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Abstract. A survey of concurrent object-oriented languages is presented.

The survey is organized around three models: the Animation Model that de-
scribes a variety of relationships between threads and objects, an Interaction

Model that classi�es the possible semantics of invocations and returns be-

tween a client object and a server object, and a Synchronization Model that
shows di�erent ways in which concurrent invocations can be managed by a

server. A number of representative languages are briey presented. The prob-

lem of synchronization in concurrent object-oriented languages is considered
in detail including a discussion of the inheritance anomaly. A synchronization

mechanism, called a behavior set , is shown to avoid this anomaly in certain

cases. The implementation of behavior sets in ACT++, an actor-based con-
current programming framework implemented in C++, is described.

1 Introduction

This survey of concurrent object-oriented programming languages is organized along

the following lines:

1. a review of historical and technical factors motivating the synthesis of concur-

rency and object-orientation.

2. a description of the most signi�cant problems confronted by designers of concur-

rent object-oriented languages, an overview of the solutions to these problems

and a summary of what appear to be commonly accepted solutions.

3. a brief overview of each of several languages illustrating attempts to integrate

the individual design solutions into a coherent language.

4. an in-depth presentation of the inheritance anomaly, and a solution to this prob-

lem, called behavior sets, which has been developed as part of the ACT++

project.

The remainder of this introductory section consider the �rst point. Subsequent sec-

tions consider each of the other points in order.

This paper relies heavily on a previous survey by Wegner [29] and a taxonomy

presented by Papathomas [23]. While di�ering in terminology and in some conclu-

sions, the thorough work of Papathomas was an especially important information

source for the survey undertaken here.

As a �nal preparatory comment, the terms \language", \object-oriented" and

\parallel" are given generous interpretations in this survey. The term language is

taken to encompass:



Fig. 1. Evolution of concurrent object-oriented programming
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The most basic memory abstraction is that of a storage location (machine byte,

word or register). This is the only abstraction in low-level assembly languages. The

earliest high-level languages introduced a �xed set of built-in types, providing greater

ease in organizing an application's data and greater safety in manipulating this

data. The provision of user-de�ned types extended to the programmer the ability to

de�ne application speci�c types that had the same standing as the previous built-in

types. The development of abstract data types recognized the importance of the

separation of the type's interface from its possibly many di�ering implementations.

Object-oriented programming adds to abstract data types the important ability to

incrementally extend an existing type.

Abstractions for a processor can also be traced by considering how programming

languages have treated the notion of control. The primitive manipulation of control,

by directly and explicitly a�ecting machine registers, was abstracted in higher level

languages through the statement structure, some of which implicitlymanaged control

(expressions) and some of which explicitly managed control (branches, loops). The

invention of the closed subroutine introduced a major control abstraction. Each

subroutine could be envisioned as an extension of the instruction set of the physical

processor. Advances in architecture and operating systems encouraged application

developers and language designers to depart from the sequential model resulting

in languages with a process concept. Coroutines, parallel tasks and their associated

coordination devices (e.g., monitors) provided an abstraction of a complete machine.

More recent operating system research has reduced the previously high cost of multi-

process applications through the invention of lightweight processes or threads.

As shown in Fig. 1, concurrent object-oriented languages unify the previously

separated abstractions for processor and memory. It is interesting to note that cur-

rent research is following the pattern of natural evolution. A large number of ex-

perimental concurrent object-oriented languages are being developed; the technical

and market forces that shape the environment of computing will select only a small

number of survivors from among this rich variety.

As opposed to the historical factors just considered, the technical factors moti-

vating concurrent object-oriented languages include at least the following four. First,

conceptual economy is achieved by unifying the processor and memory abstractions.

It is not necessary for the application developer to consider how to organize the ap-

plication's control separately from the question of how to organize the application's

objects. This is an especially important advantage in that it avoids presenting the

developer with two semantic models|one model for control and a di�erent model

for data and functions. Second, modeling �delity is enhanced in those applications

where autonomous, real-world entities are pervasive. In this case the attributes of

the real-world entity are more completely, overtly and simply reected in concur-

rent objects than would be the case if the autonomy and the functionality of the

object were realized disjointly. Third, simplicity is attained for the two reasons al-

ready present but also for two other reasons. An important goal in language design

is to focus attention on important abstractions while suppressing from attention

aspects that are irrelevant to this purpose. A concurrent object-oriented language

suppresses substantial detail about control ow management, speci�cally the invo-

cation and scheduling of object executions. By contract, sequential languages force

the developer to explicitly construct a, perhaps elaborate, invocation and scheduling
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Fig. 2. The Three Models

The selection of the three models is not intended to imply that this is the only,
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Fig. 3. The Animation Model

The most global decision about animation is the extent to which the threads

respect the boundary of an object. The �rst of two alternatives in the Animation

Model may be termed the unrelated case. In the unrelated case, threads and objects

are treated as independent concepts. An object is de�ned and created without regard

for how any thread may animate that object. Similarly, a thread is free to cross an

object's boundary and to have at a single point in time an execution history in

which any number of object boundaries have been crossed. The unrelated approach

has been used in the earliest concurrent object-oriented languages and in later low-

level, general purpose, run-time frameworks.

The unrelated approach has several advantages. First, it is easy to develop such

a language|combining any threads facility with an object-oriented language will

su�ce. Few requirements are imposed on either the language or the existing threads

package. Second, this approach is attractive in application domains that are strongly
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\activity centered" as opposed to \object centered". The activity, being directly

associated with the thread, has an explicit representation that captures the activity's

properties and maintains the activity's state.

The disadvantages of the unrelated approach are more fundamental than its ad-

vantages. First, the presence of multiple threads within a single object recreates all

of the synchronization problems that have been the bane of concurrent program-

ming from its inception. Second, the modeling advantages o�ered by object-oriented

programming are eroded by the unconstrained license given to threads in this ap-

proach. Part of the erosion results from the extraneous attributes added to objects

to cope with thread synchronization. Additional erosion results if the threads are

merely an elaborate control structure superimposed on the object structure. In this

case a signi�cant aspect of the application cannot be addressed within an object-

oriented framework. Third, and most signi�cantly, the unrelated approach fails to

advance our understanding of either the object-oriented paradigm or concurrency;

each aspect exists unchanged and, as implied by the name, unrelated to the other.

The second alternative in the Animation Model, the related approach, involves a

deeper integration of concurrency and object-orientation. In this approach a thread

exists only within an object; the thread's locus of control may not migrate beyond the

encapsulating boundary of this object. As a thread's scope of e�ect is now limited,

it is necessary to consider how a client thread in one object interacts with the thread

in a server object. The nature of this interaction is signi�cant and is considered in

the Interaction Model presented below.

The related approach allows language and system researchers to probe, and ap-

plication developers to bene�t from, the answers to two key questions:

1. Can concurrency be transparently encapsulated within an object?

2. Can inheritance be used to organize and specialize synchronization policies in

the same way that inheritance is used to organize and specialize an object's

functionality?

The answer to the �rst question is remarkably straightforward. The second ques-

tion is remarkably subtle and a complete answer remains elusive. Further consid-

eration of the second question is deferred until Sect. 4 where a partial answer is

presented. Only the �rst of these questions in considered further at this point.

Mapping threads to objects in the related approach involves two independent di-

mensions: uniformity and multiplicity. Uniformity refers to whether the object model

invests every object with a thread (the homogeneous case) or whether some objects

possess threads while other do not (the heterogeneous case). An object possessing a

thread is often termed an active objects while a passive object is used to describe an

object without a separate thread. Multiplicity refers to the number of threads that

exist within an active object. While all concurrent object-oriented languages provide

some form of concurrency among objects (inter-object concurrency), allowing more

than one thread within an object creates, in addition, a �ner level of concurrency

(intra-object concurrency). The various forms of multiplicity are considered further

below.

The �rst choice on the uniformity dimension, the homogeneous approach, o�ers

a simple view of the relationship between threads and objects; only a single proto-

col of interaction among objects needs to be understood, implemented, optimized

6



and employed. Papathomas [23] argues that homogeneous objects are more easily

reused as all objects inherently possess the ability to be used in a concurrent envi-

ronment without any synchronizing actions being required of the client. In contrast,

the clients must themselves provide the synchronization required to access passive

objects. Finally, in some languages the syntaxes or mechanisms for accessing active

versus passive objects are di�erent. Changing an object de�nition from one form to

the other requires not only internal changes to the object itself but also requires

changes to the clients of the object. This is generally viewed as contrary to the phi-

losophy of object-oriented programming where changes in the implementation of the

server should not a�ect the client.

The second choice on the uniformity dimension, the heterogeneous approach, is

argued for on the basis of both modeling and implementation. From a modeling

perspective, some objects are more usefully viewed as being passive in nature while

others are active. For example in designing an application for a library simulation,

the librarians, patrons and the wall clock might be taken to be active entities while

the books, tables and chairs might be considered passive. While such decisions vary

with changes in the modeling perspective, each perspective o�ers some important

distinction between entities that can engage in activity and entities that are the

subjects of this activity. Preserving this important modeling distinction in the ob-

ject's implementation assists in traceability and validation. From an implementation

viewpoint, having a thread in each object may not be feasible if there are a rela-

tively large number of objects and the run-time environment does not e�ciently

support lightweight threads. The performance of the application in this case will not

be acceptable.

A middle ground on the uniformity dimension is taken by languages that permit

passive objects but which require that they be encapsulated within the implementa-

tion of an active object. Thus, homogeneity is preserved at the outer (active object)

level while heterogeneity is permitted within an active object.

The �nal factor in the Animation Model is that of multiplicity. This factor de-

termines the number of concurrent threads that can executed within an object at

the same time. The �rst of the four alternatives is the sequential case in which an

active object always has a single thread of control. Such objects are simple to rea-

son about as there is no concurrency within the object boundary. Languages that

take this approach divided the world into the outer, highly concurrent part (where

concurrency is achieved by invocations among autonomous, active objects) and the

inner, sequential environment within each active object. While programming within

a sequential object is simpler, performance gain are jeopardized if the object size

is overly large so that opportunities for parallel execution are unavailable. For ex-

ample, encapsulating a large matrix in a single object makes parallel operations on

this matrix impossible. The next choice for multiplicity is a monitor-like (also called

quasi-concurrent) form. In this case, an object may have several logical threads exe-

cuting within its boundaries, but only one of these may be active at a time. Primitive

constructs (such as sleep/wakeup in monitors) or automatic mechanisms are used

to determine which of the possible several schedulable threads will execute next.

Reasoning about the internal operation of monitor-like objects is somewhat more

di�cult than reasoning about sequential ones, but there is added exibility as well.

For example, a server object that accepts requests from clients, delegates the re-

7



quests to worker tasks, and monitors the reply to the client is di�cult or impossible

to implement using a sequential object while it is straightforward to construct such

a server using the monitor-like approach. The third form of multiplicity is called the

actor form. In this case, an object may have multiple threads executing within it

subject to the requirement that only the most recently created one of them has the

ability to change the \state" of the object. The other threads may interrogate the

state of the object and may alter their own local execution state. This notion follows

directly from the relationship among the several behaviors of a given actor that op-

erate exactly as described. The fourth, and last, form of multiplicity is concurrent.

This form allows multiple threads to execute freely within an object. The weakness

of this approach is that additional synchronization needs to be added in order to

insure that the state of the object remains consistent in the face of concurrent alter-

ations. The advantage of this approach is the possible performance enhancements

that can be achieved by having multiple threads operating concurrently on large

amount of data encapsulation within an object.

2.2 The Interaction Model

The Interaction Model is concerned with the semantics of the interaction between a

client object and a server object. The two aspects of this relationship are:

1. What are the semantics of the invocation as viewed by the client?

2. How is the result computed by the server returned to the client?

If not evident, the discussion below will show that these two questions are in-

timately related. It will also be seen that concurrent object-oriented language per-

spective contributes little to the �rst questions but provides a novel perspective on

the second question. The elements of the Interaction Model are shown in Fig. 4.

An interaction between a client object and a server object is initiated by the

client's invocation that may be either synchronous or asynchronous. These forms of

interaction have been extensively studied in the operating system and distributed

computing domains; their application in the context of concurrent object-oriented

languages is unsurprising.

Synchronous and asynchronous invocations di�erent in their e�ect on the client.

A synchronous invocation causes the client to block from the time at which the

invocation is made until the time at which the server's reply is returned. By contrast

an asynchronous invocation allows the client to proceed concurrently with both the

delivery of the request to the server, the server's computation that generates the

reply and the delivery of the reply.

Neither form of interaction can claim to be inherently superior. Neither is more

\powerful" as each can be used to implement the other and each possesses disad-

vantages absent in the other. Two disadvantages of a synchronous invocation are:

1. the client is unnecessarily blocked in those cases where the client simply informs

the server of some event and expects no reply. This is a particular problem if

the server is in the condition described in the second disadvantage.

2. great care must be taken in designing a server so that, in servicing one request,

a synchronous invocation made by the server itself does not cause the server to
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Fig. 4. The Interaction Model

become blocked for such a period of time that the server cannot expeditiously

serve other clients' requests.

The asynchronous form of invocation is free from these problems. Two disadvan-

tages of an asynchronous invocation are:

1. lacking a clear structural tie to the client, it is more di�cult for the server to

return the result to the client. Some additional responsibility must be borne by

the language or the programmer to return the proper result. The lack of a clear

tie to the client also makes exception handling more di�cult. The worst case is

when a server experiences an exception in servicing the request of a client that

has already terminated because it did not expect a reply.

2. run-time bu�ering of requests (e.g., in mailboxes or ports) is required to support

asynchronous invocations. This additional expense is not justi�ed if the applica-

tion requires only, or at least predominately, synchronous forms of interaction.

These disadvantages do not occur in the synchronous case.

The choice between synchronous and asynchronous invocation semantics is prop-

erly based on the needs of the application and for this purpose two kinds of appli-

cations can be distinguished: transactive and reactive. A transactive system is one

in which the dominant issue is the sequence of actions performed across multiple

objects; the key design and implementation decisions depend from this issue. For

transactive systems a synchronous invocation is preferred because the progress of

each transaction is represented directly by the sequence of synchronous invocations

leading to the current locus of control. In reactive systems, however, the dominant

issue is how each agent maintains its integrity in the face of requests over which
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it has little, if any, direct control. Reactive systems prefer an asynchronous seman-

tics as it more directly reect the autonomous nature of the agents comprising the

application.

This discussion of the invocation semantics is concluded by noting two interesting

variations. First, a proxy object may be interposed between the client and the real

server for whom the proxy is only a representative. Proxy objects are found in

distributed system when the client and the proxy are located on the same node and

the real server is remotely located. In this case the invocation semantics between the

client and the proxy may be synchronous while the invocation semantics between

the proxy and the real server may be asynchronous. Second, a broadcast style of

asynchronous message passing may be used instead of the point-to-point form more

commonly associated with method invocation. Broadcasting may also be matched

with a form of \coordinated termination" to insure that all messages have been

received before the client resumes.

The second major aspect of the Interaction Model concerns how the server's

result is returned to the client. The alternatives are shown in Fig. 4 above. The

return semantics may be either implicit or explicit indicating whether the identity

of the object to receive the result is implicitly or explicitly known to the server.

The implicit form of return implies that the knowledge of where to deliver the

reply is carried by the structure of the invocation and cannot be altered by the appli-

cation. The most obvious case of an implicit form is the return semantics commonly

used for synchronous invocations. The invocation environment (typically a stack of

activation records) implicitly contains the identify of the client to whom the result is

returned. When the server returns, the environment is adjusted to deliver the result

to the invoking client. The implicit form may also be used for asynchronous invoca-

tions. A message, for example, may automatically be stamped with the identity of

the sender so that an implicit return can be performed by the server.

The explicit form of return allows greater exibility because the application is

permitted to control the destination to which the server's result will be delivered.

The value of this exibility is seen in the commonCoordinator-Worker model. In this

model a single Coordinator receives the clients' requests and forwards each request to

an available Worker. Upon receiving the forwarded request, a Worker computes the

required reply value and transmits this value directly to the originating client. The

Worker informs the Coordinator that it is ready to service another request. Notice

that the direct transmission of the result from the Worker to the client did not involve

the Coordinator. This is not possible with implicit returns as the result would have

to be passed from the Worker to the Coordinator and then from the Coordinator to

the client. The explicit form of return allows for the direct transmission of this value

as the Worker is aware explicitly of the identity of the originating client.

Explicit returns may take one of two forms. In one case, the by-value case, the

mechanism is a conduit through which the returned values is delivered. The server

may not know what object is awaiting the value at the receiving end of the conduit.

Variations of by-value mechanisms give some means of explicitly manipulating their

end of the conduit to either the client alone, the server alone, or possibly both. For

example, the server may be able to pass its end of the conduit to another server

as would be desired in programming the Coordinator in the Coordinator/Worker

problem. Alternatively, the client may have some ability to pass its end of the conduit
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Fig. 5. Future and Cbox usage

As shown in part (a) of Fig. 5, the future variable is created in conjunction with

an invocation. The client proceeds with its execution until an evaluation of the future

is attempted. The client will block only under the condition that the server has not
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already returned, thus supplying the value to the future. It should be observed that

the future variable is not visible to the server. The case of Cboxes, shown in part

(b) of Fig. 5, di�ers from futures in two ways. First, the Cbox is visible to the server

as an explicit argument and, second, more than one Cbox can be associated with

an invocation. Also, part (c) of Fig. 5, shows that the immediate server (function g)

may delegate all or a portion of its Cboxes to other servers. In the example shown in

part (c), function g delegates to function h the responsibility for providing a value

for the Cbox v2.

Additional factors related to futures are whether the future is �rst class and

whether it is typed. To be �rst class means that a future variable may be passed as

an argument without forcing its evaluation. The undesired evaluation of a future can

occur because the formal parameter is expecting a realized value (e.g., an integer)

and not a potential value (e.g., a future integer). The forced evaluation of the future,

unfortunately, limits the usability of the future because its scope of e�ect is limited

to the method in which it is created. The other factor related to futures is whether

the future is typed, that is whether the type of the potential value is included as part

of the type of the future itself. For example, a future that will provide an integer

value may be typed as a \future" integer or more weakly as an un-typed future.

The discussion of the Interaction Model is concluded by mentioning two other

related issues. The �rst issue, naming, is straightforward. The question here is how

the client and the server are identi�ed to each other for the purpose of an invocation.

The three alternatives are:

symmetric as in CSP where the client and the server must each name the other,

asymmetric the client must name the server but the server need not name the

client, or

anonymous neither the client nor the server name each other explicitly.

The most common usage is asymmetric. The second issue is whether the language

is statically typed. Type conformance in object-oriented languages is a deep issue.

As concurrency adds little to this issue, it is simply noted here as a factor without

further comment.

2.3 The Synchronization Model

The third element of the object model. the Synchronization Model, is the most

intricate and the most interesting of the three models considered in this review. The

framework of the Synchronization Model, shown in Fig. 6, closely parallels that of

Papathomas [24], though some terminology and organization has been changed.

The Synchronization Model considers what, if any, controls are imposed over

concurrent invocations impinging on a given object. Invocation control is considered

a synchronization issue because it involves the management of concurrent operations

so as to preserve some semantic property of the object being acted upon. As with

other synchronization problems, those invocations that are attempted at inappro-

priate times are subject to delay. Typically, the internal \state" of the receiving

object dictates which subset of invocations is permitted to occur at a given time.

Postponed invocations are those that would invalidate desired properties of the in-

ternal state. The need for this form of synchronization should be clear: guarantees
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Fig. 6. The Synchronization Model

of many semantic properties cannot be made in the absence of guarantees about the

internal state of the object. Notice that only inter-object concurrency is involved;

intra-object concurrency, if it is permitted, must be synchronized by some other

means that are not discussed further in this paper.

The two basic alternatives in the Synchronization Model are between an uncon-

ditional interface and a conditional interface. An unconditional interface implies that

invocations are free to occur without regard for the condition of the receiving object.

Notice that the application developer cannot prevent an invocation from occurring,

the developer can only attempt to control the progress of the invocation already

begun. For this purpose, a locking mechanism or condition variables are usually

provided. A monitor is an example of an unconditional interface. The unconditional

interface approach inevitably extracts a price by increasing the internal complexity

of the object. Furthermore, the code added to achieve the synchronization runs afoul

of the inheritance anomaly (discussed in Sect. 4), which limits the use of inheritance

to specialize the synchronization control. A conditional interface is one in which

an invocation is subject to postponement until its execution is compatible with the

state of the object. In this case the object boundary is exploited as a synchronizing

barrier. Synchronization is achieved by manipulating the object's boundary. The

interesting question, of course, is how such manipulation is carried out.

Two di�erent approaches to creating a conditional interface can be distinguished:

concrete and abstract. Each of these approaches creates a connection between a

pending invocation and the internal state of the object. These approaches di�er in

how the state of the object is determined, the variety of information available about

the object state and the invocation, and the mechanisms employed to achieve the

synchronization.

In the concrete case the internal state of the object is determined by direct inter-
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rogation of the object's state variables. Tests made on the internal state determine

which invocations to permit. The two identi�able forms of concrete state testing are:

guarded accepts and guarded ports.

In the guarded accept approach a monolithic, multi-way, conditional, non-deter-

ministic, fair selection is used. Examples of this approach are the guarded select in

CSP and the select construct in Ada. Such constructs are monolithic because they

are an integral whole|all of the alternatives are required to be expressed at the same

place in the object. The construct is multi-way and conditional meaning that any

number of alternatives may be expressed and each alternative may present a condi-

tion whose truth value determines whether this alternative is available for selection.

The conditions are propositions over the object's state variables. The selection is

non-deterministic to deal with the case where more than one alternative is possible

at a given time. Finally, the construct is usually de�ned to be \fair" in its selections

so that a pending and selectable invocation is eventually allowed to proceed.

The subtle disadvantage of a guarded accept, implied by its monolithic nature,

is that it interferes with the inheritance mechanism in two ways. To illustrate the

�rst form of interference, consider an object de�nition that is based on a guarded

accept construct. Now consider the problem of creating a new object de�nition from

the existing one by inheritance. Since the guarded accept is monolithic, the subclass

must provide its own guarded accept for all methods, both its own new or rede�ned

methods in additional all of the inherited methods. Such necessity is contrary to

the intent of inheritance to provide an incremental de�nition. It is precisely this

incremental de�nition of the concurrency control that is lost by the guarded accept.

The second form of interference is a weakening of encapsulation. Since the inheriting

de�nition must completely reestablish the guarded accept, it must have extensive

knowledge of the existing de�nition's state variables in order to properly form the

guarded accept's conditions.

In the guarded port approach an invocation is placed in a port associated with

the method being invoked. Each such port may be opened or closed depending on

tests made of the object's state variables. The statements to open or close any port

may be placed in any method of the object. For example, consider a bounded bu�er

object with methods named put and get, which are associated with ports of the

same name. At creation only the object's put port is opened. If the bu�er contains

at least one element and is not full both the put and get ports would be opened.

Finally, if the bu�er becomes full, the put port is closed.

The guarded ports approach is more exible than the guarded accept approach

because it is not monolithic. However, this does not completely remove the defects

in inheritability and encapsulation cited earlier for guarded accepts. These defects

persist because the code to manipulate the ports is intimately interwoven with the

code to perform the manipulation of the object's state. There is no clear separation

between these two distinct, but related, aspects of the object. As with the example of

guarded accepts, an inheriting de�nition might need to have extensive knowledge of

the existing de�nition's state variables and port names in order to add or rede�ne a

method. Such knowledge would be required because the new or rede�ned method's

actions of opening or closing ports has an obvious a�ect on the other inherited

methods.

The second major kind of conditional interfaces is termed abstract to reect
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the fact that some abstraction exists to separate the synchronization aspects of the

object from its functional aspects. The separation thus achieved overcomes the dif-

�culties seen above with inheritability and encapsulation. In one approach, termed

\behavioral", the abstraction is based on a description of the object's behavior ex-

pressed as a subset of currently available methods. In the other approach, termed

reective, an abstraction of the object's underlying execution mechanism is exposed

to explicit manipulation.

In the behavioral case an object is seen as projecting a time-varying interface to

its potential clients. At di�erent times, a client observes di�erent interfaces being

projected by the server depending on the server's current condition. The projected

interface changes in accordance with changes in the internal state of the object.

The internal state of the object and its projected interface are linked through state-

testing predicates that are programmed or are available implicitly. Synchronization

is achieved by an enforcement mechanism that guarantees that an invocation is

suspended until the projected interface contains the method named in the invocation.

Thus, no invocation can occur when the server is in a state that is incompatible with

the invocation. The term \behavioral" is used because this view of an object is similar

to the notion of observable behavior used in CCS [20] and other similar theories of

concurrency. Each projected interface is a subset of the maximal statically de�ned

interface of the server. In this way the usual static type-checking rules can be applied.

In the reective approach, the execution of an object is open to inspection and

alteration by a \meta-object". In the general case, the meta-object is itself an object

that can be inspected and altered by a meta-meta-object, and so on. This general

reective mechanism can be used for object synchronization by placing the synchro-

nizing aspect of an object in that object's meta-object. For example, whenever the

object is the target of an invocation, the meta-object inspects the state of the receiv-

ing object and alters the execution of the object as necessary. If the meta-object's

inspection indicates that the object is in an inappropriate state for the invocation to

occur, the invocation may be preserved for later execution. When the object �nishes

the execution of a method, the meta-object again intervenes and determines if there

are any postponed invocations that are now compatible with the state of the object.

Since the meta-object has access to the structure of the object, the meta-object can

perform the state testing necessary to determine whether an invocation is compatible

with the object's state.

3 A Survey of Several Languages

In this section a variety of concurrent object-oriented languages are briey described.

The description of each language is related to the element of the Object Model

presented in the previous section. In most cases, example programs are shown to

illustrate signi�cant language features. The authors readily admit that this set of

example languages is limited in two ways. First, space limitation preclude the inclu-

sion of all concurrent object-oriented languages. Languages have been included that

are well known, known by the authors, or possess an interesting set of features or

an interesting approach. Second, each language is only briey described and justice

is certainly not done to the language as a whole, particularly for rich or complex
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languages. This survey should be viewed as only highlighting certain features of each

language.

3.1 ACT++

While the ACT++ framework for concurrent object-oriented programming and, in

particular the concurrency control mechanism used in ACT++, will be presented in

the next section, a brief description is given here for comparison purposes.

ACT++ is a class hierarchy developed in C++. This hierarchy provides the pro-

grammer with abstractions for concurrent programming based on the actor model of

computation [1]. An application in the actor model is comprised of a number of ac-

tors, autonomous agents that execute concurrently and reactively in response to the

arrival of messages. Message passing is one-way and asynchronous. An actor has a

mail queue to hold messages that have been received but not yet processed. An actor

has a distinguished current behavior that processes one of the queued mail messages.

At some point in its execution the current behavior establishes a \replacement" be-

havior to processes another message from its queue. The replacement behavior is

established by a \become" operation. It is possible to use the become operation so

that the current and the replacement behavior execute concurrently, by executing

the become operation before the current behavior �nishes. Alternatively, by placing

the become operation at the end of the execution of the current behavior, a serial

execution is enforced. In addition to the become operation, an actor may send mes-

sages and create new actors. The ACT++ framework provides classes for the basic

elements of this model: actor, behavior, message and their associated operations.

In terms of the language taxonomy presented in the previous section, ACT++

uses a related approach in the Animation Model, threads are only permitted to ex-

ecute within the boundary of an actor. ACT++ was intended to be used to de�ne

homogeneous objects. However, there are two ways in which heterogeneous objects

may be used. First, a behavior may internally implement some number of passive

objects. Second, since ACT++ is based on C++ it is possible to de�ne passive ob-

jects that are passed among actors or that are operated on concurrently by several

actors. It should be noted, however, that this second case falls outside of the scope

of the intended model of computation. The multiplicity employed by ACT++ is the

actor form of concurrency. In terms of the Interaction Model, ACT++ uses asyn-

chronous invocations and results are conveyed explicitly though Cboxes. Finally, in

the Synchronization Model, ACT++ uses a behavioral form of an abstract, condi-

tional interface through a mechanism called Behavior Sets.

While a more complete example is given in Sect. 4, a brief example of bounded

bu�er behavior is given in Fig. 7. In this example, only the skeleton of the syn-

chronization code is shown. The Bounded Bu�er class contains three behavior sets

initialized by the constructor to contain (the address of) the in method, the out

method and both of these methods. Two state testing functions named empty and

full are de�ned to determine the bu�er's condition. The key aspect of the synchro-

nization technique is the nextBehavior method. The nextBehavior method uses

the state testing functions to select among the three de�ned behavior sets. Using

the become method (de�ned in the class Actor), the selected behavior set is used

to control the selection of the next message accepted by the actor, namely the next
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Fig. 7. A bounded bu�er in ACT++

3.2 ABCL

ABCL is the name given to a family of languages. Only the features of ABCL/1 [30]

are described here. Like ACT++, ABCL/1 is an actor-based language. All objects

are homogeneous and each object may be described as serialized, meaning that its

execution is sequential, or unserialized, meaning that it may be executed concur-

rently without restriction. In this way, ABCL/1 supports two forms of multiplicity
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both of which may be used in a single program. The underlying Interaction Model of

ABCL/1 is asynchronous message passing with an explicit form of return. However,

syntactic structuring allows a variety of others forms to be used. For example, while

the basic form of interaction is asynchronous, the syntax of the language allows

the programmer to discriminate three variations of invocations: past type, which is

strictly asynchronous; now type, which is a synchronous send; future type, in which

a future variable is passed as part of the invocation. Two variations of the explicit

return are supported in the language. The �rst form is of the future variety. In this

case the sender speci�es a future variables as part of the invocation and this is pat-

tern matched in the server as a vehicle for delivering the reply. The second form is of

the destination variety. Thus, an invocation message bears a reply point indicating

to what object the result should be delivered. The reply point is available to the

server object as a pattern-matched variable. The language allows the programmer

the exibility of using an implicit form of return, in which the default reply desti-

nation (the reply destination speci�ed by the sender) is used. The Synchronization

Model used in the original ABCL/1 language was a guarded accept form. A select

statement allowed queued messages to be pattern matched against the alternatives

of the select. One of the messages satisfying a pattern matching would be selected

for execution. It should also be noted that a later variant, named ABCL/R [28], use

a reective form of synchronization control. Two other minor observations about

ABCL are the following. First, inheritance is not supported in the base language.

Instead of form of task delegation is used, Second, messages may be sent in either

normal mode or express mode. Express mode messages provide a means of interrupt-

ing the normal processing of a message by a server. This useful facility is lacking in

most other concurrent object-oriented languages. An example of ABCL/1 is shown

in Fig. 8. In this example a three element bu�er is created and its use by a producer

and consumer are illustrated. Note that an object consists of a state part (private

data of the object) and a script part (the methods or operations de�ned by the

object). In the put method the use of the select construct can be seen. When the

bu�er is full an arriving put method cannot be executed. Thus, the select construct

is executed to await the arrival of a get method that will create empty space in the

bu�er. After such a get method has been executed the put method can be resumed

to store the provided value in the bu�er.

3.3 Hybrid

The Hybrid language and run-time system [21] employs homogeneous active objects

that use a monitor-style form of multiplicity. Recall that this allows an object to

have at most one active thread at a time from among several threads that may

execute within the object at di�erent points in time. A mechanism called a domain

provides additional structuring of objects and threads. A domain is viewed as a

\top-level" object that may encapsulate several lower-level objects. It is the domain

that is subject to the monitor-style control of thread execution. By implication, this

restriction extends to all of the objects within a domain. Hybrid uses a synchronous

form of invocation with implicit return. However, to gain need exibility the language

also de�nes a \delegated" form of invocation. In a delegated invocation, the thread of

the client is suspended until the server returns. While the client thread is suspended,
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Fig. 8. A three element bu�er in ABCL/1

another thread within the same domain as the client may be scheduled for execution.

When the server returns the client thread is unblocked and will be scheduled to

resume its execution at some time when its domain is idle. The Synchronization

Model used by Hybrid is that of guarded ports, which are termed delay queues.

Each operation of an object may be associated with a delay queue. An operation

can only be invoked when its delay queue is open. The opening and closing of delay

queues is done by code within the object's methods.

The synchronization aspects of Hybrid are illustrated in the example shown in

Fig. 9. This example shows the familiar bounded bu�er. The abstract part of the

type description declares that invocations of put and get operations are controlled

by a delay queue. The name of the delay queues is not relevant in the abstract

type description. In the private part of the type de�nition two speci�c delay queues,

putDelay and getDelay are created. The init method opens the putDelay queue

(thus allowing the put method to be invoked) and closes the getDelay queue (thus

forbidding a get method to be invoked as the �rst operation of the bounded bu�er).

The put method opens the getDelay queue (as a get method is now possible) and

possibly closes the putDelay method when the bu�er is full (to prevent the bu�er

from overowing).

3.4 Procol

The Procol language [16, 27] incorporates a wide variety of interesting features in-

cluding constraints and object persistence. The brief survey given here cannot do

justice to the full scope of this language.
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Fig. 9. Use of delay qeues in Hybrid

Objects in Procol are sequential and homogeneous. Two kinds of methods may

be speci�ed for an object: \actions" and \intactions". Actions are normal methods

or operations. An intaction has the capability of interrupting the execution of an

action. In this case the thread executing the action is suspended, the intaction is

executed and the suspended action thread is then resumed. An intaction itself may

not be interrupted by another intaction. Intactions are similar to express messages

in ABCL/1.

Objects communicate through two message passing operations. A one-way asyn-

chronous send operation is provided along with a synchronous request operation.

The later operation is used when a return value is expected. To provide exibility

to the server, a form of delegated send is also included in the language. Similar

to delegation in Hybrid and other languages, a delegated send allows the server to

transfer to another object the responsibility for providing the return value needed

by the client. One interesting feature of the send operation is that the target (the

object to receive the message) may be indirectly named by specifying only the type

of the target, not an instance of this type. In this case the message is delivered to

any one instance of the speci�ed type.

Return values are handled by an explicit form in which the server speci�es the

destination to which the result is to be sent. The common case is expressed as send
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Fig. 10. A protocol declaration in Procol

The authors of Procol draw special attention to the clear separation between the

speci�cation of the protocol and the de�nition of the actions.

3.5 Pool-T

The Pool family of languages was developed speci�cally to support parallel pro-

gramming. Philosophically these languages in this family are designed to be small,

compact, cohesive languages with well understood interactions among its features.

In Pool-T [3] all entities are objects, all objects are sequential, and all objects

communicate with each other via synchronous message passing. As is usually the
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case with synchronous invocations, the receiver of a server's return value is known

implicitly by the server. One minor exception to the use of synchronous message

passing allows an object to communicate with itself (i.e., invoke one of its own

methods) through a simple function call. The exception is necessary to avoid self-

deadlock when using the selective message acceptance mechanism described later.

Unlike many other concurrent object-oriented languages, Pool-T objects are \ac-

tive" and not \reactive". That is, a Pool-T object may execute without the need

to be enlivened by an arriving message. Each object has a \body" part that begins

executing when the object is created. The body, at its own discretion, may choose

to block in order to allow an invocation of one of its methods to occur. Since all

objects are sequential, the body of an object and one of the object's methods cannot

execute concurrently. When the body wishes to allow an invocation, the body exe-

cutes an \answer" statement that names a list of methods. A single invocation of a

method named in the answer's list is selected for execution. For additional exibility,

an Ada-like select construct also exists. This allows conditions to be associated with

the acceptance of an invocation for a method. Thus, the Synchronization Model used

in Pool-T is the guarded accept form of a concrete, conditional interface.

Two minor observations about Pool-T are the following. First, a server may

\return", thereby unblocking the client, and yet continue in the same method to

complete post-processing actions in parallel with the resumed client. Second, passive

objects may be created by declaring an object with no body. In this case a default

body is supplied. The default body simply accepts messages in sequential order.

3.6 ESP

The Extensible System Platform (ESP) [17] was develop at the Microelectronics and

Computer Technology Corporation (MCC) as the software component of a research

e�ort to develop exible hardware and software components for building parallel

systems. One of the major design goals of ESP was to retain as much as possible

the syntax and semantics of C++ programming in ESP. Ideally, the parallelism of

ESP would be transparent to the application developer. The ESP system is most

appropriately used for distributed memory machines as it employs a medium-grain

concurrency and fairly substantial kernel for object management and messaging.

In ESP all objects are homogeneous. However, as with several other concurrent

extensions to C++ (e.g., ACT++), an ESP object may de�ne as part of its local state

information arbitrarily complex passive C++ entities. ESP objects are sequential.

Concurrency in ESP, therefore, arises from the concurrent execution of di�erent

objects on di�erent machines. By using the \placement syntax" of the C++ new

operation, the programmer is given the ability to control or inuence the placement

of objects on the nodes comprising the execution environment. The programmer is

able to specify the exact node on which the created object must run, specify that the

object must (or must not) execute on the same node as another object, or specify

that the object may execute on any node, thus allowing the system's load balancing

strategy to decide on the object's placement.

The Interaction Model in ESP provides an asynchronous invocation mechanism

matched with a future style of return by-value. Both of these promote higher levels

of concurrent execution. The futures, however, are not �rst-class. An attempt to
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pass a future as an argument results in blocking until the value of the future is

available. This form of future is more limited than that available in Eifell// or

Mentat (both described later). However, ESP provides exible ways of manipulating

futures through a \future set". As implied by the name, the programmer may create

a set of future variables associated with invocations that are in progress. It is then

possible, for example, to await the availability of any one of the futures in the future

set or await all of their availability.

The Synchronization Model in ESP is based on a technique called \method lock-

ing" that allows an object to lock or unlock its methods. When locked, a method

cannot be invoked. Messages that would cause the invocation of a locked method are

held pending in the object's mail queue until the method is unlocked. This form of

synchronization falls in the category of a guarded ports style of concrete, conditional

interface.

3.7 Ellie

A distinguishing aspect of the Ellie language [4] is the pervasive use of �ne grain

concurrency matched with a strategy for compile-time grain adaption. The aim of

grain size adaption is to allow the compiler to aggregate several �ne grain concur-

rent objects into one larger grain object in order to achieve more e�cient execution

on the target architecture. This approach confronts directly the phenomenon that

di�erent machine architectures support di�erent grain sizes with varying e�ciencies.

For example, a massively parallel shared memory architecture will work better with

�ne grain objects than with large grain objects while the reverse is true for a dis-

tributed memory parallel machine or a distributed collection of workstations. The

goal of Ellie is to allow the programmer to describe the solution to the problem while

leaving the details of the grain size selection to the compiler. It remains to be seen

how completely this goal can be achieved.

In Ellie, as in Pool-T, all entities are objects. Each object has a single associated

process. Thus, Ellie is a homogeneous, sequential related object model. The language

di�erentiates between functions, methods that have no side e�ects, and operations,

methods that may have side e�ects. This distinction allows immutable objects to be

recognized and used e�ciently in a parallel environment as the immutable object

may be freely copied.

Invocations in Ellie are synchronous. The value return mechanism distinguishes

between \bounded processes"s that act like a synchronous invocation and `un-

bounded processes" that act like a future. A bounded process is created to execute

a method that is a regular function or method. Invocations of methods declared as

\future functions" or \future operations" cause the creation of unbounded processes.

Thus, the Interaction Model used in Ellie is synchronous and provides an explicit

return mechanism through futures.

Delegation is also provided in Ellie through a mechanism called \interface inclu-

sion". The following example is provided in [4]:

export local 1, (local 2), (local 3).(remote 1, remote 2)

When given as the export interface of object X, the above declaration implies

that the interface of X is taken to be the union of:
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Fig. 11. Controlling the accept interface in Ellie

An example of an accept interface is given in Fig. 11. A semaphore object is

de�ned with an accept interface of accept wait, signal;. In each method, the

include statement de�nes a new accept interface. (The include statment is mis-

leading since it does not add the speci�ed names to the accept interface; but rather

its de�nes a new accept interface). Thus, when the integer val reaches zero, the

wait operation is removed from the accept interface. When a method's name is

not in the current accept interface, processes trying to invoke that operation are

suspended. Therefore, when val is zero processes trying to execute a wait method

will be delayed in accordance with the usual understanding of a semaphore. When

a signal operation is performed, so that val has the value one, the wait operation

is reinserted into the accept interface. A process suspended on the wait method
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would now �nd the method available in the interface and its invocation could then

be initiated.

3.8 Sina

The Sina language [5, 26] makes straightforward choices in its Animation and In-

teraction Models. Invocations in Sina are synchronous with an implicit return. In

the Animation Model, all objects are uniformly active. The language, however, is

somewhat ambivalent in its position on multiplicity. By default the Sina preproces-

sor generates only sequential objects. However, the user may override this default, in

which case all objects have unrestricted concurrency. The language thus o�ers both

of the two extreme choices in this factor. Note, however, that these two alternatives

cannot be combined in a single application.

The most interesting aspect of Sina is its Synchronization Model that uses a

technique called \composition �lters". The basic concept is that a message is subject

to screening by any number of �lters. The �lters are applied in an ordered determined

by the object's de�nition. An invocation occurs only when a message passes through

all of the �lters de�ned for the target object. A �lter is created out of conditions,

predicates over the state variables of the object. Thus, Sina synchronization falls

into the behavioral class of an abstract, conditional interface.

The composition �lters mechanism will be explained by reference to the example

in Fig. 12, which shows the de�nition of a synchronized stack. First, note that the

object de�nition is divided into an interface part and an implementation part as

indicated by the keywords. In the interface speci�cation, the keyword internals

introduces private data members of the class. An instance of a prede�ned unsyn-

chronized class named Stack is declared as a private member of the SyncStack class.

The keyword conditions introduces named condition variables. The implementa-

tion of these conditions is given in the implementation part. In this example the

NonEmpty condition is de�ned in terms of the size of the internal inStack member.

The Inputfilters keyword introduces the �lters to be applied to incoming mes-

sages. In this example there are two input �lers. The �rst input �lter is named sync

and is of type Wait. This �lter declares that the pop method can only be invoked

when the NonEmpty condition is true; all other methods except pop can be invoked

at any time. The second input �lter is named disp and is of type Dispatch. This

is a prede�ned type of �lter that indicates that all of the methods of the inStack

member may be invoked. A �lter of type Dispatch is used to indicate that any

message that succeeds in reaching this �lter may be invoked.

Sina also allows synchronization counters to be included in the de�nition of �lters.

The standard object model de�nes a number of such counters including dispatched,

completed and received that indicate how many messages are in each of these states.

3.9 Presto

Presto [6] is a C++-based framework for parallel programming of shared memory

multiprocessors. The goal of Presto is to provide low-level mechanisms for developers

to create specialized, domain-speci�c abstractions. One kind of \developer" are those

experimenting with various concurrent programming models that are more highly
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Fig. 12. Example of Sina composition-�lters

structured than is Presto itself. That Presto has had some success in achieving this

goal is evidenced by the ACT++ system described earlier, which is implemented

using Presto. Thus, Presto is in the unrelated class in the Animation Model in

keeping with its role as a low-level, neutral base.

In terms of the Interaction Model, both synchronous and asynchronous invo-

cations are possible. The synchronous style of invocation is that of the base C++

language. The asynchronous form of invocation is provided via the threads manage-

ment facilities. Fig. 13(a) shows the basic facility of asynchronous invocation. In this

example a stack, S, is created. Also created is a thread, t, which will asynchronously

execute the push method on object S. The single argument of the push operation is

the integer value 43. Notice that the argument list cannot be type checked against

the de�nition of the push method. Notice also that the implementation of the stack

is unaware of the fact that it is being invoked asynchronously. Figure 13(b) illus-

trates how multiple threads can be created to perform matrix multiplication. In this

usage, the Matrix::multiplymethod creates concurrency that is transparent to the

client. Also observe that the multiply method can be invoked either synchronously

or asynchronously without any change to the Matrix class itself. Finally, return val-

ues are handled implicitly. For an asynchronous invocation, a thread join operation

is provided by which the return value can be extracted from a thread previously

started in some method.

The Presto Synchronization Model is an unconditional interface. To provide basic

mechanisms for creating more structured interface semantics, Presto provides prim-
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Fig. 13. Presto thread operations

itive locks and a monitor-style set of facilities. These basic synchronization tools

allow low-level control of the invocation process to be created. This is possible since

the threads facility is implemented as a C++ class that can be subclassed to create

other forms of asynchronous invocations. Alternatively, a thread may be created only

when an invocation has been accepted, rather than when the invocation is initiated.

This later strategy is used in the ACT++ system.

3.10 Guide

Guide [15] is a language developed for the programming of distributed applications

that manipulate permanent data. The language and an operating system (also called

Guide) were developed at the University of Grenoble. Aside from the features ex-

plicitly considered below, Guide provides a separation between the type hierarchy

and the class (implementation) hierarchy, distribution transparency and automatic

persistence.

Like Presto, Guide falls in the unrelated class in the Animation Model. A distinc-

tion is drawn between passive, persistent objects and the execution vehicles, called

\jobs" and \activities". A job represents the execution of an applications that con-

sists of several activities. Activities are created by means of a simple cobegin-coend
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construct.

The Interaction Model provides synchronous invocations and implicit returns.

The Guide programming paradigm is one in which jobs or activities operate directly

on passive objects and, if communication or synchronization is desired, coordination

is achieved through shared passive objects. The shared passive objects are provided

with synchronization mechanisms to safeguard their internal consistency in the face

of concurrent invocations.

The Synchronization Model of Guide is a behavioral form of an abstract con-

ditional interface. A passive object may regulate the sequence of invocation that it

accepts through the speci�cation of a control clause. The control clause may name

one or more methods de�ned in the object and, for each method, list an \activation

condition". The activation condition is a predicate that must be true in order for

the method with which it is associated to be invoked. The activation condition may

refer to instance variables de�ned in the object, the actual parameters contained in

the invocation and special \activation counters". The activation counters, similar to

those de�ned in Sina, provide counts of the following for each method: the number

of invocations of the method, the number of accepted invocations of the method and

the number of completed executions of the method. Other conditions may de�ned

in terms of these basic ones.

An example of the use of the Guide mechanisms is shown in Fig. 14. In this

example the implementation of a typical bounded bu�er is given. The interesting

aspect of this example is the control clause at the end of the class de�nition. This

clause speci�es constraints on the invocations of both the Put and Get methods.

The activation condition associated with the Put method states that the number

of complete Put invocations (each adding an element to the bu�er) cannot exceed

by more than the size of the bu�er the number of complete Get invocations (each

removing an element from the bu�er). Furthermore, the activation condition also

insist that no Put methods are executing concurrently. The activation condition for

the Getmethod requires that the bu�er is not empty (i.e., that more Put invocations

have completed than Get invocations).

3.11 Ei�el//

The primary goal of Ei�el// [8], a concurrent extension to the Ei�el language, is to

achieve performance improvements with as few changes as possible to an application

developed as a non-concurrent Ei�el system. This goal is similar to that of ESP,

which retains the programmingmodel of C++ but allows for transparent distributed

execution. In Ei�el// class inheritance is used extensively to achieve its goals.

In terms of the Animation Model, Ei�el// uses a related approach that is ho-

mogeneous and sequential. The language is classi�ed as homogeneous because, even

though both active and passive objects are permitted, passive objects are required

to be private objects of an single active object. This restriction is similar to that in

ACT++. In Ei�el//, passive objects are passed among active objects only by value

(i.e., by a deep copy). Each active object is a member of a class derived from the

prede�ned base class PROCESS. A distinguished method, Live, is provided by the

PROCESS class, but may be rede�ned in a subclass. The Live method, automatically
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Fig. 14. Synchronization of a passive object in Guide

invoked when the object is created, de�nes the script or code for the active object.

The default Live method accepts messages in FIFO order.

In terms of the Invocation Model, the language uses asynchronous invocations

and returns values by a mechanism termed \wait by necessity". This return mecha-

nism is an explicit return, by-value in the style of futures. As in other future mecha-

nisms, an invocation immediately yields an \awaited object". An attempt to access

the value of an awaited object causes the accessing process to block. A powerful as-

pect of Ei�el// is that the awaited object can be passed as an argument or assigned

to another object without blocking. Only the explicit attempt to obtain the value of

the awaited object causes blocking to occur.

The Synchronization Model provided by Ei�el// is an interesting one and is

similar in many respects to the behavior set concept in ACT++, which is detailed

in the next section of this paper. The technique employed in Ei�el// is that of a

behavioral form of an abstract, conditional interface. The key concept in Ei�el// is

that both \routines" (i.e., methods) and \requests" (e.g., invocations) are �rst class

objects amenable to manipulation by the provided base classes in Ei�el// and by

the application developer. To support the desired synchronization structure two base

classes are provided, ROUTINE and REQUEST . The operator & applied to a routine

yields an object of type ROUTINE. Mechanisms are also available to examine the set

of REQUEST objects pending at a given object.

Synchronization in Ei�el// will be illustrated with reference to the example in

Fig. 15. This �gure shows the skeleton of the ABSTRACT PROCESS class, derived from

the PROCESS base class, and the ABST BUFFER class derived from both the FIXED LIST

and ABSTRACT PROCESS classes. The key elements in the ABSTRACT PROCESS class

are the routines associate and synchronization. The synchronization routine is
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Fig. 15. Synchronization in Ei�el//

3.12 Mentat

Mentat [10] is both a language and run-time system. The Mentat Programming

Language (MPL) is based on C++. The primary goal of Mentat is to allow the

same application to be run across di�erent parallel architectures with no changes in

the application itself. This goal is achieved by compile time analysis of the program

written in MPL. In this sense Mentat is similar to Ellie in its use of compiler tech-

nology to support parallel programming. However, Ellie uses �ne-grain concurrency

while Mentat uses a courser grain of concurrency. The Mentat compiler translates

from MPL into a macro data ow representation that is then analyzed to discover
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inherent parallelism. The C++ code generated by the MPL compiler is executed in

the Mentat virtual machine environment. Portability across di�erent machine archi-

tectures is achieved by porting the Mentat run-time system. The authors of Mentat

report that they regularly write Mentat programs that run unchanged across shared

memory and distributed memory machines.

The Mentat language takes a homogenous and concurrent approach in the Ani-

mationModel. Each Mentat object is active and concurrency is achieved both among

Mentat object (inter-object concurrency) and, possibly, withinMentat objects (intra-

object concurrency). The Mentat compiler, of course, plays a key role in discovering

and exploiting such forms of concurrency although inter-object concurrency is fairly

apparent in the structure of the Mentat program itself.

The Interaction Model in Mentat uses asynchronous invocations and a value-

based form of explicit returns, which is similar to a future. The di�erence between

the Mentat return mechanism and a future is that the future in Mentat is implicit.

The programmer simply declares the invocation and names the variable to receive the

return value. Since the invocation is asynchronous, the value of the return variable

is initially unde�ned. However, the Mentat compiler generates code that allows the

continued execution of the sender until such time as the sender actually needs the

return value. In addition, as in Ei�el//, the variable to receive the result value may

be passed as an argument or used in an assignment without causing the execution to

block. Mentat carefully records all objects that are dependent on the return value.

When the invoked method �nally returns, via the \return to future" (rtf) primitive,

a result value is delivered to all objects awaiting the value.

An important measure of Mentat's success, and for other similar approaches as

well, is the speed-up that can be obtained across di�erent machine architectures.

In [10] the following performance data is reported for Mentat. Two applications,

matrix multiply and Gaussian elimination, were run on two di�erent machine archi-

tectures, a network of eight Sun workstations and a 32-processor Intel iPSC/2. For

the matrix multiply problem of size 400 a maximum speed-up of between 6 and 7

was obtained on the Sun workstations and a maximum speed-up of between 18 and

20 was obtained on the iPSC/2 for a matrix size of approximately 300. For the Gaus-

sian elimination problem, a maximum speed-up of approximately 4 was obtained on

the Sun workstations for a matrix of size 500 and a maximum speed-up between 12

and 14 was obtained on the iPSC/2 for a matrix of size 350. The Mentat authors

acknowledge that better speed-up could probably be obtained in each case by spe-

cialized programming for each individual architecture. They argue, however, that

the simplicity and portability of the Mentat approach is ultimately of higher value

especially given the rapid advances in parallel processing architectures and the need

to execute applications on di�erent architectures throughout their lifetimes without

the substantial cost of re-egineering the application for each new architecture.

4 The Inheritance Anomaly and its Solution in ACT++

In a concurrent object-oriented language, one would like to be able to inherit behav-

ior and realize synchronization control without compromising the exibility of either

the inheritance mechanism or the synchronization mechanism. A problem called the
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inheritance anomaly [19] arises when synchronization constraints are implemented

within the methods of a class and an attempt is made to specialize methods through

inheritance.

In this section, concurrent object behavior is formalized using the equational

notation of the CCS [20]. The formalization facilitates a characterization of the

fundamental cause of the inheritance anomaly, and leads to the de�nition of a set

of conditions that are necessary for inheritance and synchronization constraints to

coexist in concurrent object-oriented languages.

For those not familiar with the inheritance anomaly, the problem is reviewed in

Sect. 4.1. Those familiar with the problem maywish to continue with Sect. 4.2 where

the notation of CCS is used to characterize and reason about the behavior of a con-

current object. The characterization results in the de�nition of the set of conditions

that are necessary to avoid having to reimplement synchronization constraints when

specializing a class. Section 4.3 demonstrates that the characterization is applicable

to real programming problems. Two examples are given that show that behavior sets

can be implemented in C++ extended through inheritance to support Actor-style

concurrency.

4.1 The Inheritance Anomaly

An object is an encapsulation of state and code in the form of instance variables and

methods, respectively. In object-oriented languages, the declaration of the types and

names of instance variables and the signatures of the methods are typically declared

in an explicit class de�nition. The class de�nition serves as a contract between objects

of that class and clients or subclasses that intend to use instances of the class. A

subclass is a specialization of a particular class. Specialization is achieved through

the class inheritance mechanism.

In standard object-oriented models, all the methods declared in a class de�nition

are always available for execution by a client regardless of the internal state of an

object of that class. The class implementor typically provides, within the implemen-

tation of each method, the code necessary to determine whether or not the object is

in a state in which execution of the requested method is appropriate.

For example, a stack object with a pop method must �rst verify that the stack is

non-empty before proceeding. Typically, the pop method will return an error value

indicating that an underow condition has occurred. The traditional mechanism for

communicating the underow condition to the client requires an overloading of the

return type of the method; that is, the return value is outside the domain of values

returned by a legitimate operation. The client of the stack object must be aware

of this value and always verify that either the stack is a state consistent with the

required operation or check the return value of each operation. Alternatively, an

exception mechanism might be used.

A non-standard object-oriented model can be de�ned in which the collection of

methods in a class de�nition are partitioned into subsets with respect to the values

of the state variables of an object. Depending on the object state, only a subset

of the methods declared in the class de�nition are available for execution at any

one time. In a sequential object-oriented language, an object interace with these

semantics may or may not be useful. In a concurrent object-oriented language, an

32



interface mechanism based on such semantics provide a natural and elegant means

for expressing synchronization control.

In this section only concurrent objects that by necessity employ some form of

synchronization control are of interest. Of particular interest is the specialization of

the synchronization constraints de�ned as part of the representation for such objects.

The concurrent behavior of an object is captured in part by the static class de�ni-

tion of the object and in part by the dynamic mechanism employed by the method

interface to guarantee synchronization. The inheritance anomaly occurs when an

attempt is made to specialize concurrent behavior using an inheritance mechanism.

The anomaly occurs when a subclass violates the synchronization constraints as-

sumed by the base class. A subclass should have the exibility to add methods, add

instance variables, and rede�ne inherited methods. Ideally, all the methods of the

base class should be reusable. However, if the synchronization constraints are de�ned

by the superclass in a manner prohibiting incremental modi�cation through inher-

itance, the methods cannot be reused, they must be reimplemented to refelect the

new constraints; hence, inheritance is rendered useless. Recent work on the prob-

lem has demonstrated that the anomaly occurs across a spectrum of concurrent

object-oriented languages, regardless of the type of mechanism employed for spec-

ifying synchronization constraints [2, 7, 12]. A deeper issue is that the concurrent

object-oriented research community does not yet have a good semantic model that

relates the type features and the concurrency features of concurrent object-oriented

languages. In the following, the inheritance-synchronization conict is addressed in

a formal way. A formalism is presented that exposes the essential elements of con-

current object behavior and leads to conditions that must exist if the inheritance

anomaly is to be avoided.

4.2 De�ning Concurrent Object Behavior

The behavior of an object is de�ned by the set of messages that the object will

accept at a given point in time; or alternatively, the set of methods that are visible

in the interface of the object upon receipt of a message. From this perspective, the

behavior of an object is its observable behavior since all that is relevant is how the

object appears to those clients that communicate with the object. This notion of

observable behavior is motivated by a similar notion described in [20]; however, the

machinery of CCS is used here in a super�cial manner to characterize the behavior

of individual objects, not systems of objects.

In dealing with concurrent objects, the relationship between the state of an object

and the subset of methods that de�ne its observable behavior is critical. In order to

understand how to implement and then inherit synchronization constraints without

encountering the inheritance anomaly, this relationship must be clearly de�ned.

4.3 Specifying Behavior

The behavior of an object may be de�ned as a set of behavior equations that capture

the states of an object and the subset of methods that are visible when the object

is in a particular state. Informally, the \state of an object" is the set of instance

variable-value pairs that de�ne the object at a particular step in a computation.
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As an example, the behavior of an object that maintains some prescribed linear

order over a collection of items, whose size is bounded, is de�ned. The observable

behavior of an object representing a bounded linear order is completely described

by the following equations:

A0

def
= in(x1):A1(x1)

A1(x1)
def
= in(x2):A2(x1; x2) + out(x1):A0

...

An(x1; : : : ; xn)
def
= out(x1):An�1(x1; : : : ; xn�1)

This set of behavior equations is similar to an example in [20]. The equations

capture precisely the states that an object representing a bounded linear order may

occupy during its lifetime. In the equations, only the pre�x (.) and summation (+)

combinators of CCS are required. In each of the equations the name on the left-hand

side denotes an agent whose behavior is de�ned by the right-hand side. Intuitively,

agent Ai(x1; : : : ; xi) represents the behavior of the object when the size of the col-

lection is i, where 1 � i � n, with A0 representing the empty collection. One can

verify through induction that this set of equations de�nes all possible behaviors of

a bounded linear order.

In the behavior de�nition of the A1(x1) agent, the summation combinator con-

veys that the agent o�ers both the in and out operations simultaneously to a client.

If the in operation is chosen, the pre�x combinator requires that an agent accept an

input value denoted by x2 and then become agent A2(x1; x2). Similarly, if the out

operation is chosen, the agent outputs a value denoted by x1 and then assumes the

behavior de�ned by agent A0.

In general, agent Ai(x1; : : : ; xi) becomes agent Ai+1(x1; : : : ; xi+1) following an in

operation and agentAi�1(x1; : : : ; xi�1) followingan out operation, with the behavior

of agents A0 and An(x1; : : : ; xn) being special cases. From this perspective, the

behavior equations de�ne the operations o�ered by an agent as well as a replacement

behavior. The notion of replacement behavior is a fundamental aspect of the Actor

model [1]. Hence, it seems appropriate to use behavior equations as a formal means

for specifying and reasoning about the behavior of individual objects with actor-like

semantics.

Although a generic bounded linear order is speci�ed, the above set of behavior

equations is isomorphic to a set of equations representing a bounded bu�er accepting

put and get operations, a stack accepting push and pop operations, or a queue ac-

cepting enq and deq operations. The isomorphism is realized through an application

of the CCS relabeling (/) operator to yield the desired name substitution:

Bu�er � A0[put=in; get=out]; : : : ; An(x1; : : : ; xn)[put=in; get=out]

Stack � A0[push=in; pop=out]; : : : ; An(x1; : : : ; xn)[push=in; pop=out]

Queue � A0[enq=in; deq=out]; : : : ; An(x1; : : : ; xn)[enq=in; deq=out]

The isomorphism can be achieved because at this level of abstraction there is no

concern for the actual semantics of the in and out operations, e.g., whether or not

the out operation returns values according to FIFO or LIFO semantics. To maintain
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generality, the equations describing a bounded linear order are used in the remainder

of this paper with the understanding that the isomorphism can be applied at any

time.

4.4 Object States and Behavior Sets

Behavior equations may be viewed as de�ning independent agents representing the

various states of an object. In this section a model is de�ned that captures the essen-

tial elements used in developing a programming abstraction to represent a collection

of behavior equations.

In the model, each agent is associated with an object state �i and a set �i
called the observable behavior set. For a given behavior equation, the observable

behavior set �i is constructed from the non-restricted pre�x operations on the right-

hand side of behavior equations. Non-restricted pre�x operations are those operation

names that do not appear within the scope of the CCS restriction operator, thereby

removing those operations from the set of observable behaviors.3 The collection of all

states is given by the state set S = f�0; �1; : : : ; �ng. The set of all possible observable

behavior sets is the powerset B = P(M ), where M =
Sn

i=0 �i. To complete the

model, a function relating states to behavior sets is required.

4.5 Mapping States to Behavior Sets

The function f� : S ! B maps elements of the state set to elements of the powerset

of observable behaviors. Once can argue that in developing an abstract data type of a

bounded linear order in a sequential object model, a programmer implicitly de�nes a

mapping from S to B when de�ning the operations on the type. More precisely, each

�i is always mapped to a single element in B, namelyM , where M =
�
in; out

	
. The

map f� is called the behavior function since it de�nes the observable behavior (the

set of available methods) of an object in a given state. In standard object models, all

methods are usually visible regardless of the state of the object; hence, f� is de�ned

in a manner that does not distinquish the internal object states, i.e.:

f�(�0) = M

f�(�1) = M

...

f�(�n) = M

Hence, objects in a standard object model always have the same behavior set re-

gardless of any transitions in the state of the object.

The de�nition of f� in the case of �0 and �n is unnatural. In de�ning f�(�0) =�
in; out

	
, a programmer is forced to implement the method implementing the out

operation in such a way that an underow condition is detected. A similar situation

3 The restriction operator is a primitive mechanism for de�ning a scope.
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occurs for f�(�n). A more natural mapping from S to B can be given as follows:

f�(�0) =
�
in
	

f�(�1) = M

...

f�(�n) =
�
out

	

Consider that one wants to realize the semantics of the behavior equations by

implementing an object in an appropriate object-oriented language that embodies

the abstraction of a linear order. The mapping de�ned by f� indicates that a useful

abstraction is to partition the above behavior equations into three sets based on

the notion of the state of the object. This partitioning appeals to intuition about

the behavior of a linear ordering; furthermore, it is only necessary to reason about

three behaviors, not n + 1; that is, the structure is either empty, full, or partially

full. A reasonable implementation of the abstraction just formed is to de�ne a class

that exports two public methods, in and out, and that either explicitly or implic-

itly implement synchronization constraints consistent with the behavior equations

previously formulated. That is, the out method is prohibited when the object corre-

sponds to the agent de�ned by A0 (state �0) and the in method is prohibited when

the object corresponds to An(x1; : : : ; xn) (state �n).

To extend the example, suppose that an additional constraint is introduced. For

example, the behavior given by the A1(x1) equation is distinquished from the other

behaviors because a new operation is introduced that augments the other behavior

sets. In distinguishing the A1(x1) behavior, a new partitioning must be de�ned that

is distinquishes the conditions empty, full, singleton, and partial.

If an attempt is made to specialize the previously implemented abstraction

through inheritance, it becomes necessary to extend the mapping given by f� . Ex-

tending the mapping means that the domain S, the codomain B, and the mapping

of elements in S to elements in B must be rede�ned. If the linear order abstraction

has been implemented such that these components are implicitly imbedded in the

class methods, then it is impossible to reuse the methods. Reuse is made impossible

because the components of the mapping f� are implicitly imbedded in the implemen-

tation. The only way the mapping can be redefned to permit the new synchronization

constraints is to reimplement the methods in which the components representing the

mapping f� are embedded. The solution presented in the next section is to separate

the components of the mapping from the method implementations.

4.6 Inheriting Concurrent Behavior

The types of concurrent object-oriented systems of interest are composed of objects

with concurrency properties consistent with those described in the Actor model. Each

object possesses its own thread of control and communicates with other objects via

message passing. Concurrency in the system is limited to inter-object concurrency,

which is achieved using message passing and an actor-like become operation. The

actor become operation results in a replacement behavior with its own thread of
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control. Fine-grained intra-object concurrency is not a feature of objects in the

systems under consideration here.

A speci�c interest is expressing and inheriting concurrent object behavior in

ACT++ [13, 14, 18], a prototype object-oriented language based on the Actor model

and C++ [9]. ACT++ is a collection of classes that implement the abstractions of

the Actor model and integrates these abstractions with the encapsulation, inheri-

tance, and strong-typing features of C++. The language falls in the non-orthogonal

category of concurrent object-oriented languages [23], since there are both active

and passive objects. Active objects are instances of any class derived from a special

Actor class de�ned as part of the language run-time. Any instance of a class not

derived from the Actor class is a passive object. Concurrency is achieved using the

become operation that is implemented in the Actor class.

The notion of \behavior abstraction" was originially proposed in ACT++ as

a mechanism for capturing the behavior of an object. Upon initial examination,

behavior abstraction seems powerful since synchronization can be achieved naturally

by dynamically modifying the visibility of the object interface using the become

operation. The e�cacy of this mechanism and its degree of interaction with the C++

inheritance mechanism has been examined by others and has been found to have

serious limitations [19, 23]. The most serious limitation occurs because a behavior

abstraction is not a �rst-class entity in the language and is thus subject to the e�ects

of the inheritance anomaly.

A construct called an \enabled set" improves on the notion of behavior abstrac-

tion by promoting the control of the visibility of an object's interface to a dynamic

mechanism that can be manipulated within the language. Enabled sets were imple-

mented in Rosette, an interpreted actor language with dynamic typing [25].

The exibility o�ered by enabled sets is di�cult to achieve in a statically typed

language like ACT++. Behavior sets represent a compromise between the enabled

sets and behavior abstraction. The ACT++ language mechanism that represents

the behavior set has the following properties:

1. it is a natural extension of formal methods for specifying concurrent object

behavior,

2. it does not interfere with the C++ inheritance mechanism,

3. it is free from known inheritance anomalies,

4. it can be expressed entirely within ACT++ (hence C++), and

5. it can be enforced e�ciently at run time.

In the following sections, the syntax of ACT++ is used to illustrate how to

express elements of the object state set S, subsets of the observable behavior powerset

B, and the behavior function f� , such that synchronization constraints may be

implemented and inherited in a manner that supports method reuse.

4.7 Expressing Concurrent Behavior

To represent concurrent object behavior within the ACT++ language, three �rst-

class entities expressible within the language are de�ned:

1. state functions representing some or all of the elements of the state set S,
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Fig. 16. ACT++ linear order class de�nition

4 Technically the LinearOrd class is de�ned as a C++ template that is parameterized by

a type T representing the type of the elements in the linear order.
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Although not shown, the functions are computed based on implementation de-

pendent instance variables representing the actual number of elements in the struc-

ture representing the linear order. Both functions are used by the nextBehavior

function, which maps the current object state to a behavior set represented by an

instance of the BehaviorSet class. There are three behavior sets de�ned: B0, Bn,

and Bi. The B0 and Bn behavior sets correspond to the previously expressed be-

havior equations A0 and An(x1; : : : ; xn), respectively. The Bi behavior set is used

in this abstraction to collectively represent the observable behaviors of the interme-

diate behavior equations. Each behavior set is initialized in the class constructor.

Instances of the BehaviorSet class are �rst class objects and an overloading is given

to the binary addition operator denoting set union when applied to two behavior

sets; hence, Bi is formed as the union of the behavior sets B0 and Bn.

4.8 Inheriting Concurrent Behavior

To substantiate the claim that the inheritance anomaly is avoided, a new class

HybridLinearOrd is derived from the LinearOrd class. The main feature of the

HybridLinearOrd class is that a new method is introduced that forces a change

in the mapping given by f�. The new method allows a client of an instance of the

HybridLinearOrd class to atomically extract a pair of elements instead of a single

element. The method cannot simply invoke the out method twice since the out

method executes a become operation after each invocation. Due to the concurrency

in the system, another object may have its out request executed before the second

out request is processed; therefore, a new operation outp is required to output a

pair. The behavior of this new type of object is speci�ed by the following behavior

equations:

A0

def
= in(x1):A1(x1)

A1(x1)
def
= in(x2):A2(x1; x2) + out(x1):A0

A2(x1; x2)
def
= in(x3):A3(x1; x2; x3) + out(x1):A1(x1) + outp(x1; x2):A0

...

An(x1; : : : ; xn)
def
= out(x1):An�1(x1; : : : ; xn�1) + outp(x1; x2):An�2(x1; : : : ; xn�2)

The behavior equations for the hybrid linear order di�er from the equations

specifying the behavior of a traditional linear order only in the addition of the

choice of an outp operation in the de�nitions of the Ai(x1; : : : ; Ai) equations, where

2 � i � n. There are two e�ects of this re�nement. First, the outp operation is added

to the appropriate observable behavior sets and a new powerset B0 is computed.

Second, the A1(x1) behavior is now a distinguished behavior and B0 � B; hence, a

new mapping f 0� is required:

f 0�(�0) = f�(�0)

f 0�(�1) = f�(�1)

f 0�(�2) =
�
in; out; outp
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Fig. 17. ACT++ hybrid linear order class de�nition
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The singleton function corresponds to distinguishing the agent A1(x1) from the

remaining agents. The new BehaviorSet object B1 corresponds to the behavior set

associated with agent A1(x1). The Bi and Bn behavior sets are augmented in the

class constructor with the outPair method corresponding to the enlarged codomain

B0. Thus, the inherited nextBehavior function can be trivially rede�ned to corre-

spond to the new mapping f 0� by adding a check for the state corresponding to agent

A1(x1) and invoking the superclass behavior function LinearOrd::nextBehavior

for all other states.

In order to inherit synchronization constraints it must be possible to specialize

the mapping given to f� by the superclass. This implies that the elements of S, the

elements of B, and the function f� must be representable in the language and the

representations must be:

1. �rst-class,

2. inheritable, and

3. mutable.

The inheritance anomaly occurs in previous formulations of this problem precisely

because the behavior sets and the behavior function, as they occurred in the super-

class, were neither �rst-class nor mutable.

State functions representing elements of S, instances of the BehaviorSet class

representing elements of B, and the nextBehavior function representing f� have

these properties. All are �rstclass language entities inheritable by a subclass. In-

stances of the BehaviorSet class are mutable by a subclass since they are de�ned

within the scope of a protected clause. The empty and full predicates representing

object states and the nextBehavior function representing the behavior function are

subject to rede�ntion since they have the virtual attribute are within the scope of

the protected clause.

5 Summary and Status

This paper has presented the beginnings of a formal framework for investigating

the relationship between concurrent object behavior and inheritance. The approach

emphasizes the relationship between the state of an object and subsets of methods

visible in the interface to the object, called behavior sets. This relationship is embod-

ied in the mapping given by the behavior function. If the inheritance anomaly is to

be avoided, behavior sets and the behavior function must be �rst-class, inheritable,

and mutable. It was shown that the language mechanisms of ACT++ (and therefore

C++) are su�ciently expressive in this regard.

We are exploring the techniques presented here in the context of distributed

object-oriented systems with a high degree of both intra-node and inter-node con-

currency. In particular, we are developing an object-oriented structure for peer-to-

peer protocols and are investigating concurrency issues. We are also addressing the

semantic issues in a more rigorous fashion than is presented here. We suspect that

type-theoretic semantics currently applied to object-oriented languages are incapable

of addressing the temporal nature of a changing object interface as captured by the
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behavior function. Interesting work in this area is [22], which also uses CCS as a

starting point.

We have not discussed the details of the run-time enforcement of behavior sets.

ACT++ and behavior sets have been implemented on the Sequent Symmetry, a

shared memory multiprocessor [14]. A subject of our current research is to deter-

mine the relationship between our implementation approach and others based on

reection. Our Actor language prototype continues to evolve as we gain an under-

standing of the semantic issues underlying concurrent object-oriented languages.
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