Usability and Security

Glenn Fink
finkga@vt.edu
http://csgrad.cs.vt.edu/~finkga/
Papers

♦ Reading List
 – Whitten & Tygar, Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0
 – Balfanz, et al., In Search of Usable Security: Five Lessons from the Field
 – Zurko & Simon, User-Centered Security
 – Yee, Aligning Security and Usability

♦ Other Papers
 – Good & Krekelberg, Usability and Privacy: A Study of Kazaa P2P File-Sharing
 – Adams & Sasse, Users are not the Enemy
Why Johnny Can’t Encrypt

♦ Intelligent users couldn’t figure out how to encrypt their e-mail within 90 minutes
♦ Usable security cannot be achieved via normal usability approaches
 – Neat organization and display are insufficient
 – Must evaluate security as a secondary user goal
 – Need a new usability standard
♦ Inherent UI problems for security software
 – Users are unmotivated by security and overly optimistic
 – Security is intrinsically abstract
 – System must figure out user’s intent
 – Security is rife with irreversible actions
 – Security is only as strong as the weakest link
In Search of Usable Security

♦ Usability is an essential element of secure systems
♦ Decentralization: Users must be empowered to make security decisions
♦ Five Lessons Learned:
 – You can’t retrofit usable security
 – Tools are building blocks, not solutions
 – Solve security problems at user-level in user terms
 – Conduct usability studies with normal users
 – Tailor the solution to the local problem
User-Centered Security

♦ Goal: Make usability a primary goal of security

♦ Traditional problems with security usability
 – Secure systems were notoriously unusable
 – Underlying mathematical models do not guarantee a system that models user intentions well
 – Least privilege is hard to implement in a user-friendly way

♦ Three possible approaches to usable security:
 – Apply usability to existing secure systems
 – Apply security to existing usable systems
 – User-centered security design (from the start)
Aligning Security and Usability

- Develop usability and security goals together in an iterative design
- Infer program authorization from user’s actions by paying attention to indications of his intent
- Security by Admonition or Designation:
 - **Admonition**: Start with full user authority and require explicit user authorization when a user requests a risky action
 - **Designation**: Start with minimal authority and take users actions as indication that the software has his authorization
- Security by designation may require finer-grained access controls but is often achievable transparently
Kazaa Usability and Privacy

♦ Kazaa is a P2P file-sharing application

♦ Problems noted:
 – Not clear what files are being shared
 • More than just the “My Shared Folder” contents
 – Not clear how to start and stop sharing
 • Misleading indications about sharing status
 – Easy to unintentionally share private files
 – Lack of confidence in correct operation

♦ EULA Problems:
 – Unwittingly become part of a grid computer!
Users are not the Enemy

♦ Security policy may be its own worst enemy
 – Myth: Users are always against security
 – Fact: Users sometimes subvert intrusive security measures
 • Ex: Having multiple, different, complex passwords
 • Ex: Being forced to change passwords too often

♦ Communication with users is required
 – Users sometimes do not understand security
 • But this is often the fault security personnel
 – Security personnel often have not taken the time to understand the users’ work context
Goals of Usable Security

♦ Ultimate Goal: Safe, functional systems
 – Usability: an essential element of secure systems
 – Security: contributes to safety, predictability, and thus Usability

♦ Intermediate Goal: Raise the awareness of future designers about:
 – The difficulty of the problem
 – The criticality of finding solutions
Problems with Security Usability

♦ **Usability itself is hard**
 - HCI is really mediated HHI
 - Human interactions present intractable problems
 - Computers must support users’ intentions

♦ **Secure usability is harder than normal HCI**
 - There is an active, intelligent enemy
 - The threat is often invisible to users
 - Underlying security mechanisms are often obscure
 - Usability and Security can appear to be at odds
 - Security seen as a way to watch and restrict users rather than to help them with their tasks
An Active, Intelligent Enemy

♦ Rate of new attacks continues to increase
 – Worms, virii, phishing, etc.
♦ Number of attackers growing rapidly
 – Hacking tools built for reuse
♦ Most every security tool can be used offensively as well as defensively
♦ Builders’ crisis of imagination w.r.t. security
An Invisible Threat

- Users cannot see suspicious activity of their machines unless it interferes with usability
 - Surreptitious network connections
 - Accesses to system address book
 - Suspicious kernel routine calls
 - New software installed in system areas

- Users prefer to believe that the system security is working and protecting them

- Users do not believe they will be attacked until it is too late
An Obscure Protection

- Protection mechanisms are based on mathematical models
 - Access calculus, Bell and Lapadula model
 - Inaccessible to average users
 - Often designed for military use
 - Often not designed for user’s needs or intentions

- Security by Admonition
 - Too many false alarms
 - Makes users repeat their intentions
 - Misdiagnoses user intentions
A Conflict of Interests?

- Legacy security systems are unusable
- Legacy user applications are insecure
- Hackers pay more attention to the human side than the machine side
- Users will try to circumvent onerous security
Costs of Unusable Security

♦ Danger of serious user error
 – Loss of privacy
 – Potential for fraud
 – Lost revenue
 – Lost productivity

♦ Danger of serious program error
 – Unexpected program behavior
 – Irreversible actions
Approaches to Usable Security

- Respect the complexity of the problem
- Build security and usability in from the start
 - Conduct formative usability evaluations
- Build them together in an iterative design
- Build security around the users’ needs
 - Solve the problem in the users’ terms and at their levels of abstraction
Respect the Complexity

♦ Realize that users have complex needs
♦ Software is seldom used as designed
♦ Successful software will be used in unpredictable ways
♦ Attackers will use the software in perverse ways
Right from the Start

♦ Realize that the user is not the enemy
 – Keep the user informed
 – Avoid an authoritarian mindset
 – Tap into the user’s desire to be secure

♦ Tailor security to work practices
 – Study the user: Contextual Design
 – Avoid cookbook approaches to security
 – Challenge textbook security thinking
Usability Evaluations

♦ Conduct “Discount” Usability Evaluations
 – User testing with low-fidelity prototypes
 – Heuristic Evaluation
 – Cognitive Walkthrough

♦ Conduct Full Laboratory Evaluations
 – Use tasks that are representative of common user activities

♦ Conduct Contextual Inquiry
Ham in Hand

- Build usability and security together
 - Not as separate, competing features
 - Requires communication on the software team
 - Implies iterative design
- Consider both as part of the software engineering process
User-Centered

- Design security to meet users’ needs
 - But first you must find out what these are
- Employ lessons learned from the literature
 - Common security pitfalls
 - Typical usability failures
- Use Security by Designation where possible
Conclusions

♦ Security is not intrinsically antithetical to usability
♦ Usability and security are both required
 – By users’ desires and needs
 – By good engineering practice
♦ Security and usability are both hard problems to solve
 – To reap the benefits, be prepared to pay the costs