across
the campus.

1_CACM_V51.8.indb 27 7/21/08 10:12:49 AM

