Learning Theories and Education: Toward a Decade of Synergy

John Bransford et al.
The LIFE Center
The University of Washington, Stanford University & SRI International
About Me

- Tung Dao, Ph.D. student in CS
- Work in software engineering with Dr. Edwards
- B.S, M.S. from Vietnam and Korea respectively
- From Vietnam
Motivation

- Questions to answer in the paper:
 - Why do we need to understand or think about how people learn?
 - How do people learn? By which learning theories?
 - What are the problems with the existing learning theories?
 - How can we come up with better learning theories?

- Questions related to computational thinking (CT):
 - Can learning theories be applicable to the domain of CT (learning and teaching)?
 - Should we have its own CT learning theories?
Paper Summarization

- Literature review of learning theories and education:
 - Implicit learning and the brain
 - Informal learning
 - Formal learning and beyond

- Synergy of these theories to create, for the next ten years, more efficient and better learning and education theories:
 - Share methodologies
 - Share tools
 - Actively identify “conceptual collisions”
Implicit Learning

- Definition: “information that is acquired effortlessly and sometimes unconsciously…”
- Examples: visual pattern learning, early speech learning, syntactic language learning, young children’s imitative learning of tools/artifact behaviors, customs, etc.
- Occurs in many domains: skill learning, language learning, learning about people (social cognition)
- Plays an important role, starts early in life, and continues across the life span
- Studies of the brain (neuroscience) can reveal more about implicit learning
Discussion

- Can people learn CT implicitly? If yes, how do we engage in implicit learning of CT? Examples?
Brain Science: Misconceptions and Findings

- The brain at birth: "is entirely formed at birth"
 - But it is incorrect, because of ... the processes of “overproducing” and “pruning” synapses
 - Explain for changes in brain during its development
 - Brain development is product of complex interaction of both nature and the rest

- Critical periods for learning: “the ability to learn certain kinds of information shuts down if the critical period is missed”
 - However, ... “brain is more plastic”; and the critical period varies significantly among domains, e.g., visual, auditory, language
 - So, “critical or sensitive periods” only hold to some extend
 - Findings: “neural commitment”, and “mental filter”
 - Filters in: attention, structure perception, thought, emotion
 - “Expertise” in many areas reflects this “metal filter”
 - Enable us to think efficiently, fast; but, might limit our ability to think in novel ways
Discussion

- Does “neural commitment” or “critical periods” apply to learning CT?
 - Is that harder for those outside computer science or computing areas to learn CT?
 - At which ages (e.g., elementary, middle, high school, university) are best to learning CT?
Neuroplasticity

- Babies learn new languages better than adults
 - Infants’ system is not thoroughly committed
 - Be able to develop more than one “mental filter”
 - Through social interaction

- “Complexities” of live/social interaction enhances infants’ learning

- It might be good that initial learning should take into account the full complexity, in terms of transfer, and generalization
Discussion

- How does social interaction help, if any, learning CT?
- Does the “complexities” strategy work in the domain of learning CT? i.e., initially teach something complex first?
Informal Learning

- Definition: “learning that happens in designed, non-school public settings such as museums, zoos, and after-school clubs, homes, playgrounds, among peers… where designed and planned agenda is not authoritatively sustained over time.”

- Most of people’s activities and time involve in informal learning: during school age years, 79% of a child’s waking activities are spent in non-school settings; of the human life span is more than 90%

- While it is a good alternative to schools, concerns include:
 - Lead people to naïve and misconceived ideas
 - Quality of thinking and practices
 - Lack of thinking and the consumption of a degraded popular culture
Discussion

- Can we informally learn CT? and How to avoid misleading, lack of thinking quality when we do informal learning in CT?
Informal Learning: Principles and Contributions

- The role and meaning of context in learning
 - Context has two related “senses”:
 - Setting-based: for example, “work”, “play”, “school”, and “street”, forming bases for comparative analysis
 - Comparisons across settings, in terms of activities, forms of participation, types of interaction
 - Example: dinner-table conversations of middle-class families
 - Expectations of learning in different contexts are different

- New ways to understand how people learn
 - How does learning happen in non-school settings?
 - Through “keen observation and listening, intent concentration, collaborative participation”

- What changes when people learn
 - Individual mental concepts, mental processes (e.g., reasoning strategies)
 - Forms of participations
 - Identities
 - Tool-mediated, embodied skills
Discussion

- What are contexts in learning CT? How do we classify or define contexts in such a way that help learning CT best?
Informal Learning: Research Directions

- **Within-context studies**
 - How to organize/categorize contextual aspects?
 - Hierarchies (e.g., concrete/abstract)
 - Distinctions (e.g., expert/novice)
 - Formal vs. informal classification is limiting because of homogeneity
 - Even what constitutes a “context” is an open question
 - How is learning organized in contexts?

- **Across-context studies**
 - How people learn and develop as they make transitions across contexts?
 - A long temporal dimensions, for example, synchronic and diachronic
Discussion

- Should we embed teaching CT within-domain (context) or across-domain (context)? what are pros and cons?
Design for Formal Learning

- The use of knowledge about learning to create designs for formal learning and school redesign
- Creating effective learning environments:
 - What do we want students to know and able to do?
 - How will we know if we are successful, i.e., what kind of assessments do we need?
 - How to help students meet learning goals?
Discussion

- If experts are not always good teachers, then who best teach CT?
Expertise Lessons

- Noticing and paying attention
- Knowledge organization
 - Support effective reasoning and problem solving
 - Prioritized into:
 - Enduring ideas of the discipline
 - Important things to know
 - Ideas worth mentioning
- Expertise and teaching
 - Relationship between expert knowledge and teaching abilities
 - Expert blind spots
Adaptive Expertise

- Being both innovative and efficient vs. being only efficient (routine expert)
- Willingly and able to change core competencies and continually expand knowledge deeply and broadly
- Required to leave “comfort zones” often
- Being “intelligent novices”
Discussion

- Can/how CT help us to become adaptive expertise?
- How to avoid “comfort zones” when learning CT?
- How deep and broad should we learn/teach CT?
Assessments

- **Summative assessment**
 - How students perform at the end of some course?

- **Formative assessment**
 - Measures designed to provide feedback to students and teachers

- How to design assessments of being “adaptive expertise”
Efficiency Assessments

- Sensitive to well-established routines and schema-driven processing
- Capture people’s abilities to directly apply the procedures and schemas learned in the past to new settings
- Often be summative measures as standardized tests, e.g., sequestered problem solving assessments (SPS)
- Fail to assess adaptive expertise
Beyond Efficiency Measures

- Premise is people learn for their whole life
- Assessments emphasize on “preparation for future learning” (FPL), instead of SPS
- Assessments should be able to measure adaptive expertise
Discussion

- What are assessments in CT?
- How do we know someone is routine expert or adaptive expert in CT?
Toward a decade of synthesis

- **Sharing methodologies**
 - Combine research in strand 1 of neuroscience, linguistics, and social-cognition with the use of ethnographic analyses
 - Coordination of ethnographic, lab-based, classroom intervention research

- **Perspectives on people knowledge and the social brain**
 - Cooperative and collaborative learning
 - Groups outperform individuals
 - Friends have better conversations during problem-solving than acquaintances
 - Students learn better about contents if they know who develop the contents

- **Sharing research tools**

- **Searching for “conceptual collisions”**
 - Multiple or different perspectives on similar phenomena
 - Resolve conceptual collisions can effectively contribute to communications among the strands, and ultimately help learning
 - Uncover conceptual collisions with learning principles: preconceptions, learning with understanding, and metacognition
Preconceptions

- All learners begin with preconceptions, or existing efficiencies—habitual ways of thinking about or doing things
- Equivalent with “neural commitment” or “mental filter” in the strand 1 research
- Disadvantages, e.g., learning a second language
- Therefore, new learning requires exposure to patterns of covariance or new instances frequently
Discussion

- How do we teach CT to those who do not have any preconceptions about CT?
Learning with Understanding

- Involve developing a recognition of the deep structure of an idea or situation, or understand “why”
- This can be achieved by social interaction and practices: learning through observing the behaviors and customs of others
- Learning with understanding transfer better than “brute learning”
Discussion

- How do we know if students understand concepts in CT, given the fact that some concepts are abstract?
Metacognition

- Mindset or habits of self-generated inquiry, self-assessment, self-explanation, self-reflection
- Metacognition helps learners have a deeper conceptual understanding in, for example, math, science learning
- Strand 1 emphasizes on the “social brain” metacognition, i.e., natural adjustment to other people... to bootstrap more conscious and metacognitive ways of self-thoughts or others’
- Strand 2 focuses on the social and cultural contexts of metacognition
- Strand 3’s emphasis on metacognition that supports adaptation and innovation, i.e., adaptive expertise
Discussion

- How does metacognition work in learning CT?
Thank You!

- Any questions or comments?