
1
CS 6204, Spring 2005

Onion Routing

Varun Pandey
Dept. of Computer Science,
Virginia Tech

2CS 6204, Spring 2005

What is Onion Routing ?
a distributed overlay network to anonymize TCP

based routing
• Circuit based (clients choose the circuit)
• Each node in the path called “ONION” router (OR)
• OR knows only its predecessor or successor but no other

node of the circuit
• Traffic flows in fixed-size cells

• A cell has many layers
• Each layer “peeled off” by a symmetric key at each node
Dingledon et. al. ‘s paper on “TOR: The second generation onion

router” provides improvements over the previous designs of onion
routing

3CS 6204, Spring 2005

♦ First: the design of original Onion Routing
implementation as proposed by Goldschlag et. al.
in their paper on “Hiding Routing Information”.

• aim was to limit vulnerability by traffic analysis
• Provide anonymous socket connection by proxy

servers
• Only the initiator knew all the nodes. No other

node, including the responder need to know about
the any other node except the predecessor and
successor.

4CS 6204, Spring 2005

♦ What is Traffic Analysis?
Analyze traffic patterns instead of data to deduce who is communicating with whom.
In most networks even if data is encrypted, routing information is sent in the clear for router

to know the destination of the packet.

The goal of OR is to prevent giving away identities by traffic analysis on a public network
For e.g. a researcher who used the WWW to collect data from a variety of resources.
Although each piece of information that he receives is publicly known, it may be
possible for an outside observer to determine his sensitive interests by studying the
patterns in his requests. OR makes it very difficult to match his HTTP requests to his
site. (from “Hiding Routing Information” by Goldschlag et.al.).

OR provide bi-directional communication, without requiring that the responder know the
initiator’s identity or location. Individual messages are not logged. Messages can
included a “Reply” Onion that permit a later reply to the sender without knowing his
address and without keeping the virtual circuit open.

5CS 6204, Spring 2005

♦So the key is the “ONION”.
♦How to set up the circuit using “ONIONS”?
♦How to use the circuits set up?
♦How to destroy the circuits?
♦Vulnerabilities?

6CS 6204, Spring 2005

Routing Topology

From “Hiding Routing Information” by
Goldschlag et. al. 1996

7CS 6204, Spring 2005

♦ ONION: payload with layers over layers of
encrypted routing information around it. Guides
the construction of VC.

♦ When an Onion is received each node knows who
just sent him him Onion, whom to pass on the
onion, but

Knows nothing about the other nodes
Nor about how many nodes there are in the chain
Nor about what is his place in the link (unless he is the
last)

8CS 6204, Spring 2005

A Forward Onion

From “Hiding Routing Information” by
Goldschlag et. al. 1996

A Forward Onion

Node PKx receives:

{exp_time, next_hop, Ff, Kf, Fb, Kb, payload} PKx

9CS 6204, Spring 2005

♦ Note: for the responder proxy the next_hop field is NULL.
♦ For any intermediate node, the payload is another onion.
♦ The exp_time is used to detect replays.
♦ At each node the ONION shrinks because of peeling off of

a layer. This can reveal route info because of diminishing
size. To prevent that, random bits = size of the peeled off
layer is appended at the end.

♦ Need to make all onions of the same size to prevent traffic
analysis and to hide the length of the chain from the
responder’s proxy --- for that the initiator’s proxy will pad
the central payload according to the size of the onion i.e.
the no. of hops.

10CS 6204, Spring 2005

♦Creating the circuit
[circuit_identifier, command, data (Onions)]
(in link encrypted connection)

command -> create
data
destroy (forwarded in both

directions)

11CS 6204, Spring 2005

A Virtual Circuit

From “Hiding Routing Information” by
Goldschlag et. al. 1996

12CS 6204, Spring 2005

♦Loose Routing
♦ Onion for a loose routing

{exp_time, next_hop, max_loosecount, Ff,
Kf, Fb, Kb, payload} PKX

13CS 6204, Spring 2005

♦Reply Onions
primary difference with Forward Onions

payload of the forward onion can be
effectively empty

the reply onion payload has enough
info to enable the initiator’s proxy to reach
the initiator and all the Function key pairs
of the circuit

14CS 6204, Spring 2005

Reply Onion

From “Hiding Routing Information” by
Goldschlag et. al. 1996

15CS 6204, Spring 2005

♦ Improvements over the original Onion Routing as
sighted by the paper on TOR by Dingledine et. al.

Perfect forward secrecy
Seperation of “protocol cleaning” from anonymity
Many TCP streams can share one circuit
Leaky pipe circuit methodology
Congestion Control
Directory servers
Variable exit policies
End-to-end integrity checking
Rendezvous points and hidden services

16CS 6204, Spring 2005

Cells in TOR

Cells are Controls cells or Relay cells.

Control cells CMDs are: padding, create, destroy

Relay cells CMDs are: relay data, relay begin, relay teardown, relay connected, relay

extend, relay truncate, relay sendme, relay drop

NOTE: Each CircID now can have multiple StreamID

17CS 6204, Spring 2005

Building a two-hop circuit

From “TOR: The Second-Generation
Onion Router” by Dingledine et. al.

18CS 6204, Spring 2005

♦Rendezvous points are used to build
“location-hidden” services.

Goals in building Rendezvous points:
Access control
Robustness
Smear-resistance
Application transparency

19CS 6204, Spring 2005

Rendezvous in TOR

♦ Steps:
Bon generates a long-term key pair to identify his service
Chooses some introduction points, advertises them (signing them with his public
key) on the lookup service
Builds a circuit to each of his introduction points
Alice learns about Bob’s service out of band
Alice chooses an OR as her rendezvous point (RP) for her connection to Bob’s
service, builds a circuit to it, gives it a randomly choosen “rendezvous cookie” to
recognize Bob.
Alice opens an anonymous stream to one of Bob’s introduction point, and gives it a
message (encrypted with Bob’s public key) telling it about herself and random
cookie, her RP and the start of a DH handshake. The introduction point sends a
message to BOB
Bob builds a circuit to Alice’s RP and sends the rendezvous cookie, the second half
of the DH handshake, and a hash of the session key they now share.
The RP connects Alice’s circuit to Bob’s. Note that RP can’t recognize Alice, Bob,
or the data they transmit.
Alice sends a relay begin cell along the circuit. It arrives at Bob’s OP, which
connects to Bob’s webserver.
An anonymous stream has been established.

20CS 6204, Spring 2005

Attacks and Defenses in TOR

♦Passive attacks
Observing user traffic patterns
Observing user content
Option distinguishability
End-to-end timing correlation
End-to-end size correlation
Website fingerprinting

21CS 6204, Spring 2005

♦ Active Attacks
Compromise keys
Iterated compromise
Run a recipient
Run an onion proxy
DoS non-observed nodes
Run a hostile OR
Introduce timing into messages
Tagging attacks
Replace contents of unauthenticated protocols
Replay attacks
Smear attacks
Distribute hostile code

22CS 6204, Spring 2005

♦Attacks against rendezvous points
Make many introduction requests
Attack an introduction point
Compromise an introduction point
Compromise a rendezvous point

23CS 6204, Spring 2005

♦Thanks for your attention.

	Onion Routing
	
	
	
	
	Routing Topology
	
	A Forward Onion
	
	
	A Virtual Circuit
	
	
	Reply Onion
	
	Cells in TOR
	Building a two-hop circuit
	
	Rendezvous in TOR
	Attacks and Defenses in TOR
	
	
	

