
Symphony: A Java-based Composition and Manipulation Framework for
Distributed Legacy Resources

Ashish Shah
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052-6399
ashah@microsoft.com

Dennis Kafura
Virginia Polytechnic Institute and State University

Department of Computer Science
Blacksburg, VA 24061

kafura@cs.vt.edu

Abstract

Symphony is an open and extensible Java-based frame-
work for composition and manipulation of distributed
legacy resources. Symphony allows users to compose visu-
ally a collection of programs and data by specifying data-
flow relationships among them and provides a client/server
framework for transparently executing the composed appli-
cation. Additionally, the framework is web-aware and helps
integrate web-based resources with legacy resources. Sym-
phony uses Sun Microsystems’ JavaBeans component ar-
chitecture for providing components that represent legacy
resources. These components can be customized and com-
posed in any standard JavaBeans builder tool. Executable
components communicate with a server, implemented using
Java Remote Method Invocation mechanism, for executing
remote legacy applications. Symphony enables extensibility
by providing abstract components which can be extended by
implementing simple interfaces. Beans implemented from
the abstract beans can act as data producers, consumers or
filters.

1 Introduction

Symphony is a component-based client/server frame-
work for composing and manipulating distributed legacy re-
sources. The framework consists of two parts: composable
client components that represent resources such as data,
programs and tools, and the Symphony server which exe-
cutes remote legacy programs. The client components are
implemented as Java beans and the Symphony server is im-
plemented as a Java remote object on which client beans
make remote method invocations. Also implemented are
utility beans (such as an annotation bean for including com-
ments) and abstract beans who simple interfaces can be ex-
tended to add new types of components.

Personalized applications can be built by instantiat-
ing, customizing, connecting, and executing the Symphony
components using the facilities of any environment that sup-
ports the JavaBeans standards. The composing tool or envi-
ronment provides a means for the user to select from a pal-
lete or tool bar the type of component to be instantiated in
the workspace, where it may be further manipulated. Cus-
tomization refers to the act of specifying the attributes of
an instantiated component. The attributes of a Symphony
bean describe a specific resource. For example, a Sym-
phony bean that represents a program can be customized
to refer to a specific executable file in a specific directory
on a specific machine that is runnable using specific autho-
rization information.

The data-flow paradigm was chosen as a way of connect-
ing components and specifying the execution sequence of
related programs. This paradigm has been popularized by
visualization systems such as AVS [1] and Khoros [8]. A
visual program is described as a directed graph, where each
node represents an operator or function and each directed
arc represents a path over which data flows. In Symphony,
such an integrated collection of components is termed a
meta-program. A meta-program is a set of linked program
and data components implemented as a data-flow graph
that defines how each program accepts data from a previ-
ous computation step and produces data for further process-
ing. Once a meta-program is built, it is possible to ensure
its structural integrity and completeness, save it for future
reuse, and execute it from the workspace.

Symphony is both platform independent and tool inde-
pendent. Platform independence comes as a byproduct of
using Java which is an architecture neutral programming
language. Since JavaBeans is an open, published API and
is supported by a large number of Java development tools
and Java runtime environments, beans that conform to the
API can be composed and manipulated within any such
beans container. Thus, Symphony can be used in any tool



that conforms to the JavaBeans standard. The current Sym-
phony implementation has been executed on Windows 95,
Dec and Sparc systems and tested in the BeanBox reference
container developed by Sun, and in the Sieve workspace [6],
an experimental, collaborative environment.

Our work on Symphony, while applicable to any set of
legacy resources, was motivated by a larger interest at Vir-
ginia Tech in problem solving environments (PSEs) for sci-
ence and engineering applications [2]. Aproblem solving
environment (PSE)can be defined as a computer system
that provides all computational facilities necessary to solve
a target class of problems efficiently. The term problem
solving environment has a very broad meaning, possibly in-
cluding word processing software, which can be viewed as
a PSE for formatting documents, as well as a system for
assisting engineers solving various types of partial differen-
tial equations. Some properties shared by all PSEs are that
they allow a user to formulate a problem solution in a lan-
guage suitable for the target class of problems and to view
or assess the correctness of the solution through analysis or
visualization tools [5]. Depending on the problem domain,
different features are desired in a PSE. Some of these fea-
tures are:

� Collaboration - Allow multiple users to simultaneously
take part in the problem-solving session

� Integration - Hide heterogeneity of individual
problem-solving components

� Persistence - Allow saving and reproducing of
problem-solving sessions

� Distribution - Handle local as well as remote computa-
tional tasks

� Security - Provide user and server security

� Intelligence - Make automatic or semi-automatic se-
lection of solution methods by consulting an associ-
ated knowledge base

The field of problem solving environments is a relatively
new discipline of computer science and the general under-
standing of the architecture, technology and methodologies
for PSEs is still immature. In fact, no existing PSE or PSE-
like system, including our own, has all of the features de-
scribed above.

Problem solving environments have predominantly fo-
cused on science and engineering applications [7, 9]. In this
paper too, the term PSE will be interpreted with this appli-
cation domain in mind. A generally accepted goal for a sci-
entific PSE is that it should ease the burden of advanced sci-
entific computing and should enable more people to solve
problems more rapidly without requiring detailed knowl-
edge of the underlying hardware, software, or algorithms,

although knowledge about the specific problem domain ad-
dressed by the PSE is always required. The need for a PSE
increases with the complexity and heterogeneity of the ap-
plication.

Most existing PSEs are focused on providing problem-
solving facilities for narrow application domains, such as
solving partial differential equations (PDEs), data visual-
ization, numerical analysis and others [3]. These PSEs are
built around software libraries which are either modified or
rewritten to adapt to the architecture of the PSE. Although
these PSEs function very well in their own domain, they
do not attempt to provide a generic framework for solving
general-purpose science and engineering problems. In prac-
tice, many such problems involve the use of legacy software
which is difficult to modify and/or port and may be dis-
tributed on geographically distant machines. Existing PSEs
provide little support for solving such problems within a
generic framework.

The specific shortcomings of the current implementation
practice for PSEs for science and engineering, that this re-
search aims to address are as follows:

1. Inability to easily compose distributed components:
Most PSEs do not allow the integration of programs
and data distributed on different machines. Given a set
of legacy scientific computing resources developed by
a diverse group of people on different platforms (possi-
bly located in different geographical locations) an en-
vironment is needed for constructing integrated appli-
cations out of these resources. For example, the design
of a modern aircraft requires the use of numerous, per-
haps tens or hundreds, separate programs; such multi-
disciplinary design and optimization requires a much
higher level of integration than is available in existing
PSEs.

Composition of distributed resources is becoming in-
creasingly important with the growth of the World
Wide Web. There are scores of applications on the
Web which can be accessed at the click of a button
(e.g., Java applets and servlets, CGI applications, and
Web wrappers for legacy applications), but there is no
single tool which can provide seamless integration of
these Web-based applications with other legacy appli-
cations. There is also a need for an environment where
legacy applications can be provided a graphical user
interface for accepting input data and seamlessly in-
tegrated with analysis and visualization tools for pro-
cessing the results.

2. Lack of support for legacy software: Most scientific
PSEs provide little support for stand-alone legacy soft-
ware applications. These are applications which are
run from the command-line, have limited user interac-
tion, and communicate using specially formatted files.



Support for legacy codes is extremely important be-
cause there exists millions of lines of legacy code, most
of it difficult to understand and modify, yet very useful.

There seem to be two main reasons for this draw-
back. First, scientific and engineering PSEs are gener-
ally built around software libraries which provide en-
capsulated problem-solving power for some particular
problem-domain. Thus the architecture of a PSE is
inextricably linked to the structure of the underlying
software library. Second, PSEs are generally built for
a particular platform and the PSE software is typically
not platform independent. These reasons, in the con-
text of providing support for legacy applications, basi-
cally entail modifying the application or porting it to a
different platform.

Rewriting legacy code to fit the architecture of the PSE
or porting it to the platform supported by the PSE is not
a feasible solution because of several problems. First,
legacy code is usually difficult to understand and mod-
ify and the cost involved in such an attempt could be
quite high. Second, the underlying software or hard-
ware facilities assumed by the application may not be
available on the particular platform for which the PSE
has been developed. Finally, if the performance of
the legacy application has been tuned to a particular
type of architecture, porting it to a different architec-
ture may take the performance advantages away.

3. Lack of portability: Very few existing PSEs are built
around a client/server architecture and there is no clean
separation of the PSE client interface from the the
server-based functionality. Hence, for making the PSE
available on another platform, the entire PSE software
must be ported, instead of just the client functionality,
as for a client/server system.

A problem solving environment is a complex system
by nature and porting the entire PSE software to some
other machine or even just installing a copy of the
software on another machine may be a tedious task.
Consider the example of Parallel ELLPACK (//ELL-
PACK), which is a problem solving environment for
partial differential equations (PDEs) [4]. The //ELL-
PACK system consists of about one million lines of C,
Lisp, and Fortran code. It’s easy to see how complex
it must be just to install a copy of the PSE on a new
machine. If a system like this were to be built around a
client/server architecture, only the client functionality
would need to be ported to other platforms, the code
for which would be only a small percent of the entire
PSE software.

These considerations, in general, limit the availabil-
ity of the PSE to platforms for which they are devel-
oped and many times, to the user being present at the

particular machine on which the system is installed.
There is need for a PSE architecture that follows the
client/server model and where problem specification
and analysis of solution can be decoupled from the task
of producing a solution.

This research tries to address the above issues, either par-
tially or completely.

2 Overview of Symphony

Symphony is a platform-independent framework for
specifying and transparently executing compositions of dis-
tributed resources, including legacy resources. The Sym-
phony framework provides an ability to visually compose
a collection of distributed program codes, data, and visu-
alization components by specifying data-flow relationships
among them. It also enables the user to execute the com-
posed application in a manner that respects the data-flow re-
quirements of individual programs in the composition. Ex-
ecution transparency in this context means that all system
level operations of program execution and of moving data
across geographically distributed locations must be largely
transparent to the user. Additionally, the Symphony frame-
work is extensible, open and independent of any application
domain. It provides an ability to compose Web-accessible
resource with legacy resources and allows storing the meta-
program in persistent storage so that it can be modified or
used later, potentially on a different machine than the one
on which it was built. It also provides the necessary system
security required for execution of remote applications.

The following is a list of all the beans currently imple-
mented in Symphony and a short description of their pur-
pose, along with an example of how they may be connected
together into a simple meta-program (Figure 1):

� Program Bean: This bean represents an executable
resource on a remote machine or on the client ma-
chine. Based on the location, input-output require-
ments, and the manner in which it can be accessed,
the program bean represents two broad categories of
programs: HTTP-accessible programs, such as CGI
scripts, and regular command-line programs.

� File Bean: This bean represents a local or remote data
file used as an input to a program or produced as out-
put. A file can be an HTTP accessible file, an anony-
mous FTP accessible file, or a private user accessible
file on any machine connected to the Internet.

� Socket Bean: A socket bean encapsulates an input
or output stream for communicating through TCP/IP
sockets.



Figure 1. The Composing Environment for
Meta-programs

� Standard Stream Beans: There are three different
beans representing the standard streams of a program:
standard input, standard output, and standard error. A
standard input bean provides a way of redirecting data
into a program’s standard input stream. The standard
output and error beans provide means of redirecting
the respective streams from a program to other beans
for processing.

� Producer Beans: A producer bean is an abstract bean
that can be extended by implementing a simple inter-
face to define new beans types that act as producers of
data. One Symphony bean that has been implemented
by extending the Producer bean is a Parameters bean.
The Parameters bean reads, from a URL, a textual de-
scription of the set of parameters expected by a legacy
program, and creates a graphical interface to solicit
those parameters from the user. The parameters en-
tered by the user are passed onto the next bean in the
sequence for further processing during execution.

� Consumer Beans: This is an abstract bean which
is useful for implementing new beans that act as con-
sumers of data, e.g., visualization beans and viewer
beans. Symphony beans that have been implemented
using this bean are a FileViewer bean which displays
a text file in a window, and a WireFrame bean which
reads a stream of specially formatted data and creates
a rotatable 3D wireframe graph.

� Filter Beans: The filter bean is an abstract bean that

allows the user to implement different kinds of beans
for filtering the data flowing through the system. The
simplest filters can be text filters analogous to the Unix
filters. More complex filters include image processing
filters and file format converters.

� Annotations Bean: This is a utility bean that allows
the user to add annotations to the meta-program being
constructed. Annotations can be added and viewed at
any time.

� Properties Bean: This bean represents common
properties such as remote host name, user name, pass-
word, etc., that are read by all other beans in the envi-
ronment for customization. This is a utility bean that
decreases the amount of work the user has to do for
customizing the beans in a meta-program. The user
customizes the properties in the properties bean and
the values are propagated to all the other beans which
have these properties.

Symphony
Server

Host C

Symphony
Server

Host BSymphony
Server

Host A

H
O
S
T

Z

Host D

Composing Environment

Host F

Applet

Host E

FTP File

HTTP File

Figure 2. Symphony Architecture

Figure 1 shows how some of the above-mentioned beans
can be composed to form a meta-program. Each Program
bean can be connected to a set of input and output beans.
For example, the RFPInput bean is actually a Producer
bean which solicits parameters from the user during execu-
tion. Data from this bean is redirected to the standard input
stream of Program1 which creates the file represented by
the File1 bean when executed. Program2 takes input from
the file represented by the File1 bean and also on its stan-
dard input. It creates files represented by beans File3 and
File4 and the standard output from Program2 is redirected to
File2. After File3 is created by the program represented by
the Program2 bean it is read by the WireFrame bean which



creates a 3D wireframe graph from the file data. The Anno-
tations bean is used to add time-stamped annotations to the
meta-program.

The Symphony server is a daemon process running on
all host machines which serve programs to remote builder
clients. The server is only needed for executing remote pro-
grams, not for accessing remote files. It is written in Java
for portability. Client program beans communicate with ap-
plication servers on various hosts by making remote method
invocations (RMI) on objects residing in the server. Figure
2 shows the general architecture of the Symphony system.
The Symphony meta-program on the client host machine
includes three program beans that represent remote pro-
grams on hosts A, B, and C. Hence, the Symphony server
is needed on these host machines. Another program bean
in the meta-program refers to an applet accessible through
a URL. The program to be executed on host C needs a file
to be present on host E and the programs on host A needs a
HTTP-accessible file from host D.

Finally, the name Symphony is representative of the fact
that constructing meta-programs that provide access to dis-
tributed resources is similar to composing a complex and
harmonious musical piece. The user who acts as composer,
director, as well as audience, composes the musical score
and, hopefully, appreciates the results.

3 Using Symphony

This section describes the procedure to initialize the
BeanBox for composing Symphony meta-programs. It also
describes important BeanBox operations at a higher level in
terms of the steps required for composing a meta-program
[11]. Two modifications have been made to the BeanBox
provided by Sun purely for aesthetic purposes. First, the
original BeanBox displays an empty property sheet when a
bean that does not export any properties is selected in the
workspace. In the modified BeanBox, the property sheet
disappear when such a bean is selected. Second, the origi-
nal BeanBox does not visually depict connections between
beans, but the modified BeanBox does. This later modi-
fication is important for Symphony in order to be able to
present the data-flow graph of a meta-program more nat-
urally to the user. This, however, does not mean that the
modified BeanBox has to be used for composing and exe-
cuting meta-programs. Any bean builder tool can be used
whether or not it provides these visual features.

3.1 Constructing a Meta-Program

There are five major steps to creating a meta-program.
Symphony beans first need to be loaded into the Bean-
Box environment after which a visual representation of each
bean appears in the tool box. Second, the required beans

must be inserted into the workspace and, third, customized
for the resources they represent. Fourth, the beans must be
linked according to the desired data-flow patterns, and fi-
nally, the meta-program can be verified, executed, or saved
for future use. This section also provided details for set-
ting up the execution environment for executing a meta-
program. Details about meta-program verification and exe-
cution are given in the next sub-section.

3.1.1 Loading Symphony Beans

Symphony beans are packaged in a single Java archive (jar)
file. In order to use the beans they need to be loaded in
the BeanBox from the jar file, which can be done in two
ways. The jar file can be placed in the BeanBox’s default
jars directory (accessible from the directory in which the
BeanBox is installed), in which case the beans are loaded
automatically when the BeanBox application is started. Al-
ternatively, the “Load Jar File” menu option of the BeanBox
can be used to load the beans. Regardless of how they are
loaded, if the load operation is successful, icons for Sym-
phony beans appear in the tool box. Figure 3 shows Sym-
phony beans already loaded into the environment. Notice,
for example, that icons for the Program and File beans ap-
pear in the ToolBox window.

Figure 3. BeanBox Windows

3.1.2 Inserting Beans in the Workspace

A bean is inserted in the BeanBox workspace by clicking on
the bean label or icon in the tool box, dragging the mouse



pointer to the desired insertion point in the workspace.
When a bean is inserted it becomes the currently selected
bean in the workspace and a hatched border appears around
the been. Any bean can be selected by clicking the left
mouse button on the bean or on its perimeter.

3.1.3 Customizing Bean Properties

Figure 4. Program Bean Customizer

Every bean publishes certain properties which can be
discovered by the BeanBox at run-time and customized
by the user. All Symphony beans provide property edit-
ing through specialized customizer dialogs. If, for exam-
ple, a user selects the Program bean shown in Figure 3 and
chooses the Edit! Customize. . . menu-item, the BeanBox
will display the Program bean customizer shown in Figure
4. Notice that among the properties of the program bean are
the program type, host name, login name, password, and
other relevant properties for a program.

3.1.4 Linking Beans by Events

Symphony beans communicate through events. A particu-
lar bean can generate a variety of events depending on the
bean type and purpose. For example, the most important
event generated by a button bean is the action event, which
occurs when the button is pushed. On the other hand, a bean

which has an explicit user interface for interacting with the
user may generate events corresponding to mouse and key-
board actions. When a bean is selected in the workspace,
the types of events it generates appears as a sub-menu of the
Edit! Events menu item. Items in this sub-menu represent
classes of events such as mouse events, keyboard events,
window events, etc. Each item opens another sub-menu
which shows the actual events generated, such as the mouse
clicked event, mouse dragged event, key pressed event, and
so on.

An event generated by a bean can be linked to a method
call in another bean, such that the chosen method in the tar-
get bean is invoked automatically when the chosen event is
generated in the source bean. Each Symphony bean that
takes part in the data flow, except for a Consumer bean, ex-
poses only one type of event (connection! createConnec-
tion) and every bean, except for a Producer bean, exposes
only one target method (eventSend ). In order to connect
two Symphony beans, the connection event from adata
source bean must be connected to the eventSend method
of a data sink bean. It must be noted that a connection
between two Symphony beans is always made in the direc-
tion of the desired data flow.

Since the implementation of the source bean knows noth-
ing about the target method in the target bean, the BeanBox
generates a standard adapter class for forwarding the event
notification from the source bean to the target bean. The
BeanBox also takes care of registering the adapter object
with the source bean. If the adapter generation and reg-
istration are successful, an arrow depicting the connection
appears between the source and target beans.

3.1.5 Saving the Workspace

A meta-program may be saved in a persistent state in the
form of a Java serialized file. This file can be loaded into
the BeanBox at a later time to reproduce the meta-program
and modify or execute it.

The BeanBox uses object serialization to save and re-
store the current contents of the workspace (the beans in
the workspace, their state, and connections) [10]. On se-
lecting the File! Save menu item in the BeanBox, a file
dialog box appears, which can be used to save the current
workspace to a named file. In order to retrieve the saved
beans, select the File! Load menu item and select the re-
quired file name in the file dialog that appears. The current
contents of the BeanBox workspace will be replaced with
the contents of the serialized file. A serialized file is ma-
chine and architecture independent and can be transported
to any other site and loaded in any bean container, if support
for static serialization is provided by the container.



3.1.6 Setting up the Execution Environment

Before a meta-program can be verified or executed, the
user needs to ensure the existence of two types of server
processes on remote host machines from which the meta-
program accesses resources. Remote files are read or writ-
ten by creating FTP connections to the host machines on
which these files reside. To enable this, an FTP daemon
process needs to be running on the remote host. This is
not necessary for the local host because local files are ac-
cessed directly from the file system. Secondly, for exe-
cuting a remote programs represented by a Program bean,
the Symphony server needs to be running on the host ma-
chine on which the program resides. The Java class files
for executing the Symphony server are included the Sym-
phonyserver.jar file that comes with the Symphony distri-
bution.

3.2 Meta-program Operations

Symphony provides three operations that can be per-
formed on a meta-program: verify, execute and stop. These
operation are initiated from the menu that pops up by click-
ing on a Program bean. If there are multiple Program beans
in the meta-program, any of them can be used to start an
operation. Symphony provides visual feedback to the user
during any meta-program operation so that the progress of
the operation can be assessed. The following sub-sections
describe the mechanism used by Symphony for visual feed-
back and details about each individual operation.

4 Application Example

This section describes a sample meta-program based on
the Radio Frequency Pressing (RFP) simulation developed
at the Department of Wood Science and Forest Products at
Virginia Tech [2]. This system simulates heat and mass
transfer in wood when subject to power input by an alternat-
ing electric field. The simulation, implemented in Fortran,
takes 64 input parameters as a specially formatted file, of
which 11 parameters (such as thickness of wood specimen,
strength and frequency of electric field, initial temperature,
etc.) must be specified by the user to run the simulation; the
remaining parameters have default values which may also
be changed. The simulation produces output files contain-
ing temperature, pressure and moisture data for the wood
specimen with respect to time. This output data can be visu-
alized as a 3-dimensional graph. For example, the temper-
ature inside the wood specimen at any point in time during
the simulated experiment can be visualized as a 3D graph
of temperature vs. position vs. time. However, the output
files produced by the simulation cannot be used directly for
creating the required graphs. It must first be converted into

a format that the 3D-graph plotting applet can understand.
Thus, there are three major steps to running the simulation
and visualizing the results:

� Obtain the input parameters from the user and create
the input file

� Execute the simulation

� Convert simulation output to the required format and
visualize the results

Figure 5 shows the meta-program constructed to execute
this simulation. The screen-shot has been annotated by bean
types, for reference.

Figure 6 shows a conceptual model of the meta-program
configuration. As shown in the figure, the simulation pro-
gram (denoted by the Program bean labeled “Fortran Sim-
ulation” in the meta-program) resides on host machine B.
The input file needed by the simulation (File bean labeled
“Input Data File” in meta-program) and the produced out-
put files also reside on host B. Although not necessary, for
purpose of illustration, the script for converting the input
values to a formatted file (Program bean labeled “Script1”)
and the script for converting the simulation output data to
3D graph data (Program bean labeled “Script2”) have been
placed on different host machines than the simulation pro-
gram. Both Script1 and Script2 read data from the standard
input stream and write output to the standard output stream.
Also, for simplicity, the pressure and moisture output from
the simulation has been ignored in the meta-program. Only
the temperature output is considered. The RFPInput bean
shown in the meta-program, created by extending the ab-
stract Producer bean, provides a dialog box for accepting in-
put data values for the simulation. Similarly, the WireFrame
bean, created by extending the abstract Consumer bean, ac-
cepts 3D-graph data in the specified format and displays a
rotatable 3D wireframe graph in a separate window. The
simulation program reads its parameters from the standard
input stream which are obtained from the user by using the
Parameters bean (created from the abstract Producer bean).

The following actions take place when the meta-program
is executed from the composing environment, assuming that
the execute operation is initiated from the Program bean la-
beled ’Script1’.

1. The Script1 Program bean asks the RFPInput bean to
get ready, which in turn displays a dialog box for ac-
cepting the simulation parameters from the user. Fig-
ure 7 shows the dialog box. The user modifies the de-
fault parameter values and clicks the “Run Simulation”
button. The RFPInput bean returns a ready status to the
Script1 bean.

2. Script1 contacts the Symphony server on host A and
starts execution of the Perl script for converting the



Producer Bean

Program Bean

File Bean

Program Bean

Consumer Bean

File BeanProducer Bean

Program Bean

Figure 5. Meta-program for the Wood-based
Composites RFP Simulation

Input File Data

Script for Creating
Input File

Input Paramters

stdin

stdout

Host A

Output Data

Script for Converting
Output Data to

Standard Format

3D Wire Frame Data

Host C

Fortran Simulation

Input File

Moisture Output Pressure Output

Temperature Output

Host B

Figure 6. RFP Simulation Meta-Program Con-
figuration

parameters obtained from the RFPInput bean to the re-
quired file format. It redirects data from the RFPInput
bean to the standard input stream of the remote pro-
gram, which produces the file data on its standard out-
put. The output data from Script1 is directed to the
File bean labeled ”Input Data File”, which results in
the creation of a file on host B.

3. The ”Input Data File” bean sends an event to the
“Fortran Simulation” Program bean to start execution,
which in turn, asks the Parameters bean to get ready
for execution. The Parameters bean reads the param-
eters description file identified by a URL and creates
a user interface to accept the input parameters. The
user modifies the default parameter values if needed
and clicks the “Submit” button. The parameters bean
returns a ready status to the Simulation bean.

4. The ”Fortran Simulation” bean contacts the Symphony
server on host B to start execution of the Fortran sim-
ulation program, and redirects the data obtained from
the Parameters bean to the standard input stream of the
simulation program. The simulation program writes
output to the standard output stream which is displayed
in a dialog box that appears when the program starts
execution. The remote program creates several output
files, one of which is the file defined by the File bean
labeled “Temperature Output File”.

5. After the simulation program is done and the output
files have been completely created, an event is sent
to the Program bean labeled “Script2” to begin execu-
tion. The Script2 bean contacts the Symphony server
on host C and start execution of the Perl script for con-
verting the temperature output data to 3D wireframe
data. It redirects data from the “Temperature Output
File” bean to the standard input of the remote script.
After starting the execution of the remote script, the
Script2 bean informs the WireFrame bean of the avail-
ability of data and gives it a handle to the standard out-
put stream from the program.

6. The WireFrame bean reads the data stream obtained
from the Script2 bean and displays the 3D WireFrame
graph shown in Figure 8. This data transfer is a stream-
ing transfer where the WireFrame bean reads data as it
is being produced by the remote script. The graph can
be rotated by dragging the mouse pointer in the win-
dow, with the left mouse button pressed.

5 Comparing Symphony to Other Ap-
proaches

This section provides a comparison of Symphony with
other related work. Table 1 depicts the comparison. The
first column of the table can be explained as follows. Sym-
phony is a platform-independent system for visual compo-
sition of distributed legacy resources. The framework is ex-
tensible and allows programmers to easily add new compo-
nents to the system, and is open because Symphony beans
can be used in any standard JavaBeans container. Meta-
programs can be composed for any application domain, and
can integrate web-based resources with legacy resources. A
meta-program can be stored in persistent storage and pro-
vides a username/password form of security. The table
should not be interpreted to mean that the related systems
do not have any other features. It only lists the features pro-
vided by Symphony.



Figure 7. User Interface Created by the RFPIn-
put Bean

Figure 8. 3D Wire Frame Graph of Simulation
Results

6 Conclusions

Symphony attempts to address the problems outlined
in the Introduction for scientific and engineering problem-
solving tasks that involve the use of distributed legacy re-
sources. It allows users to visually compose legacy pro-
grams and data distributed on different machines by spec-
ifying the data-flow relationships among them. These pro-
grams and data can be used without any modifications. It
also allows transparent execution of the composed applica-
tion in a manner that respects the data-flow requirements
of executable components. Execution transparency means
that all system-level operations of program execution and

Table 1. Comparison of Symphony to Related
Work

S
ym

p
h

o
ny

AV
S

Ja
va

m
at

ic

W
eb

//E
LL

P
A

C
K

N
et

S
o

lv
e

W
eb

F
lo

w

In
fo

sp
h

e
re

s

Platform
p p p p

Independent

Visual
p p p p p

Compositional
p p p p

Distributed
p p p p p

Legacy
p p

Support

Extensible
p p p p p

Open
p p p p

Generic
p p p

Web-aware
p p p p

Persistent
p p p p p p

Secure
p p p p p p p

Graphical
p p p p

of moving data across geographically distributed locations
are largely transparent to the user.

Symphony has been implemented as a set of Java beans
which can be customized and composed in a beans builder
tool. It provides six core beans for representing legacy re-
sources: Program, File, Socket, Stdin, Stdout and Stderr.
These beans can be used to build meta-programs based on
the data-flow patterns between executable components. The
Program bean communicates with the Symphony server for
executing remote applications. The server has been imple-
mented by using the Java Remote Method Invocation (RMI)
mechanism.

Other goals for the system were for it to be: extensible,
open, generic, web-aware, persistent, secure and graphical.

Symphony enables extensibility by providing abstract
beans which can be extended to add new bean types to
the environment. Three abstract beans have been provided:
the Producer bean, the Consumer bean, and the Filter bean.
These beans can be used to implement components that act
as data producers, consumers, or filters respectively. The
abstract beans do not define the manner in which data is
obtained, consumed or transformed, thus providing consid-
erable flexibility to programmers who wish to implement



new bean types.
Use of standard JavaBeans mechanisms makes the Sym-

phony framework open in the sense that the set of beans can
be used in any standard JavaBeans container. This has en-
abled the application of Symphony components in Sieve, a
JavaBeans-based collaborative workspace, where multiple
users can collaborate on composing a Symphony applica-
tion in real-time.

Although, work on Symphony was initiated from the per-
spective of science and engineering applications, the sys-
tem is sufficiently generic to be used for visually compos-
ing and executing any set of distributed resources outside of
this context.

The Program and File beans allow the user to specify
web-accessible resources. Thus, web-based resources can
be effectively composed with legacy resources. The com-
posed application can also be saved to persistent storage
and reloaded later for user or modification. Symphony also
provides basic security in terms of username/password au-
thentication for protected resources.

The Producer abstract bean can be used to implement
new bean types that provide graphical interfaces to legacy
applications as illustrated by the Parameters bean. Simi-
larly, the Consumer abstract beans can be used to create vi-
sualization components for viewing results. This has been
illustrated by implementing the FileViewer and WireFrame
beans.

7 Limitations and Future Work

This sub-section outlines limitations of the Symphony
framework. Some of these limitations stem from the limita-
tions of the current JavaBeans architecture and some from
the time constraints faced during the design and develop-
ment of Symphony.

� Aggregation: There is currently no mechanism where
a meta-program can be saved as an aggregate bean
which can be loaded back into the bean container as an
individual bean. An aggregate should have its own rep-
resentation on the workspace and it should be expand-
able to see and manipulate the constituent beans of the
meta-program. It should be possible to connect an ag-
gregate bean to other beans or other aggregates to form
more complex, modularized meta-programs. Multiple
levels of aggregation should be supported. An aggre-
gate bean should also have other properties of its own
which represent the properties of the meta-program as
a whole. More research is needed to determine what
properties and operations a meta-program should have
as a whole (e.g., how would an aggregate be executed).

� Control-Flow and Loop Control: The connection
mechanism in Symphony only allows data-flow con-

nections. There is currently, no way to depict a control
connection between beans instead of a data connec-
tion. It would be useful to be able to specify control
connections between program beans even if there is no
data dependency between programs, such that when
one program finishes, it automatically triggers execu-
tion of the next one. Such a capability would be useful
in several scenarios such as for sequencing the exe-
cution of concurrent programs executed on the same
machine to avoid overload, or to force error-prone pro-
grams to execute first in order to avoid unnecessary
computation if they fail, or cause independent pro-
grams to execute concurrently on different machines
to speed-up program execution. Also, currently Sym-
phony beans cannot handle loops in the meta-program.
Currently, any operation on a meta-program with loops
could result in a deadlock or an infinite loop. This can
be avoided by introducing a special loop control bean
and by giving sequence identifiers to meta-program
operations.

� Data Routing Efficiency: During meta-program exe-
cution, all data is currently routed through the Bean-
Box for ease of development and testing. In some
cases this is not efficient as it involves two or more
copy operations to transfer the data from the source to
destination instead of a single copy. This can be very
inefficient if large amounts of data need to be trans-
ferred. One solution to this problem is to decouple the
data copying operations from the data control opera-
tions, transferring the copy responsibility to a server-
side entity. In this case the beans would instruct server-
side entities to perform the required data transfer at
the right time and provide them with enough informa-
tion about the source and destination of the data to be
routed.

� Security: Symphony currently provides a minimal
level of security which involves username and pass-
word authentication for remote resources. Explicit se-
curity features could be included as part of the Sym-
phony execution environment. Currently it is not pos-
sible to package a Symphony meta-program as an ap-
plet because of the restrictions of the applet security
model. If, however, it were possible to package the
beans as an applet and sign the applet with a digi-
tal signature, the applet could be run from within a
browser with enhanced privileges. For some applica-
tions, the simplistic username/password security can
become cumbersome, especially if more than one per-
son needs to use a meta-program. There must be
a mechanism which allows execution of certain pro-
grams on a server machine without requiring login au-
thentication. An example of such a mechanism would



be to use a dictionary approach where every execution
request is authenticated against a program dictionary.
Execution is allowed if an only if the request matches
an entry in the dictionary. Communication security
can be provided by using a secure sockets-based RMI
transport instead of the default socket-baesd transport
provided by the RMI mechanism.

References

[1] Craig Upson, Thomas Faulhaber, David Kamins,
Davin Laidlaw, David Schlegel, Jeffrey Vroom,
Robert Gurwitz, and Andries van Dam. The Appli-
cation Visualization System: a Computational Envi-
ronment for Scientific Visualization.IEEE Computer
Graphics and Applications, pages 30–42, July 1989.

[2] Department of Computer Science, Virginia Tech. Re-
search in Problem Solving Environments at Virginia
Tech. URL: http://www.cs.vt.edu/ pse/, 1998.

[3] Department of Computer Sciences, Purdue Uni-
versity. Problem Solving Environments. URL:
http://www.cs.purdue.edu/research/cse/pses/, 1998.

[4] E. Houstis, J. Rice, S. Weerawarana, A. Catlin, P.
Papachiou, K.-W. Wang and M. Gaitatzes. Paral-
lel ELLPACK: A Problem-Solving Environment for
PDE Based Applications on Multicomputer Platforms.
ACM Transactions on Mathematical Software, (To
Appear) 1998.

[5] Efstratois Gallopoulos, Elias Houstis and John Rice.
Computer as a Thinker/Doer: Problem Solving Envi-
ronments for Computational Sciences.IEEE Compu-
tational Science and Engineering, pages 11–23, 1994.

[6] Philip Isenhour. Sieve: A Java-Based Framework for
Collaborative Component Composition. Master’s the-
sis, Virginia Tech, Blacksburg, VA, 1998.

[7] John Ambrosiano, Steve Fines and Mladen Vouk.
Problem-Solving Environments in the Year 2000 and
Beyond, 1995.

[8] Khoral Research, Inc. What is khoros? URL: http://-
www.khoral.com/khoros/whatis.html, 1998.

[9] John Rice and Ronald Boisvert. From Scientific
Software Libraries to Problem-Solving Environments.
IEEE Computational Science and Engineering, pages
44–53, 1996.

[10] Sun Microsystems, Inc. Java Object Serialization
Specification. URL: http://www.javasoft.com/-
products/jdk/1.1/docs/guide/serialization/spec/-
serialTOC.doc.html, 1997.

[11] Sun Microsystems, Inc. The JavaBeans (tm) Tutorial.
URL: http://www.javasoft.com/beans/docs/Tutorial-
Nov97.pdf, 1998.


