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di�erent encoding rules. The implementation is in C++ and makes use of class templates

for representing polymorphic types, class inheritance for type specialization, and typedefs

for de�ning ASN.1 types as instances of class templates. Encoding/decoding performance

data is provided as evidence that this work is suitable for serious application development.

Keyword Codes: C.2.2; D.1.5; D.2.2

Keywords: Network Protocols; Object-Oriented Programming; Tools and Techniques

1. INTRODUCTION

Programming OSI applications requires that both user data and application protocols

be speci�ed in ASN.1 [8]. Current OSI programming practice relies on tools for gener-

ating language speci�c constructs that represent the ASN.1 types that de�ne application

data and protocols. The typical model for using ASN.1 types in an application is to

automatically generate corresponding high-level language data structures representing

the speci�cation, and operations for encoding and decoding each data structure using

a suitable transfer syntax, such as the Basic Encoding Rules (BER) [9]. The automatic

translation from an ASN.1 speci�cation to equivalent data structures in a target language,

such as C, often requires that the programmer understand the mapping of names from the

ASN.1 speci�cation to the language speci�c data structures. This knowledge is required

to facilitate development and debugging since automatically generated names are often

\mangled" and corresponding canonical data structures are often generated for the con-

venience of encoder and decoder functions rather than the programmer. An application

developer is left with the sometimes awkward task of manipulating the canonical data
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structures and invoking the encoding and decoding operations as part of exchanging data

with a remote peer.

Furthermore, many ASN.1 tools and presentation service access points are not designed

and implemented to support the use of multiple sets of encoding rules; instead, only a

single set of encoding rules, namely the BER, are supported. Our framework is explicitly

architected to encompass the current standardized encoding rules, as well as customized

and de facto encoding rules; for example, the lightweight encoding rules proposed by

Huitema and Doghri [6,7] and, with modest limitations, XDR [12].

Our methodology for building ASN.1-based applications is novel in two respects:

� a set of extensible object-oriented abstractions is de�ned that allows the natural ex-

pression and use of the primitive, constructed , and component ASN.1 types directly

in C++.

� a generic presentation element (PE) abstraction is de�ned that facilitates the im-

plementation of diverse encoding rules through type template instantiation.

To emphasize the �rst point, Figure 1 presents a simple ASN.1 module speci�cation

for a set of types that might reasonably be used to implement an application protocol

for looking up a password from a Unix-like password �le. Figure 1 presents C++ type

de�nitions and a class that are automatically generated by an ASN.1 to C++ translator

from the module speci�cation in Figure 1. As illustrated, the translation preserves much of

the structure and syntax of the original ASN.1 speci�cation. The structural and syntactic

coherence of the mapping from ASN.1 to C++ is achieved using a set of polymorphic types

to construct C++ types that correspond to type de�nitions in ASN.1.
3

In the remainder of this paper, we describe how such polymorphic types are constructed

in C++ using type templates and inheritance among types instantiated from templates.

Section 2 provides a brief introduction to the basic type de�nition and type specialization

constructs of C++, while simultaneously introducing primitive type abstractions used

subsequently. Section 3 de�nes the mapping of ASN.1 types to equivalent type abstrac-

tions in C++. Section 4 de�nes the presentation element abstraction and provides a

comparison of encoding/decoding times among Sun XDR, C++/XDR, C++/BER, and

ISODE/BER. This data demonstrates that our implementation is suitable for serious ap-

plication development. Section 5 o�ers some observations on our research experiences in

this area and compares this work to similar work by others.

2. CLASSES, TEMPLATES, AND INHERITANCE

A language supporting the de�nition of user-de�ned polymorphic types and specializa-

tion of types via inheritance is su�ciently powerful to allow the degree of type extension

required to represent the primitive, constructed, and component types of ASN.1. The

type de�nition mechanisms required include the class, the template, and the typedef . A

class permits the de�nition of an abstract data type. Templates permit the de�nition

of parameterized abstract data types. A typedef is used to de�ne a type alias. In this

section, we brie
y illustrate the use of classes, templates, and inheritance in C++.

3An ASN.1 module is represented here using the proposed ISO/ANSI C++ namespace construct, which
is not yet implemented by most commercial C++ language processors.
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PasswordLookup DEFINITIONS ::=

BEGIN �� similar to an entry in <pwd.h>

Passwd ::= [APPLICATION 1] IMPLICIT SEQUENCE f 5

name [0] IMPLICIT UserName,
passwd [1] IMPLICIT IA5String OPTIONAL,
uid [2] IMPLICIT UserID,
gid [3] IMPLICIT GroupID,
quota [4] IMPLICIT INTEGER DEFAULT 0, 10

comment [5] IMPLICIT IA5String OPTIONAL,
gecos [6] IMPLICIT IA5String OPTIONAL,
dir [7] IMPLICIT IA5String OPTIONAL,
shell [8] IMPLICIT IA5String OPTIONAL

g 15

UserName ::= [APPLICATION 2] IMPLICIT GraphicString
UserID ::= [APPLICATION 3] IMPLICIT INTEGER

GroupID ::= [APPLICATION 4] IMPLICIT INTEGER

20

END

=* automatically generated �*� C++ �*� by CATY version 1.0 *=

#include "UNIV.h"

namespace PasswordLookup f
5

using namespace Universal; == universal types (i.e., INTEGER, IA5String, etc.)

typedef IMPLICIT <APPLICATION, 2, GraphicString> UserName;
typedef IMPLICIT <APPLICATION, 3, INTEGER> UserID;
typedef IMPLICIT <APPLICATION, 4, INTEGER> GroupID; 10

class Passwd : public IMPLICIT <APPLICATION, 1, SEQUENCE> f
public:

REQUIRED <IMPLICIT <CONTEXT, 0, UserName> > name; 15

OPTIONAL <IMPLICIT <CONTEXT, 1, IA5String> > passwd;
REQUIRED <IMPLICIT <CONTEXT, 2, UserID> > uid;
REQUIRED <IMPLICIT <CONTEXT, 3, GroupID> > gid;
DEFAULTS <IMPLICIT <CONTEXT, 4, INTEGER> > quota;
OPTIONAL <IMPLICIT <CONTEXT, 5, IA5String> > comment; 20

OPTIONAL <IMPLICIT <CONTEXT, 6, IA5String> > gecos;
OPTIONAL <IMPLICIT <CONTEXT, 7, IA5String> > dir;
OPTIONAL <IMPLICIT <CONTEXT, 8, IA5String> > shell;

Passwd() : name(this), passwd(this), uid(this), 25

gid(this), quota(this), comment(this), gecos (this), dir(this),
shell(this) f quota.def val = 0; g

g;
g

Figure 1. Password Lookup ASN.1 Speci�cation and Corresponding C++.
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class AsnType f
public: =* methods visible to clients and derived classes *=

virtual ~AsnType() fg =* empty destructor *=

5

=* default methods to be selectively rede�ned by a derived class *=

virtual bool primitive() const f return FALSE; g
virtual bool constructed() const f return FALSE; g

10

virtual bool required() const f return FALSE; g
virtual bool optional() const f return FALSE; g
virtual bool defaults() const f return FALSE; g

=* \pure" methods to be de�ned by a derived class *= 15

virtual int encode(MetaPE*) = 0;
virtual int decode(MetaPE*) = 0;

virtual const Tag& tag() = 0; 20

g;

Figure 2. An \abstract" ASN.1 base class.

Both the class and the template permit the de�nition of arbitrary user-de�ned types

that e�ectively extend the base set of types o�ered in a language environment. User-

de�ned types are further extended using either single or multiple inheritance between

previously de�ned classes and templates.

2.1. Classes

A class in C++ de�nes an abstract data type consisting of data and/or methods for

manipulating that data. Methods de�ned virtual may be rede�ned by a subclass. A

special sort of virtual method is the \pure" virtual method, which has no implementation

in the class in which it is �rst declared. A pure virtual method de�nes a method's type

signature, but the binding of an implementation is deferred.

Figure 2 illustrates an abstract class, AsnType, that de�nes a set of virtual methods

used in the implementation of ASN.1 in C++. The purpose of the AsnType class is to

de�ne the type signatures and default implementations of methods that are selectively

overridden by a class derived from AsnType. The encode, decode, and tag methods are

de�ned as pure virtual, meaning that a subclass must provide a default implementation.

The MetaPE argument provided to the encode/decode method denotes an abstract pre-

sentation element that \knows" how to encode/decode an AsnType to/from a speci�c

transfer syntax.

2.2. Templates

The template de�nition in Figure 3 introduces a type template Prim parameterized

by a type T. The purpose of the Prim<T> template is to allow the de�nition and use
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template<class T> class Prim f
protected: == visible to subclasses only

T val; == a value of type T

5

public:

inline Prim() f val = 0; g == default constructors

inline Prim(T v) f val = v; g
10

inline void operator=(T v) f val = v; g == overloaded assignment

inline operator T() const f return val; g == type converter

g;

typedef Prim<bool> Boolean; 15

Figure 3. A template for primitive types.

of primitive language types as �rst-class objects. In many object-oriented languages,

primitive types (e.g., int), are not implemented as �rst-class objects so that e�cient

machine code can be generated. The Prim<T> template is purposefully constructed so

as to incur no extra space overhead in representing a primitive type and all methods

are de�ned inline to eliminate procedure call overhead when invoking operations at run-

time; hence, the e�ciency the Prim<T> abstraction is close to optimal. A type conversion

operator, operator T, is de�ned so that a Prim<T> object may be implicitly converted to

a value of type T. For example, the type Boolean is de�ned as an instance of the Prim<T>

template by supplying the appropriate type parameter; in this case, the enumerated type

bool. The instantiation of a Boolean type results in the instantiation of a Prim<bool>

instance, which can then be used in an expression like a bool value.

2.3. Inheritance

Figure 4 illustrates the use of inheritance in de�ning a template ArithPrim<T> as a

specialization of the Prim<T> class presented in Figure 3. The ArithPrim<T> template

inherits publicly from Prim<T>, meaning that a combined public interface is visible to

clients of an instance of ArithPrim<T>. Note that the type parameter T is propagated

through inheritance to the Prim<T> base class. The composite object consists of a pri-

vate instance variable val of type T and a set of public inline methods implementing

primitive arithmetic operations on that value. The de�nition of Integer and Real types

results in the instantiation of primitive arithmetic types based on a long and a double,

respectively.
4
The run-time e�ciency cost for representing �rst-class Integer and Real

objects in this manner is minimal. The advantage is that additional types can be de�ned

that are incremental extensions of these primitive arithmetic objects.

4Alternatively, a long long and long double could be used to extend the range of the value sets.

5



template<class T> class ArithPrim : public Prim<T> f
public:

inline void operator=(T v) f Prim<T>::operator=(v); g
5

inline T operator += (T v) f return val += v; g
inline T operator �= (T v) f return val �= v; g
inline T operator *= (T v) f return val *= v; g
inline T operator == (T v) f return val == v; g
inline T operator ++ () f return ++val; g 10

inline T operator �� () f return ��val; g
g;

typedef ArithPrim<long> Integer;
typedef ArithPrim<double> Real; 15

Figure 4. The ArithPrim class derived from Prim<T>.

3. MAPPING ASN.1 TO TYPE TEMPLATES

Our goal in de�ning a mapping of ASN.1 into C++ is to allow the application layer

programmer to de�ne and use ASN.1 type instances as objects, with all the attendant

bene�ts of an object-oriented representation of application data. A critical step towards

this goal is the de�nition of a set of type templates that can either be automatically

generated from a formal ASN.1 speci�cation, or used directly in an ad hoc manner by a

programmer constructing a custom application. From these type templates, we should be

able to instantiate a set of C++ types, representing an ASN.1 module, that can be used

naturally by a programmer building a distributed application. The present state of the art

relies almost exclusively on programming using the canonical data structures output from

an ASN.1 translator, rather than the data representations originally speci�ed in ASN.1.

Our objective is to minimize the gap between ASN.1 as a speci�cation language and the

type system of a candidate implementation language. The high-level expressiveness of

the ASN.1 language typically exceeds that of the type de�nition facilities of the typical

programming language used to construct an OSI application. If we can approach the

same level of type expressiveness of ASN.1 within the con�nes of the type system of an

object-oriented language, namely C++, then we have made a signi�cant step towards

facilitating application development.

ASN.1 types come in three 
avors: primitive types, constructed types, and compo-

nent types. For example, the ASN.1 type names BOOLEAN, INTEGER, REAL, and

OCTET STRING de�ne primitive types; SEQUENCE and SET de�ne constructed

types; and ANY and CHOICE de�ne component types. A mapping of ASN.1 types

to a particular target language involves de�ning an appropriate data structure for each

type, and taking into consideration the fact that types in ASN.1 are augmented with tag

information that is used to uniquely identify the type of a value that is to be encoded in

a machine independent manner.

In de�ning a translation from ASN.1 to C++, we conceptually map each ASN.1 type
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to a tagged type tuple of the form:

<tag-class, tag-id, base-type>

The tag information is de�ned by two components: a tag-class and a tag-id. A tag class is

one of UNIVERSAL, APPLICATION, PRIVATE, or CONTEXT (context-speci�c),

and a tag-id is an arbitrary non-negative integer value. We think of a tagged type tuple

as denoting an extended type in the target language. The element base-type corresponds

to either a primitive type in the target language (e.g., the Integer and Real primitive

types de�ned previously), or a type constructed from the primitive types. Since our target

language supports a type de�nition facility, we ought to be able to de�ne some subset of

the ASN.1 types using a type de�nition of the form:

typedef base-type type-alias;

A typedef introduces a new type name as an alias for an existing type; for example, to

accommodate anglophiles:

typedef GeneralizedTime GeneralisedTime;

A type de�nition may also be used to instantiate a type template corresponding to a

type de�ned in an ASN.1 speci�cation, as was done previously in de�ning the Boolean,

Integer, and Real types. This form of type de�nition requires a template name, and

some number of parameters; for example, a tag class, a tag id, and a base type as follows:

typedef template-name<tag-class, tag-id, base-type> type-alias;

We wish to de�ne all of the primitive ASN.1 types as type tuples of this form and then

instantiate them so that a programmer can use these \embedded" ASN.1 types to de�ne

application data and protocols.

3.1. Primitive Types

The PrimType template depicted in Figure 5 is used to de�ne an ASN.1 primitive type

that inherits from a \splitter" class AsnPrim. AsnPrim allows a PrimType instance to

have a split personality composed from the primitive base type T and the abstract ASN.1

base class AsnType (see Figure 2). The default implementation of the virtual primitive

method de�ned in the AsnType class is overridden, while the pure virtual encode, decode,

and tag methods are given implementations. The encode and decode methods simply

call upon an abstract presentation element (MetaPE) object passed as a parameter to

e�ect the encoding and decoding of a primitive value. The details of the MetaPE methods

are omitted; essentially, a MetaPE maps an ASN.1 object into a suitable transfer syntax

according to a desired set of encoding rules. This structure ensures separation of the

representation of an ASN.1 type from any encoded form, thereby achieving a high degree

of independence.

The instantiation of ASN.1 primitive types belonging to the UNIVERSAL class is ac-

complished by using a typedef to de�ne new type instances within a Universal names-

pace:
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template<class T> class AsnPrim : public T, public AsnType f ... g;

template<int C, int I, class T> class PrimType : public AsnPrim<T> f
public:

5

... =*constructors and overloaded assignment operators *=

bool primitive() const f return TRUE; g

=* encode=decode \self" into=from a Presentation Element (PE) *= 10

int encode(MetaPE* pe) f return pe�>prim2pe(*this); g
int decode(MetaPE* pe) f return pe�>pe2prim(*this); g

=* a PE<BER> encoder=decoder will want to know our tag *= 15

const Tag& tag() f static Tag t(C, PRIM, I); return t; g
g;

Figure 5. The PrimType template for de�ning primitive ASN.1 types.

namespace Universal {

typedef PrimType<UNIVERSAL, 1, Boolean> BOOLEAN;

typedef PrimType<UNIVERSAL, 2, Integer> INTEGER;

typedef PrimType<UNIVERSAL, 3, BitString> BIT_STRING;

typedef PrimType<UNIVERSAL, 4, OctetString> OCTET_STRING;

...

}

Each type is instantiated using a tagged type tuple as the parameter list to the PrimType

template. The PrimType template is de�ned so that the tag-class and tag-id are used to

construct a statically determined internal tag object, while the base type is propagated

upward in a public inheritance hierarchy so that an instance of each newly de�ned type

will inherit the correct behavior (e.g., arithemtic operations for an INTEGER type). Each

PrimType instance is distinguished from the base type on which it is based by the tag

information. A type de�ned in this manner may subsequently be used as the base type

for some other type de�nition. For example, the IA5String universal type is de�ned in

ASN.1 in terms of the OCTET STRING type:

IA5String ::= [UNIVERSAL 22] IMPLICIT OCTET STRING

The ASN.1 syntax is mapped into a corresponding type de�nition using the previous

de�nition of the OCTET STRING type:

typedef IMPLICIT<UNIVERSAL, 22, OCTET_STRING> IA5String;

The ASN.1 tag modi�er IMPLICIT is mapped onto a template name IMPLICIT that

ensures that the IA5String type is tagged with the overriding tag information, which,
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template<class T> class SeqOfType : public ConsType<UNIVERSAL, 16, T> f
public:

...
int encode(MetaPE* pe) f return pe�>seqof2pe(*this, n); g
int decode(MetaPE* pe) f return pe�>pe2seqof(*this, n); g 5

g;

#de�ne SEQUENCE SeqOfType<AsnType>
#de�ne SEQUENCE OF SeqOfType

10

template<class T> class SetOfType : public ConsType<UNIVERSAL, 17, T> f
public:

...
int encode(MetaPE* pe) f return pe�>setof2pe(*this, n); g
int decode(MetaPE* pe) f return pe�>pe2setof(*this, n); g 15

g;

#de�ne SET SetOfType<AsnType>
#de�ne SET OF SetOfType

Figure 6. Templates for SEQUENCE and SET.

depending on the encoding rules used, may be necessary during transformation to a

suitable transfer syntax.

3.2. Constructed Types

The ASN.1 constructed types SEQUENCE and SET are structurally similar. The

SEQUENCE and SEQUENCE OF types share the same tag class and tag id, as do

SET and SET OF. In C++, sequences and sets are represented using two distinct tem-

plates: SeqOfType<T> and SetOfType<T>. Both inherit a list-oriented structure and list

manipulation operations from a common ASN.1 constructed type template ConsType,

which is parameterized with the tagged type tuple used to de�ne a SeqOfType<T> or

SetOfType<T> instance. The details of the ConsType class are omitted since list repre-

sentation and manipulation techniques are well known. Preprocessor macros are de�ned

to map the ASN.1 syntax onto the C++ type templates. The abstract class AsnType is

used for the type parameter to the SeqOfType<T> and SetOfType<T> templates so that

a SEQUENCE or SET type may be composed of a list of arbitrary ASN.1 C++ types, all of

which are subtypes of AsnType by virtue of inheritance.

Both the SeqOfType<T> and the SetOfType<T> templates de�ne speci�c encode and

decode operations since both are ultimately derived from AsnType, which requires that

a derived class provide such implementations. The tag method is inherited from the

ConsType class, which is passed the tag class and tag id information as part of the tagged

type tuple parameter list. The encode method uses its presentation element argument

to call a speci�c sequence encoder method, passing in a reference to itself (*this) and

the number of elements in the sequence. The presentation element will then request tag

information by calling the inherited tag method and then incrementally encoding each of
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template<class T> class AnyType : public AsnAny f
protected:

T* any; =* any ASN.1 type *=

5

public:
...
int primitive() f return any�>primitive(); g
int constructed() f return any�>constructed(); g

10

int required() f return any�>required(); g
int optional() f return any�>optional(); g
int defaults() f return any�>defaults(); g

int encode(MetaPE* pe) f return any�>encode(pe); g 15

int decode(MetaPE* pe) f return any�>decode(pe); g

const Tag& tag() f return any�>tag(); g
g;
#de�ne ANY AnyType 20

Figure 7. The ANY type.

the elements in the sequence. The decoding method performs the reverse operation. A

similar situation occurs when encoding and decoding sets since sets and sequences share a

common representation. However, the fact that sets are unordered dictates that a slightly

di�erent encode/decode algorithm be used.

3.3. Component Types

The ASN.1 CHOICE and ANY are \containers" that do not themselves represent type

information, but rather contain one or more type instances as components. The ANY

type is represented by a container template, AnyType<T>, which can be instantiated to

refer to any de�ned type T. As shown in Figure 7, the AnyType<T> template de�nes

a method interface that maps onto the corresponding methods of the type T instance

referenced by the identi�er any. Since every ASN.1 type T is a subtype of the abstract

AsnType class, all methods will be de�ned by the object referenced by any.

A CHOICE type may be viewed as a list of AnyType<T> instances, only one of which

is valid. A CHOICE is de�ned in C++ by a ChoiceType, which is a container class

that operates much like the AnyType<T> class. Rather than presenting the details of the

ChoiceType class, we present in Figure 8 the de�nition of the EXTERNAL type, which

illustrates the use of both CHOICE and ANY.

The encoding element of the EXTERNAL type is derived from the CHOICE type, which

is simply an alias for the ChoiceType. An ALTERNATE template is used to de�ne each

element of a CHOICE. Each choice type also has an associated enumerated type that is

used to identify which alternative element is valid.
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struct EXTERNAL : public IMPLICIT<UNIVERSAL, 8, SEQUENCE> f

OPTIONAL <OBJECT IDENTIFIER> direct reference;
OPTIONAL <INTEGER> indirect reference;
OPTIONAL <ObjectDescriptor> data value descriptor; 5

struct encoding : public CHOICE f
ALTERNATE <0, EXPLICIT <CONTEXT, 0, ANY> > single ASN1 type;
ALTERNATE <1, IMPLICIT <CONTEXT, 1, OCTET STRING> > octet aligned;
ALTERNATE <2, IMPLICIT <CONTEXT, 2, BIT STRING> > arbitrary; 10

enum f typeof single ASN1 type, typeof octet aligned, typeof arbitrary g type;
g;

g;

Figure 8. The EXTERNAL type.

3.4. Recursive Types

Recursive type de�nitions present a small di�culty when de�ning C++ types repre-

senting a SEQUENCE, SET, or CHOICE. The problem is nicely handled by de�ning

elements of a SEQUENCE or SET as either an instance of a REQUIRED, OPTIONAL, or

DEFAULTS template. For example, the Passwd type de�ned previously in Figure 1 as a

subtype of the SEQUENCE type has its elements de�ned using one or more instances of

these templates. Similarly, the ALTERNATE template is used to de�ne the elements of the

CHOICE in Figure 8.

The purpose of de�ning elements of a constructed or component type with one of these

templates is two-fold: �rst, the element template adds additional semantic information

to the type that indicates how it is to be dealt should a value not be present at the time

of encoding/decoding; secondly, a level of indirection is introduced that is compatible

with the de�nition of recursive types in C++. The de�nition of a recursive type in C++

requires the use of a pointer type. The element templates each de�ne a type that when

instantiated acts as a smart pointer, which is a common abstraction technique used in

C++ to encapsulate a pointer type so that it can be treated as a �rst-class object. The

AnyType<T> class de�ned in Figure 7 is an example of a smart pointer abstraction and it

is this class that is specialized in de�ning the element templates. Hence, each element of

a SEQUENCE, SET, or CHOICE is e�ectively represented as an ANY restricted to a

single type T.

3.5. Implicit and Explicit Tag Modi�ers

Tag modi�ers have an implact on how much tag information an encoding mechanism

must encode to delineate the type of a value. A type de�ned to be explicitly tagged has

a tag formed from the concatenation of an explicitly provided tag and the tag of the

immediate type being extended. A type de�ned to be implicitly tagged has a tag that

overrides the tag of the immediate type being extended. The IMPLICIT and EXPLICIT

templates facilitate the instantiation of types that may be explicitly or implicitly tagged.
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The templates correspond to the EXPLICIT and IMPLICIT tag modi�ers de�ned by

ASN.1. The de�nition of the EXTERNAL type in Figure 8 illustrates the de�nition of both

implicitly and explicitly tagged types.

Class inheritance provides a natural mechanism for expressing explicit and implicit tag-

ging. An IMPLICITly tagged type T is instantiated using an IMPLICIT template that

inherits from the base type T provided in the template parameter list, overriding the

tag method so that the implicit tag overrides the inherited tag. Similarly, the EXPLICIT

template is de�ned to inherit from the SeqOfType<T> template, thereby overriding the

universal tag of a SEQUENCE, but inheriting the constructed form Our goal in imple-

menting the set of ASN.1 types was to cleanly separate syntax from encoding/decoding

semantics. Unfortunately, it is impossible to do this completely because an EXPLICIT

modi�er requires that the explicitly tagged type be encoded as a constructed type, which

is e�ectively equivalent to encoding a type T as though it were an implicitly tagged

SEQUENCE containing a single element of type T.

4. POLYMORPHIC PRESENTATION ELEMENTS

Given that arbitrary ASN.1 type speci�cations can be translated into a set of target

language type de�nitions, the second objective is to permit the mapping of any ASN.1 type

into a polymorphic presentation element (PE) that represents a particular transfer syntax

encoding. We take the view that this mapping is best represented as type conversion,

either implicit of explicit, between an ASN.1 type de�nition and a presentation element

type representing an encoding, such as the BER. A unique feature of this approach is

that it becomes relatively trivial to de�ne and use di�erent encoding forms; one simply

de�nes an PE<T> type parameterized with the type of the encoding rules. The encode and

decode methods de�ned in the abstract AsnType class are provided implementations by

the various derived classes to encode and decode themselves using a MetaPE type, which

is an abstract base class for an arbitrary PE<T> type (e.g., PE<BER>). The key idea is

that any of the ASN.1/C++ types can be converted into a PE<T> instance that embodies

a particular set of encoding rules. For example, we are investigating the de�nition of a

PE<ISODE> type that would allow us to encode/decode the ASN.1 objects into/from the

intermediate representation required by the ISODE presentation layer [15], which will

facilitate building C++ applications using ISODE.

The C++ types generated from the ASN.1 PasswordLookup example presented previ-

ously in Figure 1 are encoded and decoded into presentation elements that are de�ned by a

particular set of encoding rules. The mechanisms to encode and decode the ASN.1 object

to an appropriate encoded form is handled automatically in the C++ object representing

an ASN.1 type by the implementations of the encode and decode methods de�ned for

the various classes. The choice of which encoding rules to apply are controlled by the

programmer by instantiating a PE<T> instance parameterized by a type identifying the

encoding rules to apply. Figure 9 presents a short example, using the type de�nitions

from Figure 1, of the manner in which the ASN.1 types are encoded and decoded using a

BER presentation element.

12



#include "Passwd.h"

using namespace PasswordLookup; == open namespace

void contrived() 5

f
Passwd pw; == an ASN.1 Passwd object

PE<BER> arg, result; == two BER presentation elements

UserName user = "postmaster"; 10

user.encode(arg); == encode argument using the BER

if (lookupUser(arg, result) == NOTOK)
return error("lookupUser"); 15

pw.decode(result); == decode result using the BER

printf("home dir for %s is %s\n", (char*) pw.name, (char*) pw.dir);
... 20

g;

Figure 9. Example use of ASN.1/C++ types.

4.1. A Polymorphic Presentation Layer

The simple example in Figure 9 has a more realistic counterpart. A presentation service

access point (PSAP) de�nes an interface to the OSI presentation layer. A PSAP<T> object

may be de�ned that takes as its type parameter an encoding type, which drives the

instantiation of a presentation protocol machine that is parameterized by a set of encoding

rules. For example, assuming that the P-DATA.REQUEST primitive of the presentation

service is de�ned to take an ANY as its argument, di�erent PSAP types can be de�ned

that instantiate a presentation services that are parameterized by a particular set of

encoding rules. Unlike some commercial implementations of the OSI presentation layer,

a presentation layer built using a parameterized type mechanism can support a variety

of encoding rules, such as the BER, the packed encoding rules (PER), Huitema's fast

encodings [6], XDR [12] (provided that the ASN.1 types are restricted to a sensible subset),

or some customized set of encoding rules (e.g., for encryption).

PSAP<BER> psap1; // a PSAP to do BER encoding

PSAP<PER> psap2; // a PSAP to do PER encoding

ANY any;

... // set up 2 associations, negotiating transfer syntax

psap1.PDataRequest (any); // send data using BER

psap2.PDataRequest (any); // send data using PER

13



Table 1

Encoding/Decoding Performance Comparison.

Time in seconds for 50,000 operations on a SPARC 1

ASN.1 Sun/XDR C++/XDR C++/BER ISODE/BER

Type enc dec enc dec enc dec enc dec

INTEGER 0.129 0.116 0.483 0.452 0.788 0.766 2.20 1.97

STRING 0.701 0.500 1.054 0.994 0.785 1.24 2.45 2.44

SEQUENCE 1.00 0.636 1.78 2.09 2.00 2.31 7.09 6.97

CHOICE 0.745 0.525 1.47 1.35 1.01 1.64 3.62 3.67

4.2. Performance Comparison

Table 1 illustrates performance data obtained from a comparison of the encoding and

decoding times on a SPARC 1 of Sun XDR, an implementation of a PE<XDR> type that en-

codes/decodes our C++ ASN.1 types, our C++ BER implementation, and ISODE's BER

implementation (using the pepsy tool). The data was collected using a set of programs

that iteratively encoded and then decoded the data in a tight loop, without transmission

over the network. The numbers represent the time in seconds required to encode/decode

50,000 constructs. The SEQUENCE and CHOICE consist of an INTEGER and an

OCTET STRING. A complete description of the performance study and an analysis of

the results is presented in [13]. The data demonstrates that the C++ implementation has

very competitive performance and that the 
exibility obtained by separating the ASN.1

representation from the encoding/decoding rules embodied in a PE<T> object does not

adversely a�ect the performance. We are encouraged by these results. We have already

identi�ed an ine�ciency related to tag checking that is being corrected, which we ex-

pect will improve the decoding performance for all types. Our plan is to perform a more

comprehensive performance analysis of di�erent PE<T> encoding forms using Huitema's

proposed ASN.1 benchmark [5].

5. SUMMARY

The translation of ASN.1 into C++ is but one aspect of an object-oriented protocol

framework using polymorphic type structures and inheritance. This framework is the

result of an experiment at objectifying the structure of the upper layers of the ISO Refer-

ence Model [10], speci�cally focused on providing a 
exible communication infrastructure

for concurrent object-oriented applications in a multi-protocol environment. The goal

of this framework is to create an extensible and e�cient set of abstractions that facil-

itate the instantiatiation of multiple and diverse sets of communication services within

an application [17]. This object-oriented protocol development framework is called OOSI

(ooo-zi). Similar research-oriented upper layer protocol development environments that

we are familiar with include ELROS [2], OTSO [11], DAS [14], and ISODE [15]. OOSI

was in
uenced by ISODE, but is engineered for maximum 
exibility and performance.

OOSI is similar to OTSO in that both utilize object-oriented features, such as inheri-

tance, to structure protocol layers. OOSI, however, exploits type polymorphism to gain

compositional 
exibility.
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The C++ ASN.1 type abstractions presented here are the most critical part of the

presentation layer framework and these abstractions advance the state of the art for

implementing application layer services. The expressive power of object-oriented type

systems suggest that new thinking be applied to the implementation of the presentation

layer for those applications that are amenable to an object-oriented formulation. A useful

conclusion to be drawn from this work is that the data representation aspect of presen-

tation layer services are directly expressible in a language type system that supports the

de�nition of polymorphic types. This conclusion suggests that perhaps the traditional

concept of a presentation layer can be subsumed by a rich language type system.

The concepts underlying the ASN.1/C++ abstractions are similar to ideas in ELROS

of embedding ASN.1 syntax in the C language; however, our work is distinct from the

preprocessing strategy of ELROS in that inherent language type de�nition mechanisms

are used to e�ectively embed ASN.1 into native C++. Advantages of our approach to

programming with ASN.1 over others include conceptual uniformity, extensibility, and

simpli�ed debugging due to a nearly one-to-one correspondence between an ASN.1 spec-

i�cation and user-de�ned types.

A translator from ASN.1 to the C++ class templates, called caty , is currently work-

ing and a wide range of standard ASN.1 speci�cations have been translated. The class

template implementation signi�cantly reduces the amount of work required by an ASN.1

translator since the C++ compiler assumes much of the responsibility for generating the

proper types and dispatching of virtual encode, decode, and tag methods.

This work is not limited to applications based on the upper layer OSI protocols. The

ASN.1 types are independent from the protocol layers. It is our hope that the work

described here will prove useful in the development of real applications. In particular, this

work has great applicability in those applications that de�ne presentation services directly

over a transport service; for example, the Internet Simple Network Management Protocol

(SNMP) [3], the ANSI Z39.50 information retrieval protocol [1] used in implementations

of the Wide Area Information Service (WAIS) [4], and lightweight client protocols for

accessing directories or message stores.
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