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Abstract

We describe some persistant software infrastructure
problems encountered by scientists and engineers who
work in application domains requiring extensive com-
puter simulation and modeling. These problems may
be mitigated by use of a Problem Solving Environ-
ment (PSE), but not all of them are currently being
addressed by the PSE research community. We in-
clude a brief survey of ongoing PSE research efforts.
We then discuss an approach to designing a toolkit
for building PSEs. We argue that PSEs can best be
implemented using a component-based approach. We
present Sieve/Symphony, our initial efforts at creat-
ing a component-based collaborative framework for
building Problem Solving Environments. We con-
clude with a discussion of the lessons learned from
our initial experience with the Sieve/Symphony ap-
proach.

Keywords: Problem Solving Environments, Com-
putational Science, Components.

1 Introduction

Many scientific and engineering research groups de-
pend on simulation and modeling as the core of their
research effort. There exist research groups in diverse
disciplines such as aircraft design, materials science,
biological modeling, hydrology, wireless communica-
tions systems design, and manufacturing processes
for wood-based composites, to name only a few, all
with roughly the same operating paradigm. This op-
erating paradigm is to design and implement com-
puter models and simulations of complex physical
phenomenon, from which are inferred new discover-

ies about the real-world process being modeled, or to
create new materials and products. While the form
and application of the models may vary in significant
ways, the approach and problems of these researchers
as it relates to software development and infrastruc-
tural needs are surprisingly similar.

The first purpose of this paper is to describe the
complex of problems that appear to be universal
within academic research labs conducting this sort
of software model-based research. Many researchers
are now engaged in developing Problem Solving En-
vironments (PSEs) whose purpose is to aide research
in computational science. QOur goal is to explicitly
list the problems being encountered by the domain
scientists and engineers, not all of which are being
addressed by the current PSE efforts. We argue that
these persistent problems should be guiding PSE re-
search efforts.

The second purpose of this paper is to describe
our architecture for a PSE-building environment. We
argue that PSEs can best be implemented using a
component-based approach. We present Sieve/Sym-
phony, our initial efforts at creating a component-
based collaborative framework for building Problem
Solving Environments. We conclude with a discus-
sion of the lessons learned from our initial experience
with the Sieve/ Symphony approach.

2 The Problem in Computa-
tional Science
For many scientists and engineers today, the most an-

noying computing challenge is not creating new high-
performance simulations or visualizations. Often the



scientists feel competent to develop such software,
and funding to support model development is widely
available. Rather, many scientists and engineers are
expressing frustration that their software and com-
puting resources are a heterogeneous mix of incom-
patible simulations and visualizations, often spread
across differing computer hardware. The specialized
software that drives a given lab’s research is typi-
cally incompatible with that of potential collabora-
tors. Thus, researchers today generally do not make
the most of their existing software and computing re-
sources. Nor does their computing environment yet
support on-line, real-time collaboration between re-
searchers seeking to do multidisciplinary work.

The researchers typically voice the following com-
plaints.

1. Tt is difficult to integrate software from multiple
disciplines developed by a diverse group of peo-
ple on multiple platforms located at widespread
locations.

2. It is difficult to share software between potential
collaborators in a multidisciplinary effort — dif-
ficult even for a team to continue using research
software once the author has left the group.

3. Current tools for synchronous collaboration are
inadequate.

These issues are of concern throughout a wide re-
search community, as evidenced by numerous NSF
workshops and conferences on topics such as Problem
Solving Environments, Workflow, and Process Man-
agement for scientific and engineering environments.
The field of Computer Supported Cooperative Work
also has much to offer in solving the communications
problems involved in multidisciplinary efforts.

Integrating codes from different disciplines raises
both pragmatic and conceptual issues. Pragmati-
cally, the issue is how best to support the interop-
erability of independently-conceived programs resid-
ing on diverse, geographically distributed computing
platforms. Another pragmatic concern is that large,
complicated codes now exist that cannot simply be
discarded and rewritten for a new environment. How-
ever, interoperability is best achieved by adherence to
common protocols of data interchange and the use of
clearly identified interfaces. The notions of interfaces
and protocols lead directly to the domains of object-
oriented software and distributed computing. Thus,
a key issue is how to unify legacy codes, tied to spe-
cific machine architectures, into an effective whole.
Conceptually, the key issue is how to foster coordi-
nated problem solving activities among multiple ex-

perts in different technical domains, and leverage ex-
isting codes and computer hardware resources con-
nected by the Internet.

3 Problem Solving Environ-
ments

A Problem Solving Environment (PSE) provides an
integrated set of high-level facilities that support
users engaged in solving problems from a proscribed
domain [19]. PSEs allow users to define and mod-
ify problems, choose solution strategies, interact with
and manage the appropriate hardware and software
resources, visualize and analyze results, and record
and coordinate problem solving tasks.

Based on experiences with the various disciplines
listed above, the following is a list of particular issues
that should be addressed by a PSE for any Compu-
tational Science application.

Internet Accessibility to Legacy Codes The
initial reason why a scientist or engineer in a com-
putational science domain approaches our research
group is that they would like to make their legacy
modeling code Web-accessible. We typically make
legacy code Web-accessible by creating a Java applet
that allows the user to fill in a form. The contents of
this form are passed to a server on the host computer
that stores the legacy code. The server, typically by
means of a Perl script, invokes the legacy code with
the parameters and input files defined by the user’s
form. WBCSim [46, 21] is a typical example of this,
though many other similar efforts are now available
(see Section 4).

Visualization Users of these models typically wish
to visualize the output, rather than simply analyze
the numbers and text produced by the program.
Sometimes the visualization may be generated by a
generic tool, but more often an ad hoc visualization
tool has been produced along with the modeling code.
Regardless, the researcher would like to integrate the
visualization process with invocation of the model.

Experiment Management The focus of the re-
search can often be cast as an attempt to solve an
optimization problem. A given run of the model is
typically an evaluation at a single point in a multi-
dimensional space. In essence, the goal is to supply
to the model that vector of parameters that yields
the best result under an objective metric. It is not



unusual for members of the research team to spend
considerable time in the following loop:

e run the model using a certain parameter vector;
e observe the results;

e generate a new parameter vector based on judge-
ment and past history;

e repeat until exhaustion sets in.

Under this operating procedure, the user would like
to have the results of the simulation runs be stored
automatically in some systematic way that permits
recovery of previous runs along with the parameters
that initiated the run. Ideally, a mechanism for anno-
tating the results, and a method for searching based
on inputs, results, or annotations, would be provided.

Multidisciplinary Support An eventual goal of
PSE research is to support the ability of researchers
to combine together to form larger, multidisciplinary
teams. In practice, this means that the models from
the various disciplines involved should be combinable
in some way. Perhaps this would be done by linking
individual PSEs for the disciplines, or perhaps the
various models would operate within the same PSE
environment.

Collaboration Support Researchers would like to
work together, either when initiating/steering the
computation, or when analyzing the results. While
the ability to save and restore prior results can be
used to provide asynchronous collaboration, ideally a
PSE would allow multiple users at multiple worksta-
tions to be working together in the PSE at the same
time.

Optimization As noted above, these research ef-
forts are often cast in the form of an optimization
problem. As such, the research effort can often be
improved by applying automated optimization tech-
niques, rather than have someone manually try a
large number of parameter sets. In some disciplines,
this is well known and optimizers are an integrated
part of the model. But many other disciplines do not
typically use optimization techniques. A PSE would
ideally allow various models to be combined with var-
ious automated optimization techniques.

High Performance Computing Often, simula-
tions used by computational scientists require access
to significant computing resources, such as a parallel
supercomputer or an “information grid” of comput-
ing resources. In such cases, the PSE should integrate

a computing resource management subsystem such as
Globus [18] or Legion [23].

Usage Documentation An aspect of providing
improved interfaces for simulation codes is implicit
and explicit documentation for use of the code, specif-
ically with respect to parameters and other inputs.
The simulation interface could provide advice on rea-
sonable interactions of parameters, or which submod-
els to use in particular circumstances. At the PSE
creation level, PSE-building tools could provide a
convenient mechanism for adding and accessing such
documentation. Documenting is in part a matter of
discipline on the part of the developers. Conceivably,
PSE implementation tools could enforce good docu-
menting discipline.

Preservation of Expert Knowledge Just like
books in libraries, computer programs codify and
preserve expert knowledge about the application do-
main. A PSE can serve two important roles in this
regard. First, by using and preserving legacy code,
the expert knowledge embodied in the legacy codes
continues to be (indirectly) employed. Second, state-
of-the-art codes are often nearly impossible for non-
experts to use productively, and by providing advice
(via an expert system shell) the PSE can make the
legacy codes and knowledge usable by non-experts.
For multidisciplinary work this expert advice for non-
expert users is indispensable.

Recommender Systems Most existing PSEs as-
sume that the choice of method (algorithm) to solve
a given scientific problem is fixed a priori (static)
and that appropriate code is located, compiled and
linked to yield static programs. The user (scientist)
still needs to select suitable software for the problem
at hand in the presence of practical constraints on
accuracy, time and cost. A recommender system for
a PSE serves as an intelligent front-end and guides
the user from a high level description of the prob-
lem through every stage of the solution process, pro-
viding recommendations at each step [35]. Recom-
menders will also help scientists and engineers achieve
increased levels of interactivity as they work together
to solve common problems [36]. Further, they will en-
able and hence encourage an increased flow of infor-
mation and knowledge among these scientists, their
organizations, and professional communities.

Integration While each feature described in this
list is important in its own right, the important as-
pect of a PSE for computational science research



such as we have described would be the synergy
that should result from integrating these features
into a single system. In particular, a collaborative
system that provides Internet-based access (perhaps
through a Web browser) to an integrated set of mod-
els, optimizers, visualizations, and experimental re-
sults database, would be a powerful tool indeed.

4 Prior Research on PSEs

PSE research includes (1) developing problem-specif-
ic PSEs and (2) developing general tools for building
PSEs. Issues such as developing a general architec-
ture for PSEs; leveraging the Web; supporting dis-
tributed, collaborative problem solving; and provid-
ing software infrastructure (“middleware”) are also
being addressed. Most of the items listed in the pre-
vious section as desirable features of a PSE for com-
putational science are incorporated in one or more of
the projects described in this section.

One problem domain where PSEs are common is
the numerical solution of partial differential equa-
tions (PDEs). An early example is ELLPACK [7], a
portable Fortran 77 system for solving two and three
dimensional elliptic PDEs. Its strengths include a
high-level language which allows users to define prob-
lems and solution strategies in a natural way (with lit-
tle coding), and a relatively open architecture which
allows expert users to contribute new problem solv-
ing modules. ELLPACK’s descendents include Inter-
active ELLPACK [16], which adds a graphical user
interface to support better user interaction, and Par-
allel ELLPACK (PELLPACK) [27], which includes a
more sophisticated and portable user interface, incor-
porates a wider array of solvers, and can take advan-
tage of multiprocessing.

PELLPACK also includes an expert or “rec-
ommender” component named PYTHIA [30, 47)].
PYTHIA also interfaces with other application spe-
cific PSEs to recommend software for specific cate-
gories of problems such as partial differential equa-
tions and numerical quadrature [37, 28]. In addi-
tion to selecting software for these domains, it in-
terfaces with the GAMS mathematical software on-
tology (http://gams.nist.gov) to direct the user
to an appropriate location from where the software
can be retrieved. In other words, software recom-
mendation is complete for these classes of problems.
Furthermore, the PYTHIA kernel supports the rapid
prototyping of recommender systems. This kernel ab-
stracts the architecture of a recommender system as
a layered system with clearly defined subsystems for
problem formulation, knowledge acquisition, perfor-

mance evaluation and modeling, and knowledge dis-
covery.

Another system which provides a high level,
problem-oriented environment for PDE-solving is Sci-
Napse [1], a code-generation system that transforms
high-level descriptions of PDE problems into cus-
tomized C or Fortran code, in an effort to elimi-
nate the need for programming by hand. Other PSEs
in the PDE problem domain include DEQSOL [44],
PDEase2D [48], and PDESOL [40].

PSEs are being built for a number of other scien-
tific domains as well. For example, Parker et al. [38]
describe SCIRun, a PSE that allows users to inter-
actively compose, execute, and control a large-scale
computer simulation by visually “steering” a dataflow
network model. SCIRun supports parallel computing
and output visualization well, but has no mechanisms
for experiment managing and archiving, optimiza-
tion, real-time collaboration, or modifying the simu-
lation models themselves. Bramley et al. [8, 20] have
developed Linear System Analyzer, a component-
based PSE, for manipulating and solving large-scale
sparse linear systems of equations. Dabdub et al. [13]
have built a PSE for modeling air pollution in urban
areas. The WISE environment [31] lets researchers
link models of ecosystems from various subdisciplines.
An object oriented environment for optimization is
DAKOTA [17], which provides support for legacy
code, high level component composition, and paral-
lel computing. Lacking are integrated visualization,
collaboration support, experiment management, and
archiving, and support for modifying the underlying
simulation models.

The Information Power Grid [5] being envisioned
by NASA and the national laboratories is a general,
all-encompassing PSE. While some of the requisite
technologies are in place (e.g., Globus [18] for dis-
tributed resource management, and PETSc [3, 24]
for a scientific software library), it is unclear how the
remaining components can be built and integrated.
At this time, IPG is a vision rather than a work-
ing prototype. The law of conservation at work here
seems to be that the power and level of integration
of a PSE is directly proportional to the specificity of
the problems being addressed by the PSE. The CAC-
TUS [2] system for the relativistic Einstein equations
for astrophysics supports distributed computing, vi-
sualization, collaboration, experiment management,
and model development. However, to adapt CAC-
TUS to a different problem class is likely to be rather
difficult, as the component tools are tailored to solv-
ing astrophysics equations.

An important goal of PSE researchers is to define a



generic architecture for PSEs and to develop middle-
ware (typically object-oriented) to facilitate the con-
struction and tailoring of problem-specific PSEs [19].
This emphasis, along with work in Web-based, dis-
tributed, and collaborative PSEs, characterizes much
of the current research in PSEs. An example is
PDELab [10], a multilayered, object-oriented frame-
work for creating high-level PSEs. PDELab supports
PDESpec, a PDE specification language that allows
users to specify a PDE problem in terms of PDE ob-
jects and the relationships and interactions between
them. Parallel Application WorkSpace (PAWS) [34]
is a CORBA-based, object-oriented server for con-
necting parallel programs and objects. Other re-
searchers investigating object-oriented frameworks
for PSE-building include Gannon et al. [20], Balay
et al. [4], and Long and Van Straalen [32].

With the rise of the Web, PSEs are now be-
ginning to support distributed problem solving and
collaboration. Regli [39] describes Internet-enabled
computer-aided design systems for engineering appli-
cations. Net PELLPACK [33], PELLPACK’s Web-
based counterpart, lets users solve PDE problems via
Java applets. Other Web-based PSEs include Net-
Solve [9] and NEOS [12]. Current PSE-related re-
search projects that emphasize distributed collabora-
tion include LabSpace [14], the Intelligent Synthesis
Environment (ISE) [22], Habanero [11], Tango [6],
Symphony [41], and Sieve [29].

5 Component Frameworks and
PSEs

Readers familiar with components and distributed
internet-based applications will recognize that many
of the goals of the PSE described in Section 3 are also
goals of other distributed applications. While the de-
tails differ, the fundamental goals of integrating var-
ious components in an application, and access to a
database (in this case the database of experimental
runs) are not unique to computational science. While
supporting legacy code is often central to computa-
tional science applications, this need is by no means
novel.

However, the combination of issues embodied in the
PSE presents novel problems. These include the fact
that individual runs of a simulation can take hours;
the extensive use of visualization; the inherently dis-
tributed nature of the computation (i.e., certain sub-
models may need to run on differing systems for rea-
sons related to resource needs, or simply because they
are legacy codes written for differing systems); the de-

sire for synchronous collaboration; and the needs of
multidisciplinary users, no one of which is an expert
in all aspects of the larger system.

Most component technology today is aimed at “vi-
sual programming,” that is, helping programmers to
build programs faster and with fewer bugs through
greater code reuse. The motivation is that users will
be given better applications, but the component re-
search community is only now considering how com-
ponents will otherwise affect users. An application
programmer using component technology generally
develops as though these better programs would oper-
ate within the same non-component environments as
we have today. This view misses much of the poten-
tial benefits of a component-based paradigm. Com-
ponents could more directly support users, in that
the user might be linking components together them-
selves to create new capabilities. This approach is
already being used by some visualization programs
such a Khoros [49] and AVS [45].

6 A Framework for Implement-
ing PSEs

Our own research efforts have been aimed at de-
veloping an environment in which to create PSEs
much as described in Section 3 [29, 41]. We em-
body the PSE in a (collaborative) visual workspace,
in which the user places various objects. These ob-
jects are components that represent individual sim-
ulations, optimization tools, visualization tools, etc.
These components are linked together by the user to
form networks that indicate the flow of data or con-
trol. The links between components are often rep-
resented by arrows. For example, a component rep-
resenting an input file on some computer might be
linked by an arrow to another component represent-
ing a model/optimizer combination. Another arrow
links the model/optimizer combination to a visual-
izer. The intent is that the PSE will cause the input
file to be moved to the machine storing the model and
optimizer, and the model/optimizer will then be in-
voked. The output of this process will then be passed
to the visualization, (perhaps on another machine)
with the results displayed on the user’s screen. The
fundamental interface design is similar to that of a
Modular Visualization Environment [45, 15] or the
Khoros [49] image processing system.

Our PSE framework is known as Sieve/Sympony,
from the names of the two parts that make up the
framework. The implementation is based on Java-
Beans [26]. Sieve provides a collaborative workspace



within which users may place the components that
make up the PSE. Sieve also provides a specific col-
lection of JavaBeans for producing and visualizing
data. Symphony is a collection of JavaBeans which
serve as surrogates for describing and manipulat-
ing remote resources (files and executable codes).
Sieve/Symphony provides the foundation for con-
structing PSEs, as their combination creates a col-
laborative environment for controlling distributed,
legacy resources.

6.1 Sieve

Sieve [42] provides an environment for collaborative
component composition that supports the following:

e A Java-based system compatible with standard
WWW browsers

e A convenient environment for generating visual-
izations through linking of data-producing mod-
ules with data-visualization modules

e Collaboration between users through a shared
workspace, permitting all users to see the same
visualizations at the same time

e Support for annotating the common workspace,
visible to all users

e A convenient mechanism for linking in new types
of components

Sieve presents the user with a large, scrollable
workspace onto which data sources, processing mod-
ules, and visualization components may be dropped,
linked, and edited. Figure 1 shows a Sieve workspace
containing a simple data-flow network.

Our design for Sieve allows processing and visual-
ization modules to be generic, with all data-source—
specific details hidden by the source modules. Data-
flow modules implement an API which allows data to
be viewed by adjacent modules in the network as a
two-dimensional table containing objects of any type
supported by the Java language. Source modules
simply convert raw data into a table representation.
Processing modules can manipulate these data and
present an altered or extended table. Visualization
modules can then produce visual representations of
the data in a table. Visualization modules can serve
as an interface for data selection, in which case they
may also present an altered or extended table to ad-
jacent modules.

The resulting data-flow network is fully interactive,
using an event mechanism to notify interested mod-
ules of changes to the data or to the configuration of
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Figure 1: Example of a Sieve workspace with dataflow
and annotations.

the network. These modules can then retrieve new
or modified data from their source. Users modify the
network directly on the workspace, with changes to
both the structure of the network and the modules
themselves reflected to all collaborators as quickly as
processing power and network speed permit.

Sieve supports flexible collaborations and provides
real-time information about participants’ actions and
locations in the workspace. A range of collaboration
styles are supported by providing location relaxed
WYSIWIS (What You See Is What I See) [43] where
collaborators may view and manipulate the same or
different parts of the shared workspace. Hence, while
changes made to the workspace are propagated to all
remote collaborators, all collaborators need not be
working in the same part of the workspace simulta-
neously.

Sieve provides workspace awareness (continuous
knowledge of remote participants’ interactions and
locations [25]) through two interface elements: tele-
pointers and a multiuser overview of the workspace.
A telepointer represents a remote user’s mouse
pointer position and thus provides location aware-
ness. Collaborators can also use telepointers to ges-
ture at items on the workspace to augment commu-
nication. To provide additional workspace awareness
information, Sieve uses a multiuser overview, or radar
view [25] of the workspace. The radar view displays a
rectangle for each user representing that user’s view-
port into the workspace, providing additional loca-
tion information. Remote users’ mouse positions are
also indicated on the radar view.

The state of each Sieve session is stored on the
server, allowing “late joiners” to be brought up to
date. This persistence mechanism also allows Sieve




to be used for asynchronous collaboration. Collabo-
rators may work at different times, leaving their mod-
ifications for coworkers to manipulate later.

Sieve also provides a set of whiteboard-style tools
for annotating the workspace. Lines, arrows, text,
images, and even arbitrary Java objects can share the
workspace with data-flow networks. As with data-
flow components, whiteboard components are shared
across all collaborating sessions. These tools enhance
Sieve’s support for asynchronous collaboration, since
one collaborator can leave notes on the workspace for
later review by other collaborators.

The JavaBeans concept of “bound properties”
(binding attributes of one object to compatible at-
tributes of another object) is extended by Sieve to
support collaboration. JavaBeans provides mech-
anisms for detecting and propagating changes to
bound properties of local objects. In Sieve, we ex-
tend this to support propagation of these changes to
each replica of an object in the collaborating sessions.
This allows many kinds of components to be written
without knowledge that they will be used collabora-
tively.

6.2 Symphony

Symphony is a collection of JavaBeans designed to
permit the representation, composition, and manip-
ulation of remote resources. Each Symphony bean
serves as a surrogate or representative for some ac-
tual resource. This resource may be physically lo-
cated on a machine other than the one on which
the surrogate bean itself resides. Symphony includes
Program beans that represent executable entities on
some machine, and several beans for representing
sources or destinations of data including a File bean,
a StandardInput bean, a StandardOutput bean, and
a Socket bean.

Symphony requires that a Symphony server be
running on each machine containing remote exe-
cutable resources. Beans that represent these re-
mote resources communicate with and control those
resources through their interaction with the Sym-
phony server. The interaction between the bean and
the server is via the Java Remote Method Invocation
(RMI) service. The set of Symphony servers and the
beans will collaborate to transport files between ma-
chines, execute programs, and connect data streams
as needed to realize the computation specified in the
network of beans. An illustration of the interactions
between Symphony beans and the remote Symphony
servers is shown in Figure 2.

While the Symphony beans denote a resource type
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Figure 2: Interaction of a Symphony bean network
with Symphony servers and remote resources.

(e.g., the Program bean denotes an executable re-
source which can be started), a bean that serves as
a surrogate for a specific resource (i.e., a particular
executable program) is created by customizing that
bean’s properties. A property is a changeable at-
tribute of a bean. For example, the customization of a
Program bean allows the user to specify such proper-
ties as the hostname of the machine where the actual
executable program or script resides, the pathname
of the directory where the program or script can be
found on its host, and the filename of the executable
program within its directory. Similarly, the proper-
ties of other Symphony beans can be customized as
appropriate to their type.

Individual customized Symphony beans may be
composed to describe complex computations. For ex-
ample, Figure 2 shows how a set of Symphony beans
could be logically composed to describe a computa-
tion involving two programs and several files. Di-
rected arcs between the individual beans represent
the logical flow of data between the actual resources
for which the beans are surrogates. For example, the
directed arc from a Program bean to a File bean de-
notes that the actual file for which the File bean is a
surrogate will contain the data produced by the ex-
ecution of the program for which the Program bean
is a surrogate. Another flow not shown in Figure 2
allows data generated by one program on its stan-



dard output stream to become the data stream seen
by another program on its standard input.

The structure created by composing Symphony
beans is subject to two different verifications. First,
when the user attempts to create a connection be-
tween two beans, the affected beans will verify that
the connection is structurally valid, that is, the im-
plied relationship between the two real resources is
meaningful. For example, a Socket bean cannot be
connected to a File bean because a file cannot re-
spond to socket operations. The beans will not per-
mit invalid connections to be made. Second, when
asked by the user, each bean can verify the existence
of the actual resource to which the bean’s customiza-
tion refers. For example, a Program bean will check
that the hostname refers to a reachable machine, and
that the pathname and filename refer to an existing
executable program or script. Any problems encoun-
tered are displayed to the user.

Each Symphony bean is a surrogate in that op-
erations performed on the bean effect a correspond-
ing operation on the actual resource. For example, a
Program bean may represent a simulation, a visual-
ization system, or an agent. Actions applied to the
bean are made to occur on the resource itself. Thus,
asking the simulation bean to start causes the cor-
responding simulation program to start. Actions are
applied to a bean directly by the user or by other
beans. For example, in Figure 2, Program 1 could
be started by the user. The Program 1 bean would
automatically inform the File 2 bean when execution
has completed. This notification would be conveyed
by the File 2 bean to the Program 2 bean, which
would then initiate its own execution without direct
user intervention.

6.3 Recommender Systems for Run-
time Application Composition

Work is also underway to use the PYTHIA rec-
ommender kernel in the context of runtime appli-
cation composition systems. Specifically, PYTHIA
can monitor a computational process, detect state-
changes, and make selections of solution components
dynamically, thus aiding knowledge-based applica-
tion composition at runtime. Such a facility is im-
portant in many problem domains because: (i) the
nature of the problem being solved changes as the
computations are being performed, (ii) the underly-
ing computing platform or resource availability is dy-
namic, or (iii) information about application perfor-
mance characteristics is acquired during the actual
computation rather than before. While traditional

recommenders are designed off-line (by organizing a
battery of benchmark problems and algorithm execu-
tions, and subsequently mining it to obtain high-level
recommendation rules), the design of a runtime rec-
ommender system is difficult because such a database
is not readily available and needs to be ‘captured’ on
the fly. Thus, a runtime recommender interacts dy-
namically with its environment and learns through in-
teractions with its environment. Moreover, a runtime
recommender system will provide a useful conceptual
paradigm for the effective design and utilization of
metasystems such as Legion and Globus.

7 Lessons Learned

Our experience in building and using the Sieve/-
Symphony system leads us to believe that the ba-
sic concept of a component-based approach to build-
ing PSEs is correct. However, we have learned that
significant changes in our specific design and imple-
mentation are required. The notion of a composition-
oriented environment in which individual components
can be customized and linked to create ensembles of
programs and data still appears in retrospect to be a
useful way to proceed. Also in retrospect, however,
we find two key areas that must be changed: The re-
lationship between flows of data and control; and the
fundamental interface for novice users.

The first required change comes from the recog-
nition that the current design entangles unnecesar-
ily the issues of the user interface, the logical rela-
tionships among the files and programs that com-
prise the metaprogram, and the execution mechanics
of how the metaprogram’s files are transferred and
how its programs are executed. The entanglement
of these issues can be seen in summarizing a num-
ber of the key responsibilities assigned to each bean.
Each bean directly projects its visual representation
in the user interface and directly responds to low-
level events in the user interface such as mouse clicks.
Each bean also generates and reacts to internally
generated events that correspond to changes in the
logical structure or execution state of the metapro-
gram. These events represent new connections be-
ing made between beans during composition and the
completion of run-time steps during execution. Fi-
nally, each bean directly interacts with fixed, known
servers (such as the Symphony server or the FTP
server) to enforce the execution behavior expected of
the bean. All of the design and implementation deci-
sions related to these three issues are present in each
bean.

Symphony’s structure should be redesigned to



achieve better separation among the design decisions
related to the user interface, the logical relations
among the beans, and the execution machinery. The
redesign would make each Symphony bean primar-
ily responsible for maintaining the logical structure
of the metaprogram and lessen or eliminate its re-
sponsibilities in the other two areas. This can be
accomplished as follows.

First, each Symphony bean could implement a pro-
gramatic interface through which an external compo-
nent can query its state, request actions, and be no-
tified of changes in the state of the bean. The bean
is not concerned with drawing its representation or
interpreting low-level user interface events. In effect,
the Symphony bean becomes the “model” element
in the model-view-controller (MVC) design pattern.
The view and control elements would be implemented
separately and interact with a Symphony bean only
through the defined programatic interface.

Second, Symphony beans would be insulated from
the details of the execution mechanism by a sec-
ond programmatic interface. Through this interface
a Symphony bean could request that files be trans-
ferred and programs be executed. However, the in-
dividual beans would have only limited knowledge of
how these actions were carried out.

The separation of the Symphony beans from the
execution machinery allows Symphony to become
more useful to the distributed high performance com-
puting community that has invested significant re-
sources in the development of metacomputing sys-
tems. Examples of these metacomputing systems are
Globus [18] and Legion [23]. Metacomputing systems
are increasingly used in large-scale experiments in-
volving high-performance computing and communi-
cations because they provide to the user a single com-
puting “machine” that is easier to use than the actual
distributed systems out of which it is constructed.
The metacomputing system transparently provides
scheduling and security services to its users in the
same way that these services are provided to users
of desktop computing. The underlying details of the
movement of data and execution of code is hidden
from the user whenever possible and desired. The
Symphony redesign would allow a layer of software
to be written that implements the interface between
the Symphony beans and the execution machinery.
The distinction between the metacomputing system
and Symphony is that the metacomputing system is
concerned with scheduling and executing a single pro-
gram while Symphony is concerned with the orches-
trated execution of a collection of such programs.
Symphony plays the role of the “metaprogram” for

the virtual “metacomputer” created by the metacom-
puting system. The proposed redesign is beneficial to
Symphony, because it can be used in more execution
environments, and also beneficial to the metacom-
puting community, because their systems can now be
programmed in a more extensive way.

The second change in Symphony is a recognition
that the linking of a large number of components in
the current system is untenable because it provides
only a single, “flat” space. A metaprogram with hun-
dreds of beans is clearly unmanageable from a user’s
perspective. A more richly structured interface must
be created. The goal is to provide an aggregation
structure in which a number of beans can be aggre-
gated into a single, logical entity. This entity can it-
self be composed with other individual beans or other
aggregates. Beyond its immediate advantage as an
organizing device, aggregation also permits the cus-
tomization of bean properties to be done more easily,
as a customization applied to an aggregate can be
applied automatically to each bean within the aggre-
gate. This requires that a model of aggregate cus-
tomization be developed. This model would allow
composers to define how the properties of individual
beans are related to the properties of the aggregate in
which they are contained. Questions also arise about
which individual beans are connected when one ag-
gregate is connected to another aggregate.

The separation of the beans’ responsibilities and
the ability to support aggregation can be imple-
mented using a common means. The Enterprise Java
Beans framework defines a BeanContext that acts as
a container for individual beans and other BeanCon-
texts. The composable nature of the BeanContext
creates the basic structure needed to implement ag-
gregation. In addition, the container can play the
role of an intermediary between the individual beans
within the container and the world outside of the con-
tainer. The beans can query the container to discover
services that are available to them. In our case, a
bean would query the container to discover an exe-
cution entity that the bean would access through a
well defined, programmatic interface. The actual en-
tity might be different on different executions or even
change dynamically during the life of a single execu-
tion. In a similar way, entities outside of the container
could discover the contained beans which could then
be accessed through a well defined programmatic in-
terface.

The separation achieved by these two interfaces in-
creases the flexibility of the PSE infrastructure. Dif-
ferent user interfaces can use the same underlying
beans. In fact, the beans might even exist in an envi-



ronment where there is no user interface at all, such as
when the collection of beans is controlled by another
program (e.g., a metaprogram submitted for execu-
tion at a later point in time when needed resources
are available). In the same way, the beans could use
different execution servers at different times or even
different servers at different stages of its execution.

In summary, we believe that the basic concept of
Sieve/Symphony is a good one and that its utility
can be improved significantly by the redesign outlined
above.

8 Conclusions

The computational science problems described in this
paper are real, serious, and widespread. A PSE as de-
scribed herein is not a panacea for all the problems
faced by computational science researchers. Aside
from issues related to constructing PSEs themselves,
there will still remain problems of translating incom-
patible data formats, the common occurrence of poor
software engineering practices, and the natural iner-
tia that results in poor or outdated documentation.
Nonetheless, there is an opportunity here for compo-
nent frameworks and distributed Internet-based ap-
plications to play an important role in advancing the
state of the art in computational science.
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