
Cryptanalysis of the Cellular Message
Encryption Algorithm

David Wagner Bruce Schneier John Kelsey
University of California, Berkeley Counterpane Systems

daw@cs.berkeley.edu {schneier,kelsey}@counterpane.com

Abstract. This paper analyzes the Telecommunications Industry Asso-
ciation’s Cellular Message Encryption Algorithm (CMEA), which is used
for confidentiality of the control channel in the most recent American dig-
ital cellular telephony systems. We describe an attack on CMEA which
requires 40–80 known plaintexts, has time complexity about 224–232, and
finishes in minutes or hours of computation on a standard workstation.
This demonstrates that CMEA is deeply flawed.

Keywords: cryptanalysis, block ciphers, cellular telephone

1 Introduction

As the US cellular telephony industry has boomed, the need for security has
increased: both for privacy and fraud prevention. Because all cellular commu-
nications are sent over a radio link, anyone with the appropriate receiver can
passively eavesdrop on all cellphone transmissions in the area without fear of
detection. The earliest U.S. cellular telephony systems relied on the high cost of
cellular-capable receivers (or scanners) for security. When such scanners become
affordable and widely available, the cellphone industry lobbied for protective
legislation. But these legal prohibitions have failed to solve the problem, and
systems architects have been forced to turn increasingly to cryptography for
more robust security.

The cellular telephony industry players are especially concerned with fraud
prevention. The FCC estimates that the cellular industry loses more than $400
million per year to fraud [FCC97]. Cellphone cloning is probably the foremost
form of this problem. Because most of today’s cellphones identify themselves
over public radio links by sending their identity information in the clear, eaves-
droppers can (and do) easily misappropriate others’ identity information to make
fraudulent phone calls. While the latest digital cellphones currently offer some
weak protection against casual eavesdroppers because digital technology is so
new that inexpensive digital scanners have not yet become widely available,
the president of the Cellular Telecommunications Industry Association testified
in recent Congressional hearings [Whe97] that “history will likely repeat itself
as digital scanners and decoders, though expensive now, drop in price in the
future.”

Cryptographic mechanisms are one obvious way to combat cloning fraud,
and indeed, the industry is turning to cryptography for protection. In 1992,
the TR-45 working group within the Telecommunications Industry Association
(TIA) developed a standard for integration of cryptographic technology into
tomorrow’s digital cellular systems [TIA92], which has been updated at least
once [TIA95]. Some of the most recent cellphones to hit the market already
include these cryptographic protection mechanisms [Nok96].

The TIA standard [TIA95] describes four cryptographic primitives for use in
North American digital cellular systems:

– CAVE, a mixing function, is intended for challenge-response authentication
protocols and for key generation.

– A repeated xor mask is applied to voice data for voice privacy1.
– ORYX, a LSFR-based stream cipher intended for wireless data services.
– CMEA (Control Message Encryption Algorithm), a simple block cipher, is

used to encrypt the control channel [Ree91].

The voice privacy algorithms has long been known to be insecure [Bar92, CFP93].
Recent work by the authors has shown that ORYX is insecure as well [WSK97].
This paper focuses on the security of CMEA.

Note that CMEA is not used to protect voice communications. Instead, it
is intended to protect sensitive control data, such as the digits dialed by the
cellphone user. A successful break of CMEA might reveal user calling patterns.
Also sent CMEA-encrypted are digits dialed (all DTMF tones) by the remote
endpoint and alphanumeric personal pages recieved by the cellphone user. Fi-
nally, compromise of the control channel contents could lead to any confidential
data the user types on the keypad: calling card PIN numbers may be an espe-
cially widespread concern, and credit card numbers, bank account numbers, and
voicemail PIN numbers are also at risk.

This paper is organized as follows. We describe CMEA in Section 2 for ref-
erence. Next, Section 3 lists some observations that form a foundation for our
later analysis. Then we give effective chosen- and known-plaintext attacks on
CMEA in Sections 4 and 5. Finally, Section 6 concludes.

2 A description of CMEA

We describe the CMEA specification fully here for reference. CMEA is a byte-
oriented variable-width block cipher with a 64 bit key. Block sizes may be
any number of bytes; in practice, US cellular telephony systems typically ap-
ply CMEA to 2–6 byte blocks, with the block size potentially varying without
any key changes. CMEA is quite simple, and appears to be optimized for 8-bit
microprocessors with severe resource limitations.
1 The situation is more complicated: time-division multiple access (TDMA) systems

use a straight xor mask, while code-division multiple access (CDMA) systems in-
stead use keyed spread spectrum techniques for security.

CMEA consists of three layers. The first layer performs one non-linear pass
on the block; this effects left-to-right diffusion. The second layer is a purely
linear, unkeyed operation intended to make changes propagate in the opposite
direction. One can think of the second step as (roughly speaking) xoring the
right half of the block onto the left half. The third layer performs a final non-
linear pass on the block from left to right; in fact, it is the inverse of the first
layer.

CMEA obtains the non-linearity in the first and third layer from a 8-bit keyed
lookup table known as the T -box. The T -box calculates its 8-bit output as

T (x) = C(((C(((C(((C((x⊕K0) +K1) + x)⊕K2) +K3) + x)⊕K4) +K5)
+x)⊕K6) +K7) + x

given input byte x and 8-byte key K0...7. In this equation C is an unkeyed 8-bit
lookup table known as the CaveTable; all operations are performed using 8-bit
arithmetic. The CaveTable is given in Figure 1,

We now provide a specification of CMEA. The algorithm encrypts a n-byte
message P0,...,n−1 to a ciphertext C0,...,n−1 under the key K0...7 as follows:

y0 ← 0
for i← 0, . . . , n− 1

P ′i ← Pi + T (yi ⊕ i)
yi+1 ← yi + P ′i

for i← 0, . . . , bn2 c − 1
P ′′i ← P ′i ⊕ (P ′n−1−i ∨ 1)

z0 ← 0
for i← 0, . . . , n− 1

zi+1 ← zi + P ′′i
Ci ← P ′′i − T (zi ⊕ i)

Here all operations are byte-wide arithmetic: + and − are addition and sub-
traction modulo 256, ⊕ stands for a logical bitwise exclusive or, ∨ represents a
logical bitwise or, and the keyed T function is as described previously.

CMEA is specified in [TIA92, TIA95]; it is also described in U.S. Patent
5,159,634 [Ree91], though a different T -box method is listed.

3 Preliminaries

First, we list some preliminary observations:

– CMEA is it’s own inverse. In other words, every key is a “weak key” (in
the strict sense, from the DES nomenclature, of being self-inverse). This was
apparently originally a design goal, for unknown reasons.

Fig. 1. The CaveTable

hi\
lo .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. d9 23 5f e6 ca 68 97 b0 7b f2 0c 34 11 a5 8d 4e
1. 0a 46 77 8d 10 9f 5e 62 f1 34 ec a5 c9 b3 d8 2b
2. 59 47 e3 d2 ff ae 64 ca 15 8b 7d 38 21 bc 96 00
3. 49 56 23 15 97 e4 cb 6f f2 70 3c 88 ba d1 0d ae
4. e2 38 ba 44 9f 83 5d 1c de ab c7 65 f1 76 09 20
5. 86 bd 0a f1 3c a7 29 93 cb 45 5f e8 10 74 62 de
6. b8 77 80 d1 12 26 ac 6d e9 cf f3 54 3a 0b 95 4e
7. b1 30 a4 96 f8 57 49 8e 05 1f 62 7c c3 2b da ed
8. bb 86 0d 7a 97 13 6c 4e 51 30 e5 f2 2f d8 c4 a9
9. 91 76 f0 17 43 38 29 84 a2 db ef 65 5e ca 0d bc
a. e7 fa d8 81 6f 00 14 42 25 7c 5d c9 9e b6 33 ab
b. 5a 6f 9b d9 fe 71 44 c5 37 a2 88 2d 00 b6 13 ec
c. 4e 96 a8 5a b5 d7 c3 8d 3f f2 ec 04 60 71 1b 29
d. 04 79 e3 c7 1b 66 81 4a 25 9d dc 5f 3e b0 f8 a2
e. 91 34 f6 5c 67 89 73 05 22 aa cb ee bf 18 d0 4d
f. f5 36 ae 01 2f 94 c3 49 8b bd 58 12 e0 77 6c da

– CMEA is typically used to encrypt short blocks. Because the cellular tele-
phony specification does not use random IVs, does not use block chaining
modes, and encrypts short blocks under CMEA, codebook attacks could be
a threat. On the other hand, the cellphone specifications require the CMEA
key to be re-derived (using CAVE as a pseudo-random generator) for every
call, so the amount of text required for a codebook attack may often be un-
available. (In a codebook attack, one obtains the encryption of every possible
plaintext, records those pairs in a lookup table, and uses it to completely
decrypt future messages without needing to know the key.)
J. Hillyard [Hil97] has noted that codebook attacks may still be possible in
practice. In some contexts, each digit dialed will be encrypted in a separate
CMEA block (with fixed padding); because CMEA is used in ECB mode,
the result is a simple substitution cipher on the digits 0–9. Techniques from
classical cryptography may well suffice to recover useful information about
the dialed digits, especially when side information is available.

– One bit of the plaintext leaks. The LSB (least-significant bit) of the cipher-
text is the complement of the LSB of the plaintext.

– The T -box has some key equivalence classes. Simultaneously complementing
the MSB (most significant bit) of K0 and K1 leaves the action of the T -box
unchanged; the same holds for K2i and K2i+1 for i = 0, 1, 2, 3. Therefore for
the rest of the paper we take the MSBs of K0,K2,K4, and K6 to all be 0,
without loss of generality, and we see that the effective key length of CMEA
is at most 60 bits.

– Recovering the value of all 256 of the T -box entries suffices to break CMEA,

even if the key K0...7 is never recovered.
– The value of T (0) occupies a position of special importance. T (0) is always

used to obtain C0 from P0; one cannot trivially predict where other T -box
entries are likely to be used. Knowing T (0) lets one learn the inputs to the
T -box lookups that modify the second byte in the message.

– The CaveTable has a very skewed statistical distribution. It is not a permu-
tation; 92 of the 256 possible 8-bit values never appear; some values appear
as many as four times. The distribution appears to be consistent with that
of a random function.
The skew in the CaveTable means that the T -box values are skewed, too:
we know T (i) − i must appear in the CaveTable, so for any input to the
T -box, we can immediately rule out 92 possibilities for the corresponding
T -box output without needing any knowledge of the CMEA key.

3.1 A chosen-plaintext attack

CMEA is weak against chosen-plaintext attacks: one can recover all of the T -
box entries with about 338 chosen texts (on average) and very little work. This
attack works on any fixed block length n > 2; the attacker is not assumed to
have control over n. We have implemented the attack to empirically verify it for
correctness; the attack is extremely successful in our tests2.

The attack proceeds in two stages, first recovering T (0), and then recovering
the remainder of the T -box entries; the CMEA key itself is never identified.
First, one learns T (0) with (256 − 92)/2 = 82 chosen plaintexts (on average).
For each guess x at the value of T (0), obtain the encryption of the message
P = (1− x, 1− x, 1− x, . . .), e.g. the message P where each byte has the value
1 − x; if the result is of the form C = (−x, . . .) then we can conclude with
high probability that indeed T (0) = x. False alarms occasionally occur, but they
can be ruled out quickly in the second phase because of the skewed CaveTable
distribution. Note that there are only 256 − 92 = 164 possible values of T (0),
since T (0) must appear in the CaveTable, and therefore we expect to identify
the correct value after about 164/2 = 82 trials, on average.

In the second phase of the attack, one learns all of the remaining T -box entries
with 256 more chosen plaintexts. For each byte j, to learn the value of T (j), let
k = ((n−1)⊕ j)− (n−2), where the desired blocks are n bytes long. Obtain the
encryption of the message P = (1− T (0), 1− T (0), . . . , 1− T (0), k − T (0), 0); if
the result is of the form C = (t−T (0), . . .), then we may conclude that T (j) = t,
except for a possible error in the LSB. A more sophisticated analysis can resolve
the uncertainty in the LSB of the T -box entries.3

2 M. Bannert has independent implemented our attack, and also reports success
[Ban97]; his manuscript also documents some aspects of the chosen-plaintext attack
in greater detail than is possible here.

3 Use the skewed CaveTable to reduce the number of ambiguous CaveTable entries to
164 possibilities. Now for each known text obtained in the second phase, we know
both the input P ′′ and the output C to the third CMEA layer; simulate that layer

In practice, chosen-plaintext queries may be available in some special situa-
tions. Suppose the targeted cellphone user can be persuaded to a call a phone
number under the attacker’s control—perhaps a menuized survey, answering ma-
chine, or operator. The phone message the user receives might prompt the user to
enter digits (chosen in advance by the attacker), thus silently enabling a chosen-
plaintext attack on CMEA. Alternatively, the phone message might send chosen
DTMF tones to the targetted cellphone user, thus mounting chosen-plaintext
queries at will.

4 A known-plaintext attack on 3-byte blocks

We now describe a known plaintext attack on CMEA needing about 40–80 known
texts. The attack assumes that each known plaintext is enciphered with a 3-byte
block width. Our (unoptimized) implementation has a time complexity of 224 to
232, and can be easily parallelized.

Our cryptanalysis has two phases. The first phase gathers information about
the T -box entries from the known CMEA encryptions, eliminating many possi-
bilities for the values of each T -box output. In this way we reduce the problem
to that of cryptanalysis of the T -box algorithm, given some partial information
about T -box input/output pairs. In the second phase, we take advantage of the
statistical biases in the CaveTable to cryptanalyze the T -box and recover the
CMEA key K0...7, using pruned search and meet-in-the-middle techniques to
enhance performance.

The first phase is implemented as follows. Because T (0) occupies a position
of special importance, we exhaustively search over the 164 possibilities for T (0).
(Remember that T (0) must appear in the CaveTable, and so there are only
256−92 = 164 possibilities for it.) For each guess at T (0), we set up a 256×256
array pi,j which records for each i, j whether T (i) = j is possible. All values for
T (i), i > 0 are initially listed as possible. Since T (i) − i is a CaveTable output
and the CaveTable has an uneven distribution, we can immediately rule out 92
values for T (i).

Next, we gradually eliminate impossible values using the known texts as
follows. The general idea is that each known plaintext/ciphertext pair lets us
establish several implications of the form

T (0) = t0, T (i) = j ⇒ T (i′) = j′. (1)

If we have already eliminated T (i′) = j′ as impossible, then we can conclude
that T (i) = j is also impossible via the contrapositive of (1). In this way, we
successively rule out more and more possibilities in the pi,j array, until we either
reach a contradiction (in which case we start over with another guess at T (0))
or until we run out of logical deductions to make (in which case we proceed to
the second phase).

without the derived T-box values, using trial-and-error for each ambiguous T-box
value: one needs at most 2n trials per text (and in practice far fewer), and wrong
trials are quickly eliminated.

The second phase recovers the CMEA key from the information about T
previously accumulated in the pi,j array. Our simplest key recovery algorithm
is based on pruned search. First, one guesses K6 and K7. Then, we peel off the
effect of the last 1/4 of the T -box, and check whether the intermediate value
is a possible CaveTable output. The intermediate value must always be one of
the 164 possible CaveTable outputs when we find the correct K6,K7; because
the CaveTable is so heavily skewed, incorrect K6,K7 guesses will usually be
quickly identified by this test, if we have knowledge about a number of T -box
entries. Next, one continues by guessing K4,K5, pruning the search as before,
and continuing the pruned search until the entire key is recovered. This technique
is very effective if enough information is available in the pi,j array.

Unfortunately, pruned search very quickly becomes extremely computation-
ally intensive if too few known texts are available: at each stage, too many
candidates survive the pruning, and the search complexity grows exponentially.
We have a more sophisticated key recovery algorithm which can reduce the
computation workload dramatically in these instances. The basic idea is that
the T -box is subject to a classic meet-in-the-middle optimization: one can work
halfway through the T -box given only K0...3, and one can work backwards up
to the middle given just K4...7. This enables us to precompute a lookup table
that contains the intermediate value corresponding to each K0...3 value. Then,
we try each possible K4...7 value, work backwards through some known T -box
outputs, and look for a match in the precomputed lookup table. Of course the
search pruning techniques can be applied to K4...7 to further reduce the com-
plexity of the meet-in-the-middle algorithm. The combination of pruned search
and meet-in-the-middle cryptanalysis allows us to efficiently recover the entire
CMEA key with as few as 40–80 known plaintexts.

4.1 The first phase: more details

We describe how to derive implications of the form (1) from some known CMEA
encryptions for the first phase. Knowing T (0) lets us recover (for each plain-
text/ciphertext pair P,C) y1, z1 and thus we learn the inputs to the two T -boxes
lookups used to modify C1. We make a guess (e.g. T (i) = j) about the output
of the first aforementioned T -box lookup. We can derive the (implied) output
of the second T -box lookup by using the known text pair. Then we deduce the
(implied) values of y2, z2 and thus the inputs to the two T -box lookups used to
modify C2. Next we derive the quantity xored into C0 in the second CMEA
layer, which lets us calculate the (implied) outputs of the two T -box lookups
that modify C2

4. Therefore our assumption T (i) = j implies three other derived
equations of the form T (i′) = j′; if any of those three derived input/output
pairs i′, j′ is listed as impossible in pi′,j′ , then we have found a contradiction,
and we may conclude that our original assumption was wrong—namely, that the
4 The true situation is slightly more complicated. The LSB remains unknown, so we

have to try two possibilities; only if both possibilities lead to a contradiction can we
rule out the equation T (i) = j as impossible.

assumed value of the T -box entry was in fact impossible, and that value may be
marked as impossible in pi,j .

In this way, we can gradually rule out many entries pi,j as impossible. We
loop over all i, j and all known texts, until no more deductions can be made.
If our guess at T (0) was incorrect, then there will probably be a T -box input
for which no possible output values remain, and in this case we will be able to
discard our incorrect guess at T (0). Otherwise, we tentatively conclude that our
guess at T (0) was correct, and we can usually identify several other known T -
box input/output pairs; with this information in hand, we proceed to the second
phase. Typically the first phase will identify T (0) uniquely when sufficiently
many known plaintexts (about 50 or more) are available5; if more possibilities
for T (0) are found, the second phase will be invoked for such possibility.

4.2 The second phase: more details

First, we describe how to prune key trials during the key recovery search. Note
that a T -box output is of the form

T (i) = C(((O + i)⊕K6) +K7) + i

for some unknown CaveTable output O. We can calculate j = C(((O + i) ⊕
K6) +K7) + i for all CaveTable outputs and check whether each such j is listed
as possible in pi,j ; if every such j is listed as impossible, then we can recognize
our guess at K6,K7 as incorrect. Because there are only 164 possible CaveTable
outputs, incorrect guesses at K6,K7 will usually be ruled out by some i as long as
there is enough information in the pi,j array. These incorrect guesses at K6,K7
can thus be pruned from the search tree without any further work.

Next, we give some more details on the meet-in-the-middle approach. This
approach is only applicable when we have enough known plaintexts to identify 4
known T -box input/output values (a, T (a)), (b, T (b)), (c, T (c)), (d, T (d)) from the
pi,j array. For each K0,K1,K2, we compute the intermediate values a′, b′, c′, d′

formed after computing T through the known key bytes; for example, a′ = C((a⊕
K0)+K1)+a)⊕K2. Next we form the 24-bit index n = (a′−d′, b′−d′, c′−d′), and
insert the pair (n,K0...2) into a large hash table keyed on n. After repeating for
all 222 possible K0...2 values, we have built a precomputed lookup table suitable
for use in the meet-in-the-middle optimization. To check a trial K4...7 value, we
work backwards from T (a), T (b), T (c), T (d) as far possible given only K4...7 and
identify the intermediate values a′′, b′′, c′′, d′′. The intermediate values reflect the
values of the T -box computations just after addition of K3: for example,

C(((C(((C(a′′) + a)⊕K4) +K5) + a)⊕K6) +K7) + a = T (a).
5 The density of p·,· after all deductions turns out to be a poor estimator for success.

For any fixed number of known texts, the density seems to be quite constant—
hovering around 0.5 for 40 texts and around 0.35 for 80 texts—and variations don’t
seem to be very strongly correlated to success in either phase of the attack.

We see that a′′ can be identified from a, T (a) by working backwards through the
T -box computation and inverting the CaveTable where necessary6, and b′′, c′′, d′′

can be found similarly. Then we form the 24-bit index m = (a′′−d′′, b′′−d′′, c′′−
d′′), search in the precomputed hash table for a matching entry (n,K0...2) with
n = m, and use trial encryption to check the resulting K0...7 value. Note that if
our guess at K4...7 was correct, we have a′′ = a′ + K3 etc., so that the correct
value of K0...2 will show up in our search of the precomputed hash table and the
correct value of K3 can be derived as a′′ − a′; this ensures that we will identify
K0...7 correctly.

Pruned search lets us dramatically reduce the number of key candidates
tried, if there is enough information in the p·,· array. The meet-in-the-middle
optimization is a time-space tradeoff that further reduces the computational
workload when 4 known T -box input/output values are available. Combining the
two approaches yields a key recovery algorithm for the second phase that is very
efficient on a standard 100 MHz Pentium with 40 Mb of memory. Furthermore,
the search algorithm can easily be parallelized for even greater performance if
necessary. Note that we make heavy use of the non-uniform output distribution
of the CaveTable, and these analysis techniques would not work if the CaveTable
were unbiased.

4.3 Discussion

This known plaintext attack is much more devastating than the chosen plaintext
attack described in Section 3.1. Chosen plaintext may be difficult to obtain in
practice, but known plaintext is likely to be much easier to acquire.

There are a number of realistic ways that the required known plaintext can
be collected in practice. Dialed digits are typically CMEA-encrypted with 3-byte
blocks; typically each block will contain only one digit, and often the telephone
number dialed will be known. DTMF tones sent on the line will usually be
CMEA-encrypted. If the user can be persuaded to dial a number under adver-
sarial control, using their calling card, then the DTMF tones and user-dialed
digits will be known to the attacker, providing a ready source of known plain-
text; after recovering the CMEA key in a known-plaintext attack, the attacker
could decrypt the calling card number and make false calls billed to the victim’s
name. Furthermore, alphanumeric pages sent to cellular phones are becoming
increasingly common, and alphanumeric pages are sent over the control chan-
nel. These pages may have a large known component, which will provide some
known plaintext. It should be clear that known plaintext may be available from
a number of potential sources.

6 Collisions in the CaveTable may cause multiple possibilities for a′′, b′′, c′′, d′′ to be
identified; we simply search through them all exhaustively. On the other hand, be-
cause some outputs never appear in the CaveTable, sometimes no possibilities will
be identified, which lets us immediately prune away K4...7. In practice, the number
of possibilities is usually small.

In this section, we have discussed cryptanalysis of CMEA with 3-byte block
widths. A block width of 3 bytes is a natural choice to examine. Known plain-
text with 3-byte block widths is often readily available in practice; for instance,
dialed digits are typically encrypted and transmitted using 3-byte block widths
in nearly all digital cellular architectures. Moreover, CMEA appears to be eas-
iest to analyze for short block widths, and most cellular standards avoid block
widths shorter than 3 bytes7. Therefore, 3-byte blocks are a good indicator of
the strength of CMEA as used in phone systems; by giving a known-plaintext
attack on CMEA with 3-byte blocks, we show that the control channel is not
protected adequately in nearly all of the North American digital cellular phone
systems.

5 A known-plaintext attack on 2-byte blocks

We saw above that CMEA is insecure when used with a 3-byte block width;
now we show that the situation is even worse for 2-byte blocks. In this section,
we present an attack on CMEA needing just 4 known plaintexts when 2-byte
blocks are in use. Most cellular standards avoid using CMEA with 2-byte blocks.
However, this is not just a theoretical attack: a few cellular systems, such as IS-
95 (CDMA), do apply CMEA with a 2-byte block width to protect dialed digits,
and they will be vulnerable to the improved attack.

The known-plaintext attack on 2-byte blocks follows immediately from our
earlier discussion. First, we guess T (0); that lets us recover 4 more T -box values
from the first two known texts. (There is no need for a stage corresponding to
the first phase of the attack on 3-byte blocks, as we can trivially derive 4 known
input/output pairs for the T -box from the known texts.) With those known
T -box input/output pairs, we perform a pruned meet-in-the-middle search to
derive a number of possibilities for the full CMEA key, as described in Section
4.2. The correct CMEA key can be quickly recognized by trial decryption. The
pruned meet-in-the-middle search has work factor 224–232, and we will need to
do about 30 iterations of the search to handle each of the possibilities for T (0). In
sum, this attack requires just 4 known 2-byte plaintexts and has time complexity
about 229–237.

In fact, the plaintext requirements can be reduced even further, to just two
known 2-byte plaintexts and some extra ciphertexts. We don’t need to know
the decryption of the extra ciphertexts: the extra ciphertexts must merely be
enough to information-theoretically determine the CMEA key, so that all incor-
rect key trials can be recognized and discarded. Note the plaintext often contains
redundancy—for instance, when it contains dialed digits, there are only 10 possi-
ble values for each nibble, and often much of the input is a public fixed value—so
in practice obtaining the necessary extra ciphertexts should be very easy.

7 IS-95 is a notable exception; see Section 5 for a better attack on the 2-byte block
widths that are used in some IS-95 messages.

6 Conclusions

We have presented several attacks on CMEA, and some of them may be real-
istically exploitable in practice. We described several possible ways to obtain
known plaintext information. One attack that applies to nearly all North Amer-
ican digital cellular standards needs about 40–80 known plaintexts; that many
known texts may be available in some situations, although availability is likely
to depend on subtleties of the cellular phone system implementation. Though it
does not apply to most digital cellphone standards, another attack needs just 4
known plaintexts, which is a much more realistic assumption. At a minimum,
these attacks illuminate fundamental certificational weaknesses in CMEA. At
worst, widespread attacks on CMEA might be possible in practice.

Our cryptanalysis of CMEA underscores the need for an open cryptographic
review process. Betting on new algorithms is always dangerous, and closed-door
design and proprietary standards are not conducive to the best odds.

Since being exposed to public scrutiny, three of the four proprietary TIA
cryptographic algorithms have been broken: the voice privacy protection was
shown to be insecure as early as 1992 [Bar92, CFP93], this paper cryptanalyzes
CMEA, and ORYX was recently broken by the authors [WSK97]. This poor
success rate provides a strong argument against closed-door design.

In addition, our analysis also shows the importance of explicitly stating se-
curity assumptions during every step of the design and development process,
and of not reusing security components without throroughly examining the im-
plications of reuse. The CaveTable was designed to have the security properties
CAVE needed. Designers reused it for CMEA because they were low on space;
this turned out to be a bad idea. CMEA requires different properties from the
CaveTable than CAVE does.

In short, CMEA is deeply flawed, and should be carefully reconsidered.

7 Acknowledgements

Greg Rose first pointed out the insecurity of CMEA, and he deserves the credit
for that discovery. We were not aware of serious flaws in CMEA until we heard
over the grapevine that he had found an effective known-plaintext attack on
CMEA; this tip provided the motivation to look more closely at CMEA until we
managed to independently re-derive the attack described in this paper. Unfor-
tunately he is not free to publish his analysis, so we offer ours instead. We are
extremely grateful to Greg Rose for his immeasurable help.

Also, we thank an anonymous party (for scanning the cellphone cryptography
standard and posting it to the Internet [TIA92]), John Young (for acting as a
clearinghouse for resources on cellphone crypto), Ron Rivest (for many helpful
comments on the presentation of our results), Steve Schear (for some assistance
navigating the maze of cellular standards), Niels Ferguson (for useful feedback),
and all those early readers who independently pointed out that the number of
possibilities for T (0) could be reduced from 256 to 164 in the known plaintext
attack.

References

[Ban97] M. Bannert, “Cryptanalysis of the Cellular Message Encryption Algorithm,”
unpublished manuscript, 1 May 1997.

[Bar92] J.P. Barlow, “Decrypting the Puzzle Palace,” Communications of the ACM,
July 1992.

[CFP93] R. Mechaley, Speaker, Digital telephony and cryptography policy session.
The Third Conference on Computers, Freedom and Privacy, Burlingame, CA,
1993, Bruce Koball, General Chair.

[FCC97] FCC Wireless Telecommunications Bureau, “FCC-WTB Information of Cel-
lular Fraud,” http://www.fcc.gov/wtb/cellfrd.html, Feb 1997.

[Hil97] J. Hillyard, personal communication, 21 May 1997.
[Nok96] Nokia Mobile Phones, “Nokia Announces Anti-Fraud Protection Op-

tion for All Models Marketed in 1996,” 5 Jan 1996, Tampa Fla.,
http://www.nokia.com/news/news htmls/nmp 960105b.html, press release.

[Ree91] J.A. Reeds III, “Cryptosystem for Cellular Telephony,” U.S. Patent 5,159,634,
Sep 1991.

[TIA92] TIA IS-54 Appendix A, “Dual-mode Cellular System: Authentication, Mes-
sage Encryption, Voice Privacy Mask Generation, Shared Secret Data Gen-
eration, A-Key Verification, and Test Data,” Feb 1992, Rev B.

[TIA95] TIA TR45.0.A, “Common Cryptographic Algorithms,” June 1995, Rev B.
[Whe97] “Summary of Testimony of Thomas E. Wheeler,” Oversight Hearing on Cel-

lular Privacy, 5 Feb 1997, House Commerce Committee, Subcommittee on
Telecommunications, Trade, and Consumer Protection.
http://www.house.gov/commerce/telecom/hearings/020597/wheeler.pdf

[WSK97] D. Wagner, B. Schneier, J. Kelsey, “Cryptanalysis of ORYX,” unpublished
manuscript, 4 May 1997.

This article was processed using the LATEX macro package with LLNCS style

