
Thinking About Computational Thinking

James J. Lu
Mathematics and Computer Science
Emory University, Atlanta, GA, USA

jlu@mathcs.emory.edu

George H. L. Fletcher
School of Engineering and Computer Science
Washington State University, Vancouver, USA

fletcher@vancouver.wsu.edu

ABSTRACT
Jeannette Wing’s call for teaching Computational Think-
ing (CT) as a formative skill on par with reading, writing,
and arithmetic places computer science in the category of
basic knowledge. Just as proficiency in basic language arts
helps us to effectively communicate and in basic math helps
us to successfully quantitate, proficiency in computational
thinking helps us to systematically and efficiently process
information and tasks. But while teaching everyone to think
computationally is a noble goal, there are pedagogical chal-
lenges. Perhaps the most confounding issue is the role of
programming, and whether we can separate it from teach-
ing basic computer science. How much programming, if any,
should be required for CT proficiency?

We believe that to successfully broaden participation in
computer science, efforts must be made to lay the foun-
dations of CT long before students experience their first
programming language. We posit that programming is to
Computer Science what proof construction is to mathemat-
ics, and what literary analysis is to English. Hence by anal-
ogy, programming should be the entrance into higher CS,
and not the student’s first encounter in CS. We argue that
in the absence of programming, teaching CT should focus
on establishing vocabularies and symbols that can be used
to annotate and describe computation and abstraction, sug-
gest information and execution, and provide notation around
which mental models of processes can be built. Lastly, we
conjecture that students with sustained exposure to CT in
their formative education will be better prepared for pro-
gramming and the CS curriculum, and, furthermore, that
they might choose to major in CS not only for career oppor-
tunities, but also for its intellectual content.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

Keywords
computational thinking, language, K-12 education

1. INTRODUCTION
Since the dot-com bubble, the conundrum we face in com-

puter science is how such a useful discipline can have such
difficulties attracting students, despite continuing growth of
the IT industry. We blame student disinterest on career in-
stability, but similar and even stronger arguments have long
existed for other disciplines with little impact on enrollment.
Recent data from the National Center for Education Statis-
tics show that computer and information sciences conferred
fewer degrees than either the visual and performing arts or
the social sciences and history1 – hardly the stuff that iron-
clad career guarantees are made of. Not surprisingly, the
number of students majoring in CS lags far behind those
majoring in other practically-perceived disciplines such as
education or business. Through the years, despite our best
efforts to articulate that CS is more than “just program-
ming,” the misconception that the two are equivalent re-
mains. This equation continues to project an overly narrow
and misleading image of our discipline [6] – and this directly
impacts both the size and character of the body of students
we attract.

Jeannette Wing’s call for teaching Computational Think-
ing (CT) [10] as a formative skill on par with reading, writ-
ing, and arithmetic (the three R’s) places the core of CS, we
believe correctly, in the category of basic knowledge. Very
briefly, the key points of Computational Thinking2 are that
1) it is a way of solving problems and designing systems that
draws on concepts fundamental to computer science; 2) it
means creating and making use of different levels of abstrac-
tion, to understand and solve problems more effectively; 3)
it means thinking algorithmically and with the ability to
apply mathematical concepts to develop more efficient, fair,
and secure solutions; and 4) it means understanding the con-
sequences of scale, not only for reasons of efficiency but also
for economic and social reasons. CT is not about getting
humans to think like computers [10], but rather about de-
veloping the full set of mental tools necessary to effectively
use computing to solve complex human problems [8].

To be sure, information representation, abstraction, ef-
ficiency, and heuristics are recurring themes that arise in
ordinary human activities on a daily basis. Dealing with
these themes does not require specialized career skills. On
the contrary, just as proficiency in basic language arts helps

1
http://nces.ed.gov/programs/digest/d06/figures/fig_15.asp

2
http://www.cs.cmu.edu/∼CompThink/

us to effectively communicate and in basic math helps us to
successfully quantitate, proficiency in computational think-
ing – what we synonymously call basic computer science –
helps us to systematically, correctly and efficiently process
information and tasks.3

But while teaching everyone to think computationally is
a noble goal, there are pedagogical challenges. It is not
enough to simply repackage CS1, or CS0, and teach it at
an earlier stage, as many high schools and even lower-level
grades already do. Perhaps the most confounding issue is the
role of programming, and whether we can separate it from
teaching basic computer science. How much programming,
if any, should be required for CT proficiency? To answer
this question, we believe it is necessary to consider more
carefully the implications of aligning CT with the three R’s.

In this essay we explore this alignment and argue that to
successfully broaden awareness of the depth, breadth, and
beauty of computer science, efforts must be made to lay the
foundations of CT long before students experience their first
programming language.

2. PROGRAMMING: DESCRIBING
COMPUTATIONAL PROCESSES

For those students interested in pursuing higher-level En-
glish and mathematics, there exist milestone courses to help
shift the focus from the development of useful skills to the
academic study of these subjects. In English, courses in lit-
erary analysis pave the way for students to read texts crit-
ically and to argue theoretically. In mathematics, a course
on proof understanding and construction is the gateway into
higher mathematics. These courses make critical intellectual
leaps. And while being educated implies proficiency in ba-
sic reading, writing, and quantitative skills, it does not im-
ply knowledge of or the ability to understand and carry out
scholarly English and mathematics. Analogously, we believe
the same dichotomy exists between computational thinking,
as a skill, and computer science as an academic subject. Our
thesis is this.

Programming is to CS what proof construction is
to mathematics and what literary analysis is to
English.4

Logically, a program is a succinct, finite description of
many computation instances, each embodying a possibly
infinite process. Pragmatically, understanding a program
execution on a computer requires, in addition to the pro-
gram logic, an understanding of how the logical artifact is
constrained by concrete physical limitations (e.g., an inte-
ger is no longer an ordinary integer in the context of 16-bit
representation). Mastery of these and related insights is
essential for students interested in higher-level CS, and can-
not be achieved without intense immersion in crafting pro-
grams. Only by fretting over details of data representation,

3cf. the notion of procedural epistemology introduced in the
preface to Abelson and Sussman’s classic textbook [1].
4Clearly, programming poses intellectual challenges similar
to those faced in proving theorems and analyzing texts (cf.
[2]). Indeed, D. Knuth has stated in interview that “writing
software was much more difficult than anything else I had
done in my life” [9]. Furthermore, he notes “I didn’t realize
how much more bandwidth of my brain was being taken up
by that [software] work than it was when I was doing just
theoretical work.”

algorithm design and analysis, programming languages, and
systems will students be prepared to tackle CS on a higher
plane. In this respect, the traditional programming-first cur-
riculum is appropriate.

Programming should not, however, be essential in the
teaching of computational thinking, nor should knowledge
of programming be necessary to proclaim literacy in basic
computer science. Just as math students come to proofs af-
ter 12 or more years of experience with basic math, and
English students come to literary analysis after an even
longer period of reading and writing, programming should
begin for all students only after they have had substan-
tial practice thinking computationally. Missing in primary
and secondary school curricula are the equivalents of math
courses such as algebra, probability, and calculus, and En-
glish courses such as language arts, literature, and composi-
tion. Missing also are the buffet of service courses which col-
lege mathematics and English departments offer non-majors
to enhance their reading, writing, and quantitative skills.
Currently, the setting in which students are introduced to
CT is also where they first learn programming. This is true
not just of the conventional CS1/CS2 courses, but also of
the many service-level CS0 courses. This pedagogical ap-
proach is akin to teaching basic arithmetic alongside proof
construction, and elementary reading and writing with lin-
guistics and discourse analysis. It can be done, but perhaps
not optimally. Writing descriptions in unfamiliar formal lan-
guages cannot be easy when one does not yet have a solid
grasp of the processes that these descriptions are designed
to capture. A corollary to our thesis, then, is the following.

Substantial preparation in computational think-
ing is required before students enroll in program-
ming courses.5

3. A LANGUAGE FOR THINKING
COMPUTATIONALLY

We need to start teaching computational thinking early
and often. But what does this entail in the absence of
programming? The emphasis should be on understanding
(and being able to manually perform) computational pro-
cesses, and not on their manifestations in particular pro-
gramming languages. Gaining familiarity with algorithmic
notions such as basic flow of control is important. Also cen-
tral is the development of skills for abstracting and repre-
senting information, and for evaluating properties of pro-
cesses.

In grade school mathematics, we already speak of repre-
senting word problems, and applying algebraic rules to de-
rive simpler forms. But we can also describe the search space
of possible algebraic simplifications, induced by the initial
state, the final state, and the set of applicable operations.
We may explore the process of finding a derivation through
a blind or a heuristic search, and compare the efficiency of
two derivations.

As a glue for connecting these concepts, a common lan-
guage – a computational thinking language (CTL) – must
permeate the pedagogy. Again, this is not a programming
language, but rather vocabularies and symbols that can be

5This preparation should, of course, be coupled with efforts
to rethink the ways in which we transition students into
programming, as has been recently suggested [7].

used to annotate and describe computation and abstrac-
tion, suggest information and execution, and provide nota-
tion around which semantic understanding of computational
processes can be hung [4, 8].

As Wing and others have pointed out, there are countless
opportunities to integrate computational thinking into exist-
ing middle and high-school courses, or even at the primary
school level [5]. The most obvious occur in math courses.
But just as researchers in the biological and physical sciences
have long realized, and scholars in the social sciences and
humanities are discovering, computing processes are ubiqui-
tous. An appropriate set of these opportunities should be
identified, enunciated explicitly in the CTL, and integrated
into pre-college curricula.

4. LEARNING ABOUT COMPUTATIONAL
PROCESSES

A CTL should include many familiar and basic notions
for data representation and transformation. The notation
and concepts that are presented in association with the CTL
must, of course, be grade-appropriate. In the rest of this sec-
tion, we present a series of examples to show possible ways
of integrating computational thinking into primary and sec-
ondary curricula. For each, we focus on the basic computer
science concepts and ideas that it conveys, and highlight
relevant CTL vocabularies and notations. Some of our ex-
amples are adapted from materials found on the popular
website edHelper.com, which also provides us guidance on
current U.S. curricula.

4.1 CTL Vocabularies
A student’s initial encounter with computational thinking

is likely to be around Grade 3, when multi-step calculations
and small combinatorial problems are first encountered. At
this stage, strategic introduction of vocabularies can create
awareness of computational processes. We next consider a
few illustrative opportunities to introduce CTL vocabulary.

Example 1 (Introduction to Multiplication).
Current curricula introduce multiplication in Grade 3. Two
common concepts are “multiplication is repeated addition”
and“the result of multiplication is the same no matter which
number you write first.”

The use of repeated addition as a definition for multi-
plication is an opportunity to introduce two computational
concepts: iteration and efficiency. We may explain that each
application of the symbol + is an iteration, and that while
the operation is commutative, the efficiency of the two forms
of expression may be different. Some useful exercises may
be the following.

1. For each multiplication, write it as repeated addition
and then the answer. Also write down the number of
iterations that are required.

2. Write the multiplication by switching the two num-
bers, and compare the number of iterations required.
Which one is more efficient?

Example
expression numbers

switched
which is more efficient?

3× 6 6× 3 6×3 needs 3 iterations,
3 × 6 needs 6, so 6 × 3
is more efficient.

Example 2 (Reading Comprehension). As part of de-
veloping their reading comprehension skills, students in Grade
3 are often given the task of putting a set of simple sentences
into chronological order. Consider an example of such an ex-
ercise: Given the four sentences

1: I don’t want pizza again for a long time.

2: I ate ten pieces of pizza.

3: Later that night, I got sick.

4: I felt very full.

which of the following sentence orderings is correct?

a) 1, 3, 4, 2 b) 4, 3, 2, 1
c) 2, 3, 1, 4 d) 3, 1, 4, 2
e) 2, 4, 3, 1

We may explain to students that each ordering of the four
sentences is a state, and the five possibilities a) through e)
make up the search space of the problem. To solve the prob-
lem, we may verify each state individually, but we can also
use divide-and-conquer to prune incorrect answers. The fol-
lowing are potentially suggestive homework questions.

1. What is the correct ordering between 2 and 3?

2. Which of the states in the search space have 2 and 3
in the wrong order? Can these answers be correct?

3. What are some other possible states not listed?

Later in middle school, when permutation is introduced, the
search space concept may be revisited and broadened to
those sentence orderings that result from applying the per-
mute operation to some initial sentence ordering. 2

Example 3 (Charting Information). Students are in-
troduced to a variety of visual display techniques for data
representation in grade school: pie chart, bar graph, table.
In addition to teaching students how to read each type of
display, which is currently the goal of most exercises on this
topic, a comparison of computational advantages can also be
discussed. For example, suppose a pie chart labels each slice
as a ratio of the slice to the whole, and for the same set of
data, a bar graph labels each bar as an absolute number of
the corresponding category. Then determining the the per-
centage of each category with respect to the total is “easier”
in the pie chart than in the bar graph, while determining
the ratio between any two categories is more difficult in the
pie chart. We can make the notion of easy and hard more
precise by asking students how many arithmetic operations
are required to compute the ratio of each category to the
total. 2

Example 4 (Automobile Assembly Line). In Grade
6 Social Studies, the assembly line concept is concurrently
introduced with the history of the mass production of au-
tomobiles. The concept may be introduced much earlier,
however, through the use of concrete illustrations and activ-
ities. A good example from the Columbia Education Center
website is an art project for Grades 2-3 students.6 Students
individually complete projects that involve tracing and cut-
ting variously shaped patterns, and then repeat the same

6
http://www.col-ed.org/cur/sst/sst180.txt

task as an assembly line project with each student special-
izing on producing one pattern or on assembling the pieces
into the final art work. Recording the time that it takes to
complete an equal number of projects by the two processes
(along with some discussion and calculation) will help to
demonstrate improvements in throughput. Comparisons of
the final products and the number of restarts due to mis-
takes will help to convey that by reducing the complexity of
each person’s or machine’s task, we make the job easier and
less error prone. 2

4.2 CTL Notation
As students begin to encounter more complex calculations

in middle school, helpful CTL notation should be intro-
duced. In particular, basic tuple notation for structuring
data and state representation, together with a simple rewrite
system to annotate state changes can assist in clarifying the
computational aspects of many problems.

Example 5 (Finding Square Roots). A quick Web
search shows that the most common advice for finding the
square root of a number n, apart from using a calculator,
is by repeated guess and check. The process for obtaining
each successive guess is to divide the current guess g into
n, and averaging the result with g. This is the estimate-
divide-average algorithm (EDA). Denoting by ⇒ the above
calculation, we may annotate the computation process for
finding the square root of 60, for example, as follows, using
a (poor) initial guess of 2.

2 ⇒ 16 ⇒ 9.875
⇒ 7.975 ⇒ 7.749
⇒ 7.746

We may explain that ⇒ is an abstraction of the function
λg.(g/60+ g)/2, and compare its efficiency to a naive calcu-
lation, such as a simple linear search (e.g., λg.g + 0.1). De-
pending on the precision desired, the concept of correctness
may be noted. For example, linear search may be unable
to achieve results that are within an acceptable range; even
worse, it may result in an infinite loop.

Another alternative is to describe a binary search in which
a range is explicitly represented and successively narrowed
until its mid-point is sufficiently close to the answer. The
comparative computation provides a chance to discuss repre-
sentation and decision. For EDA, a single number captures
the complete state since subsequent state is a unary function
of the current state. For the binary search, a pair represen-
tation is necessary as each subsequent state is a conditional
on both bounds of the current range.7 2

Example 6 (Diagramming Sentences). Parsing and
diagramming sentences using the Reed-Kellog system or as
trees is often employed in language arts classes for learning
grammar. Starting with the simplest examples, the first les-
son in diagramming is typically to identify a given sentence’s
subject (phrase) and verb (phrase). Each sub-phrase is sub-
sequently further identified with other linguistic categories.

Regardless of the representation system, such exercises
are useful for familiarizing students with different notations.
Moreover, the representation of context-free grammars and
the process of derivation are ideal opportunities for empha-
sizing the power of recursion and non-determinism.

7λa, b.if (a + b)/2 > 60, (a, (a + b)/2); else ((a + b)/2, b)

sentence → noun-phrase verb-phrase

noun-phrase → modifier noun | noun
...

verb-phrase → verb noun-phrase

The second rule shows two possible rewrites of noun-phrase.
Together with the last rule, the grammar illustrates recur-
sion. The diagramming process may be notated in the fa-
miliar parse tree form, or, to show non-deterministic com-
putational processes, as a derivation through recursive ap-
plication of grammar rules.

(sentence) ⇒ (noun phrase, verb phrase)
⇒ ((modifier, noun), verb phrase)
...
⇒ ((the, summer), (is, over))

2

4.3 Revisiting, Advancing, and Integrating
As students mature, previously introduced ideas may be

revisited at a more advanced level and with more rigor.

Example 7 (Equational Reasoning). As students be-
come adept with basic algebra in middle school, they are
gradually introduced to the use of equations in a variety of
courses such as physics, chemistry, business, astronomy, and
biology. This is an excellent opportunity to present the uses
and power of functional abstraction and procedural problem
solving, both of which are core CT skills.

For example, consider the standard physics textbook equa-
tion a = ∆v

∆t
used in computing the acceleration a of an ob-

ject given a change in velocity v over a period of time t. In
essence, acceleration a is the output type of the function

λv, v′, t, t′.(v′ − v)/(t′ − t)

which is used (i.e., called as a sub-procedure) in a variety of
other basic physical equations, such as Newton’s second law
of motion for computing force, F = ma. Force F , in turn,
is a sub-procedure in a host of other physical equations.
Such abstract reasoning about functions, data typing, and
function composition is intuitive, simplifying, and powerful.

2

Integration of concepts helps students broaden their ap-
preciation for the universality and ubiquity of computational
thinking, and, furthermore, conveys the point that CT skills
are essential in a wide variety of endeavors.

Example 8 (Interdisciplinary Projects). An inter-
esting interdisciplinary project is making travel brochures.
The problem requires students to apply language arts, math,
and social studies (e.g., geography), and may be posed as
an exercise as early as 5th grade. A good example can be
found on the Columbia Education Center website.8 In high
school, an optimization version of the problem may be dis-
cussed, in the development of “good” tour packages over a
geographic region (e.g., Eastern Europe). This is a schedul-
ing problem that must take into account constraints such as
distance, time, expense, levels of interest of possible destina-
tions, and others. Rather than turning in just the finished

8
http://www.col-ed.org/cur/sst/sst114.txt

product, students may also be asked to demonstrate com-
putational thinking by showing how the constraints may be
represented, and how (near) optimal solutions with respect
to some objective function may be computed. An example
objective function might be to maximize profit for the travel
agency while meeting some “fun” threshold for the travelers.
2

In addition to the explicit integration of CT and CTL
in traditional subjects, it might also be useful to investigate
opportunities for introducing information processing into or-
dinary classroom activities.

Example 9 (Group Projects). Group work is com-
mon in science courses. Relationships in the group are typi-
cally divided along tasks: each group member takes sole re-
sponsibility for one or two tasks (e.g., data recording, report
write-up). Data-exchange interactions are ideal situations
for formally introducing notions of interface and encapsula-
tion. By restructuring the interactions differently, interest-
ing new challenges arise. For example, if the project report
must be written collaboratively (either simultaneously or
asynchronously), then concepts such as locking and message
passing must be discussed and implemented among group
members. 2

In all the examples of this section, note that computers
are not explicitly part of the discussion. Indeed, during the
introduction and development of CT and CTL, students are
the computing agents. The emphasis here is on helping stu-
dents, as computers, to become more knowledgeable, skilled,
and effective. Of course, software tools can be used to assist
in this, just as they are used in teaching basic language skills
and math.

In contrast to other major computer science education ef-
forts, such as [5], our suggestion is not so much to teach
about how computation is implemented, but rather to per-
meate the collective knowledge and lessons of computer sci-
ence research into the discussion and development of all sub-
jects that involve (information) processing. To that end, we
need a team of computationally aware thinkers to funda-
mentally reexamine current pre-college curricula, to identify
opportunities and to create educational material for intro-
ducing and integrating CT and CTL.

5. DISCUSSION
Through practice and repeated encounters, thinking and

communicating in the CTL will become second nature by the
time students reach their final year in high school. A culmi-
nating AP course or equivalent introductory college courses,
such as the excellent “Great Theoretical Ideas In Computer
Science” by Steven Rudich and colleagues at CMU,9 will
help to integrate students’ experiences and prepare them
for exposure to programming. Such courses may formally
address computational properties, such as convergence, effi-
ciency and limits of computation, again without necessarily
referring to a specific computing agent. College-level service
courses may be offered on domain-specific computational
thinking (e.g., bioinformatics, chemical informatics).

For students that follow up with more advanced CS courses,
starting with programming, the challenge will no longer be

9
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-

s04/Site/

in learning to think computationally, but in learning the
nuances of new languages, how to formally describe com-
putations in these languages, and in subsequent courses on
how such descriptions are executed on a von Neumann ma-
chine. For students that do not pursue CS further, their
background in computational thinking will be of substantial
benefit in their professional careers and in everyday life. In-
deed, in this age of information, it is crucial to have a solid
understanding of the uses and limitations of CT.

On the issue of CS enrollment, we suspect that most stu-
dents major in mathematics, English, and the humanities
not for the abundance of career opportunities in these fields,
but more for intellectual interests, born out of gradual and
sustained exposure. We conjecture that students with simi-
lar development in computational thinking will also be more
likely to choose CS based on intellectual motivations (cf.
[3]), and, furthermore, that they will be better prepared for
programming and the major curriculum. Exposure to basic
computer science will raise an awareness in students of what
CS (and, more broadly, informatics) might be as a field of
inquiry, leading to a broader participation of a wider variety
of students in our discipline.

To truly integrate computational thinking into current
primary and secondary curricula undoubtably presents sig-
nificant challenges. It will necessarily be a gradual and
evolutionary process, and requires concerted efforts and co-
ordination among many constituents of the wider educa-
tion community. We see concrete efforts towards achieving
broader CT literacy as some of the most exciting, challeng-
ing, and necessary next steps in the maturation of our dis-
cipline.

Acknowledgments. Our (computational) thinking has ben-
efited greatly from discussions with and comments from col-
leagues: Dwight Duffus, Mark Guzdial, Ken Lambert, Ken
Mandelberg, Eileen Peluso, Dave Reed, Sebastien Siva, Allen
Tucker, and Scott Wallace. We also thank the reviewers for
their helpful comments and criticism.

6. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs, 2nd ed. MIT
Press, Cambridge, 1996.

[2] J. L. Bates and R. L. Constable. Proofs as programs.
ACM Trans. Program. Lang. Syst. 7(1):113-136, 1985.

[3] L. Carter. Why students with an apparent aptitude
for computer science don’t choose to major in
computer science. SIGCSE 2006, Houston, pp. 27-31.

[4] A. Cohen and B. Haberman. Computer science: a
language of technology. SIGCSE inroads 39(4):65-69,
2007.

[5] CS Unplugged. http://csunplugged.com.

[6] P. J. Denning and A. McGettrick. Recentering
computer science. CACM 48(11):15-19, 2005.

[7] M. Guzdial. Paving the way for computational
thinking. CACM 51(8):25-27, 2008.

[8] S. Reges. The mystery of “b := (b = false).” SIGCSE
2008, Portland, pp. 21-25.

[9] L. Shustek, ed. Donald Knuth: a life’s work
interrupted, part 2. CACM 51(8):31-35, 2008.

[10] J. M. Wing. Computational thinking. CACM
49(3):33-35, 2006.

