Exploring Performance Portability for Accelerators via High-level Parallel Patterns

Ph.D. Candidate: Kaixi Hou

Committee Members:
Wu-chun Feng (Chair), Calvin J. Ribbens, Hao Wang, Yong Cao, Gagan Agrawal

Final Exam Presentation, May, 2018
Parallel Accelerators

• **Parallel computing** has become mainstream and very affordable in our daily life

• But, how can we exploit these accelerators?
 – Highly-optimized programs require great efforts for each device

Problem: Programming different accelerators usually causes performance portability issues!
Challenges for Performance Portability

- Diversified architectures, ISAs, languages, etc.
 - Different generations with same vendor
 - Different vendors

* Although ROCm is designed as an open platform for GPU computing, we focus on its superior support for AMD platforms."
Challenges for Performance Portability

- Diversified architectures, ISAs, languages, etc.
 - Different generations with same vendor
 - Different vendors

* Although ROCm is designed as an open platform for GPU computing, we focus on its superior support for AMD platforms.
Challenges for Performance Portability

- Why not simply rely on modern compilers’ capability of auto-vectorization/parallelization?

```
inA [1 2 3 4 .. .. ..]
inB [16 17 18 19 .. .. ..]  outA [1 16 2 18 .. .. ..]
outB [3 17 4 19 .. .. ..]
```

C++ code with OpenACC for GPUs *

```c
#pragma acc kernels loop gang(32), vector(32)
for(i = 0; i < n; i++) {
    if(i%2 == 0) outA[i] = inA[(i/32)*32 + (i%32)/2];
    else        outA[i] = inB[(i/32)*32 + (i%32)/2];
    }
#pragma acc kernels loop gang(32), vector(32)
for(i = 0; i < n; i++) {
    if(i%2 == 0) outB[i] = inA[(i/32)*32 + (i%32)/2+1];
    else        outB[i] = inB[(i/32)*32 + (i%32)/2+1];
    }
```

* The codes are based on 32 elements per group, which equals to the warp size for NVIDIA GPUs.
Challenges for Performance Portability

- Why not simply rely on modern compilers’ capability of auto-vectorization/parallelization?

- They might fail to apply the auto-vectorization/parallelization
 - Data dependencies, complex memory accesses, convoluted data reordering, etc.
 - Even if they succeed, the parallel codes might not be efficient!

\[
\begin{align*}
\text{inA} & \quad \begin{bmatrix} 1 & 2 & 3 & 4 & \cdots & \cdots & \cdots \end{bmatrix} & \Rightarrow & \text{outA} & \quad \begin{bmatrix} 1 & 16 & 2 & 18 & \cdots & \cdots & \cdots \end{bmatrix} \\
\text{inB} & \quad \begin{bmatrix} 16 & 17 & 18 & 19 & \cdots & \cdots & \cdots \end{bmatrix} & & \text{outB} & \quad \begin{bmatrix} 3 & 17 & 4 & 19 & \cdots & \cdots & \cdots \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
& \text{#pragma acc kernels loop gang(32), vector(32)} \\
\text{C++ code with OpenACC for GPUs} \ast
\end{align*}
\]

\[
\begin{align*}
\text{if}(i/2 == 0) \quad & \text{outA}[i] = \text{inA}[(i/32)*32+(i/32)/2]; \\
\text{else} \quad & \text{outA}[i] = \text{inA}[(i/32)*32+(i/32)/2]; \quad \text{for} \quad i = 0; i < n; i++ \} \\
\text{OutB} & \quad \begin{bmatrix} 3 & 17 & 4 & 19 & \cdots & \cdots & \cdots \end{bmatrix}
\end{align*}
\]

* The codes are based on 32 elements per group, which equals to the warp size for NVIDIA GPUs.
Challenges for Performance Portability

• Pursuing high performance will inevitably need dedicated kernels and optimizations for every device
 – Program design (for different architectures)

AMD GPU

```
friend_id0 = (lane_id+11 +((lane_id>>3)<<1))&63;
tx0 = amdgcn_ds_bpermute(friend_id0<<2, reg0);
ty0 = amdgcn_ds_bpermute(friend_id0<<2, reg1);
```

NVIDIA GPU

```
friend_id = (lane_id+11 +((lane_id>>3)<<1))&(32-1);
tx = __shfl(reg0, friend_id);
ty = __shfl(reg1, friend_id);
```

– Performance tuning

• Each color-group represents one type of GPU optimization
• Each color represents one configuration (or implementation) for that optimization

* Figure show the throughput of 3D27point stencils on AMD GPUs. Codes and figures are from our CF’17 paper.
Parallel Pattern Solutions

• Parallel patterns
 – Domain Specific Languages (DSLs)
 – Algorithmic skeletons

High-level Programming, e.g., C/C++ codes

Parallel codes for GPUs, CPUs, Intel Xeon Phis
Our Contributions

• For **abstraction**, we exploit the domain expertise to represent the core computations as parallel patterns, which can greatly facilitate subsequent code optimizations.

• For **code optimization/generation**, we propose a set of solutions to automatically search or create optimal parallel codes for different devices.
Our Contributions

• For abstraction, we exploit the domain expertise to represent the core computations as parallel patterns, which can greatly facilitate subsequent code optimizations.

• For code optimization/generation, we propose a set of solutions to automatically search or create optimal parallel codes for different devices.

The overarching goal of our approaches is to achieve performance portability across different accelerators without the hassle of programming low level for parallel computing.
Our Contributions (papers)

Target problems → Abstraction → Code Opt./Gen. → Parallel Codes

Intel, AVX2, AVX, IMCI, AVX-512, NVIDIA, CUDA, AMD, ROCm
Our Contributions (papers)

- **Target problems**
 - Fast Segmented Sort on GPUs (**ICS’17**)
 - GPU-UniCache: Automatic Code Generation of Spatial Blocking for Stencils on GPUs (**CF’17**)
 - Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors (**AsHES’17**)

- **Abstraction**
 - A Framework for the Automatic Vectorization of Parallel Sort on x86-based Processors (**TPDS’18**)
 - AAlign: A SIMD Framework for Pairwise Sequence Alignment on x86-based Multi- and Many-core Processors (**IPDPS’16**)
 - ASPaS: A Framework for Automatic SIMDization of Parallel Sorting on x86-based Many-core Processors (**ICS’15**)
 - Delivering Parallel Programmability to the Masses via the Intel MIC Ecosystem: A Case Study (**P2S2’14**)

- **Code Opt./Gen.**
 - Highly Efficient Compensation-based Parallelism for Wavefront Loops on GPUs (**IPDPS’18**)

- **Parallel Codes**
My Publications

• Papers I lead:
 – K. Hou, W. Feng, S. Che, “Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors”, Int’l Workshop on Accelerators and Hybrid Exascale Systems (AsHES@IPDPS), 2017

• Papers I contribute:
 – D. Zhang, H. Wang, K. Hou, J. Zhang, W. Feng, “pDindel: Accelerating indel detection on a multicore CPU architecture with SIMD”, IEEE Int’l Conf. on Computational Advances in Bio and Medical Sciences (ICCABS), 2015
Outline of the Talk

• Motivation
• Contribution & Papers

• Previous Work

• Our Methods
 – Data-reordering (covered in Prelim)
 – SIMD Operations (covered in Prelim)
 – Data-thread Binding (seg_sort)
 – Data Dependencies (wavefront)
 – Data Reuse (stencils)

• Summary and Future Work
Previous Work

• Compiler-related approaches
 – Relying on compiler options/directives to get portable performance [WangICS’16]
 – Refactoring algorithms to be auto-parallelizable [SatishISCA’12]
 – Creating new directives or even compilers [UnatICS’11, BondhugulaPACT’14]

• Auto-parallelization for loops is still quite restricted (esp. for GPUs)
• Building a new compiler is expensive and usually specific to some patterns/applications
Previous Work

• DSL-related approaches
 – Use DSL to express the fixed or predictable comp. & comm. patterns [PetersonPADL’98, TangSPAA’11, ChafiPPoPP’11, AumagePPoPP’16, MaruyamaSC’11, KelleyPLDI’13]

• Skeleton-related approaches
 – Reusable and approachable building blocks to build other high-level applications [AndersonIPDPS’16, MalewiczSIGMOD’10, MaruyamaSC’11, HeleneHPCS’13]

We propose, design, and implement a series of automation frameworks and optimizations to determine how different levels of parallelism can be applied using DSL/Skeleton-based approaches to handle **data-thread binding**, **data dependencies**, **data reuse** problems on GPUs.
Previous Work (References)

Compiler-related approaches

[BondhugulaPACT’14] Bondhugula, et al. Tiling and Optimizing Time-iterated Computations on Periodic Domains

DSL-related approaches

Skeleton-related approaches

[AndersonIPDPS’16] M. Anderson, et al. GraphPad: Optimized Graph Primitives for Parallel and Distributed Platforms
[MalewiczSIGMOD’10] G. Malewicz, et al. Pregel: A System for Large-scale Graph Processing
Outline of the Talk

• Motivation
• Contribution & Papers

• Previous Work

• Our Methods
 – Data-reordering (covered in Prelim)
 – SIMD Operations (covered in Prelim)
 – Data-thread Binding (seg_sort)
 – Data Dependencies (wavefront)
 – Data Reuse (stencils)

• Summary and Future Work
Segmented Sort (SegSort)

- Perform a segment-by-segment sort on a given array composed of multiple segments

\[
\begin{align*}
\text{seg_ptr} &= [0 \ 3 \ 5 \ 7] \\
\text{input} &= [4 \ 1 \ 2 \ 11 \ 8 \ 1 \ 6 \ 5] \\
\downarrow \\
\text{Segmented sort} \\
\text{output} &= [1 \ 2 \ 4 \ 8 \ 11 \ 1 \ 6 \ 5]
\end{align*}
\]
Why Segmented Sort?

- Many applications need to process (e.g., sort) a large amount of independent arrays, due to: (1) dataset properties, (2) algorithm characteristics

Segment statistics from squaring one matrix in SpGEMM*

Segment statistics from 1st iteration in SAC*

* SpGEMM: Sparse General Matrix-Matrix Multiplication; SAC: Suffix Array Construction
Why Segmented Sort?

- Many applications need to process (e.g., sort) a large amount of independent arrays, due to: (1) dataset properties, (2) algorithm characteristics

We need an efficient way to deal with the large amount of independent short arrays.

Segment statistics from squaring one matrix in SpGEMM*
Segment statistics from 1st iteration in SAC*

* SpGEMM: Sparse General Matrix-Matrix Multiplication; SAC: Suffix Array Construction
Existing Segmented Sort

- Global sort has received much more fanfare!
- Many tools are evolved from global sort; however, there are also problems
 - Problem 1: **Time complexity**

\[
\text{input} \quad \begin{array}{ccccccccccc}
 n & n & n & n & n & n & n & n & n & n \\
\end{array} \quad \Rightarrow \quad \begin{array}{c}
 N \\
\end{array}
\]

The complexity of this segsort is
\[
O \left(\frac{N}{n} \log n \right) \approx O(N \log n)^
\]

The complexity of the global sort is
\[
O(N \log N)^
\]

SegSort, evolved from global sort, usually exhibits higher complexity, e.g., segsort from *modernGPU* and *CUSP*

* For generality, the sorting algorithms are all comparison-based.
Existing Segmented Sort

- Global sort has received much more fanfare!
- Many tools are evolved from global sort; however, there are also problems
 - Problem 1: Time complexity
 - Problem 2: Runtime boundary checking overhead

Some SegSort needs to perform runtime boundary checking, causing additional overhead, e.g., segsort from modernGPU
Existing Segmented Sort

- Global sort has received much more fanfare!
- Many tools are evolved from global sort; however, there are also problems

 - Problem 1: Time complexity
 - Problem 2: Runtime boundary checking overhead
 - Problem 3: **Underutilized resources**

Some SegSort simply assigns each segment to each thread block, leading to idle resources, e.g., segsort from **CUB**

Many threads might be idle, especially when the segments are generally short
We propose an adaptive segmented sort mechanism for GPUs: (1) differentiated methods for different segments, (2) an algorithm supporting variable data-thread binding and thread communication.
Outline (Data-Thread Binding)

- Introduction
- Motivation

- Our Method
 - GPU SegSort Mechanism
 - GPU Register-based Sort
 - Other Techniques & Opt.

- Evaluation
 - Kernel Performance
 - Kernel in Real Applications
Adaptive GPU SegSort Mechanism

• Overview of our proposed design

Segments (seg_ptr & input) unit-bin, warp-bin, block-bin, grid-bin

• Hierarchical binning (register/smem/gmem levels)
Adaptive GPU SegSort Mechanism

- Overview of our proposed GPU SegSort design

Segments (seg_ptr & input)

- Unit-bin
- Warp-bin
- Block-bin
- Grid-bin

reg-sort

smem-merge

Global memory: sorted segments (output)

t = thread
w = warp
b = block
Adaptive GPU SegSort Mechanism

- Overview of our proposed GPU SegSort design

- Directly copy segments to the result in global memory

\[t = \text{thread} \]
\[w = \text{warp} \]
\[b = \text{block} \]
Adaptive GPU SegSort Mechanism

- Overview of our proposed GPU SegSort design

\[t = \text{thread} \]
\[w = \text{warp} \]
\[b = \text{block} \]

Segments \((seg_ptr \& input)\)

- Only use registers as “cache”
- Data-thread binding/exchange
- Memory access optimization

Global memory: sorted segments \((output)\)
Adaptive GPU SegSort Mechanism

- Overview of our proposed GPU SegSort design

\[t = \text{thread} \]
\[w = \text{warp} \]
\[b = \text{block} \]

- Use registers + smem as “cache”
- *MergePath* algorithm for load balance

Global memory: sorted segments (*output*)

- Segments (*seg_ptr & input*)
- Unit-bin
- Warp-bin
- Block-bin
- Grid-bin

Striped-write

Reg-sort

Smem-merge
Adaptive GPU SegSort Mechanism

- Overview of our proposed GPU SegSort design

```
t = thread  
w = warp  
b = block
```

![Diagram of SegSort Mechanism](image)

- Segments (seg_ptr & input)
- Unit-bin
- Warp-bin
- Block-bin
- Grid-bin
- Global memory: sorted segments (output)
- Reg-sort
- Striped-write
- Smem-merge
GPU Register-based Sort

- **Sorting networks** usually serve as building blocks of efficient parallel sort
- How to bind the data items (operands) to different threads?

![Diagram of sorting network]

Unsorted: 7 3 1 2 6 0 5 4
Sorted: 0 1 2 3 4 5 6 7
This page appears to be discussing GPU Register-based Sort and includes a diagram illustrating the concept. The text contains the following points:

- **Sorting networks** usually serve as building blocks of efficient parallel sort.
- How to bind data items (operands) to different threads?

The diagram shows a sorting network with registers `rg0`, `rg1`, `rg2`, `rg3`, and `rg0` again, with `tid` indicating thread identifiers. The text highlights:

- **Each thread uses too many registers** (high register pressure).
- **Both need to figure out data exchange patterns among registers and threads**.
- **Each comparison is performed twice** (wasted computing resources).
GPU Register-based Sort

- Propose a general way to solve the data-thread binding problem at GPU register level
- Primitive pattern

```c
__exchPrimitive(rg0, rg1, 0x1, 0)
```

Implementation Details

1. _shuf_xor(rg1, 0x1); // Shuffle data in rg1
2. cmp_swap(rg0, rg1); // Compare data of rg0 & rg1 locally
3. if (bfe(tid, 0)) swp(rg0, rg1); // Swap data of rg0 & rg1 if 0 bit of tid is set
4. _shuf_xor(rg1, 0x1); // Shuffle data in rg1

Two data items are bound to each thread
Tells which thread swaps registers
Tells how threads communicate
GPU Register-based Sort

- Other patterns, then, can be solved by transformation and the primitive patterns
- **Intersecting Pattern**

\[\texttt{exch_intxn}(rg0, rg1, \ldots, rgk, \text{tmask}, \text{swbit}) \]

- Any number of data items are bound to each thread
- Tells which thread swaps registers
- Tells how threads communicate

Transforming via swapping

Applying primitive patterns on related pairs

\[\text{if(bfe(tid,swbit))} \]
\[\text{swp(rg0,rgk-2)} \]
\[\text{swp(rg1,rgk-1)} \]
\[\ldots \]
• Other patterns, then, can be solved by transformation and the primitive patterns

• Parallel Pattern

Transforming via swapping

Applying primitive patterns on related pairs

_exch_paral(rg0, rg1, ..., rgk-1, tmask, swbit)

Any number of data items are bound to each thread
Tells which thread swaps registers
Tells how threads communicate
GPU Register-based Sort

- Also, we can solve patterns without thread communication
 - “Communication” only occurs between registers

- Local Pattern

```
local P

_rg0 \ rg1 \ \ldots\ \ rgk-2 \ rgk-1
\t0 \ \ldots \ \ldots
\rgk-2 \ rgk-1

t0 \ \ldots \ \ldots
\rgk-2 \ rgk-1

t1
```

- `local P

 _exch_local(rg0, rg1, ..., rgk-1, rmask)`

 - Tells how registers compare with each other

 Any number of data items are bound to each thread
GPU Register-based Sort: An Example

- Represent the sorting network by using our generalized patterns

```
reg_sort(data items=8, thread num=4)
```

More details in our paper show (1) how to automatically decide which patterns to use, (2) how to order the patterns, (3) how to compute the parameters (e.g., tmask)
Other Techniques & Optimizations

• A hierarchical binning
 – Using warp vote function __balloc() and __popc() at warp level
 – Using shared memory at thread-block level

• Better locality by optimizing access pattern
 – Transforming striped write to coalesced memory access

• Shared memory based merge solution
 – *MergePath algorithm [`12]* for load balance
Outline (Data-Thread Binding)

- Introduction
- Motivation

- Our Method
 - GPU SegSort Mechanism
 - GPU Register-based Sort
 - Other Techniques & Opt.

- Evaluation
 - Kernel Performance
 - Kernel in Real Applications
Experiment Platforms

- **nVidia Tesla K80 (Kepler-GK210)**, 2496 CUDA cores @ 824 MHz, 240 GB/s bandwidth
- **nVidia TitanX (Pascal-GP102)**, 3584 CUDA cores @ 1531 MHz, 480 GB/s bandwidth *

- We compare our **SegSort** to other tools from libraries of
 a. ModernGPU v.2.0 (boundary checking, global sort based)
 b. CUSP* v.0.5.0 (global sort based)
 c. CUB v.1.6.4 (segment per block)
 - Generating datasets to mimic different segment distributions

- We compare **SAC** and **SpGEMM** optimized by our **SegSort** to
 a. cuDPP v.2.3 for SAC
 b. cuSPARSE ['16], CUSP ['14], bhSPARSE ['14] for SpGEMM
 - Using real input datasets from NCBI library and UF matrix collection

* We only show the performance results of TitanX GPU in the presentation.
* CUSP performs segmented sort by using THRUST sort twice. We extract this as a stand-alone function.
SegSort Performance

- Fixing total data size w/ variable segment number and size

 √ cub_segsort ❌ cuSP_segsort ❌ mgpu_segsort + segsort(this work)

- Our SegSort is proficient in solving a large amount of segments, achieving an average of 3.2x speedups over the better performed baseline mgpu-segsort on Pascal.

- The performance of SegSorts, evolved from global sort, is more affected by the total array size.
SegSort Performance

- Fixing total data size w/ segments of power-law distribut.

Speedups

<table>
<thead>
<tr>
<th>vs. CUB</th>
<th>vs. CUSP</th>
<th>vs. ModernGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CUB is limited by processing only 65536 segments</td>
<td>• We can achieve up to 87x speedups</td>
<td></td>
</tr>
</tbody>
</table>

Pascal GPU

More small segments

Larger max length

Max Segment Size
SegSort Performance

- Fixing total data size with segments of power-law distribution.

Speedups

vs. CUB vs. CUSP vs. ModernGPU

- CUSP conducts global sort twice
- We can achieve up to 17x speedups

Pascal GPU

More small segments

Larger max length

Max Segment Size

Vs. CUB

Vs. CUSP

Vs. ModernGPU
SegSort Performance

- Fixing total data size with segments of power-law distribution.

Speedups

<table>
<thead>
<tr>
<th>vs. CUB</th>
<th>vs. CUSP</th>
<th>vs. ModernGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>More small segments</td>
<td>Larger max length</td>
</tr>
</tbody>
</table>

- ModernGPU has runtime boundary checking overhead
- We can achieve up to 4x speedups
SegSort in Real-world Applications

- **Suffix Array**: store lexicographically sorted indices of all suffixes of a given sequence
- Our method is based on the *prefix doubling* algorithm [93]
 - Deducing the orders of $2h$ strings from the calculated orders of h strings

![Execution Time Chart]

- *Pascal GPU*
- *skew/DC3-SA* vs *PDSS-SA (This work)*

DNA Sequence: (NT_023133), (KE501193), (CH47055), (KE141673), (NC_009175), (NC_013983)
SegSort in Real-world Applications

- Sparse Matrix-Matrix Multiplication (SpGEMM): multiply a sparse matrix A with another sparse matrix B and obtains a resulting sparse matrix C
- Our method is using the Expansion, **Seg-Sorting** and Compression (ESSC) algorithm [`12]
 - Sorting an intermediate sparse matrix \hat{C} by its indices of rows and columns

![Execution Time (ms)](chart)

- **cuSPARSE**
- **ESC(cuSP)**
- **bhSPARSE**
- **ESSC(this work)**

![Pascal GPU](chart)
Summary of this Work

• Propose a general solution to handle different data-thread binding cases.
• Identify the importance of segmented sort on various applications, and proposed efficient approaches on GPUs
• Our GPU segmented sort method outperforms other state-of-the-art approaches in libraries of CUB, CUSP, ModernGPU
• We can see that the capacity of registers is important for segmented sort in modern GPUs
Outline of the Talk

• Motivation
• Contribution & Papers

• Previous Work

• Our Methods
 – Data-reordering (covered in Prelim)
 – SIMD Operations (covered in Prelim)
 – Data-thread Binding (seg_sort)
 – Data Dependencies (wavefront)
 – Data Reuse (stencils)

• Summary and Future Work
Wavefront Loops

- Update each entry of a workspace grid based on the already-updated values from its neighbors
- Used in many scientific applications, e.g., PDE solver, sequence alignment tools, etc.

Example: a wavefront loop (2D matrix)

```java
for (int i = 0; i < m; i++)
    for (int j = 0; j < n; j++)
        A[i][j] = A[i][j-1] * 0.5 + A[i-1][j] * 0.5;
```

Neither loop can be parallelized.

Data Dependence (Iteration Space) Memory Access (Memory Space A[y][x])
Wavefront Loops

- Update each entry of a workspace grid based on the already-updated values from its neighbors
- Used in many scientific applications, e.g., PDE solver, sequence alignment tools, etc.

Example: a wavefront loop (2D matrix) -- Transformed

```java
for(int I = 0; I < m+n-1; I++)
    for(int J = max(0, I-n+1); J < min(m, I+1); J++)
```

Data Dependence (Iteration Space) Memory Access (Memory Space A[y][x])

Load Imbalance Non-contiguous Access
Existing Parallel Solutions

- Tiling-based solutions and their limitations
 - Problem 1: Wasted memory and computing resources

Tiles with same color can be executed in parallel

Non-contiguous memory access still exists

Much memory space will be wasted (The rate of effective memory usage \(\approx \frac{n}{n+h} \))
Existing Parallel Solutions

- Tiling-based solutions and their limitations
 - Problem 1: *Wasted memory and computing resources*

Padding-free strategy may greatly increase the complexity of indexing and lead to more branches in GPU kernels
Existing Parallel Solutions

- Tiling-based solutions and their limitations
 - Problem 1: Wasted memory and computing resources
 - Problem 2: Layout transformation overhead
 - Problem 3: Task scheduling

For some workloads, sufficient parallelism can be exposed

Tiles with same color can be executed in parallel

For other workloads, insufficient parallelism will be met

For some workloads, tiling-based solution may lose efficiency, because of the small amount of tiles along anti-diagonals
Existing Parallel Solutions

• Compensation-based solutions and their limitations
 – Problem 1: **Global synchronizations**
 – Problem 2: **Limited usage in sequence alignment algorithms**

1. Compute partial results by ignoring horizontal dependency
2. Compensate the partial results
3. Combine the results from 1 and 2

Multiple expensive global synchronizations are required for processing each row; the compensation-based solution works well for string matching operations
(1) Can the compensation-based method be used to optimize general wavefront loops?
(2) Is the compensation-based method sufficient for any types of workloads?
Outline (Data Dependencies)

- Introduction
- Motivation

- Our Method
 - Compensation-based Method
 - GPU Implementation
 - Hybrid Parallel Strategy

- Evaluation
 - Weighted-scan Kernel Performance
 - Wavefront Kernel Performance
Compensation-based Method

- Wavefront Pattern
 \[A_{i,j} = (A_{i,j-1} \circ b_0) \diamond (A_{i-1,j} \circ b_1) \diamond (A_{i-1,j-1} \circ b_2) \]
 - generic distribution operator (for adding weights)
 - generic accumulation operator (for adding neighbors)

- Compensation-based Method

Step 1: \[\tilde{A}_{i,j} = (A_{i-1,j} \circ b_1) \diamond (A_{i-1,j-1} \circ b_2) \]

Step 2: \[B_{i,j} = \begin{cases}
\sum_{u=0}^{j-1} (\tilde{A}_{i,u} \circ \prod_{v=u}^{j-1} b_0) & \text{when } \circ \neq \diamond \\
\sum_{u=0}^{j-1} (\tilde{A}_{i,u} \diamond b_0) & \text{when } \circ = \diamond
\end{cases} \]

Step 3: \[A_{i,j} = \tilde{A}_{i,j} \diamond B_{i,j} \]

This is valid when (1) \(\circ \) has the distributive property over \(\diamond \); (2) \(\circ \) is same with \(\diamond \). *

* The mathematic proof is included in our IPDPS’18 paper.
Compensation-based Method

- **Wavefront Pattern**

\[A_{i,j} = (A_{i,j-1} \circ b_0) \diamond (A_{i-1,j} \circ b_1) \circ (A_{i-1,j-1} \circ b_2) \]

- generic distribution operator (for adding weights)
- generic accumulation operator (for adding neighbors)

- **Compensation-based Method**

Step 1: \[\tilde{A}_{i,j} = (A_{i-1,j} \circ b_1) \diamond (A_{i-1,j-1} \circ b_2) \]

Step 2:

\[
B_{i,j} = \begin{cases}
\sum_{u=0}^{j-1} (\tilde{A}_{i,u} \circ \prod_{v=u}^{j-1} b_0) & \text{when } \circ \neq \diamond \\
\sum_{u=0}^{j-1} (\tilde{A}_{i,u} \diamond b_0) & \text{when } \circ = \diamond
\end{cases}
\]

Step 3: \[A_{i,j} = \tilde{A}_{i,j} \diamond B_{i,j} \]
Compensation-based Method

• The real-world wavefront loops can be expressed in the compensation-based parallelism patterns

• SOR (Successive Over-relaxation) Solver:
 - (◊, ◯) maps to (+, ⋅)
 \[
 \]

• SW (Smith-Waterman):
 - (◊, ◯) maps to (max, +)
 \[
 A[i][j] = \max(A[i][j-1] - 2, A[i-1][j] - 2, A[i-1][j-1] + s(i, j), 0);
 \]

• SAT (Summed-area Table):
 - (◊, ◯) maps to (+, +)
 \[
 \]
• Step 2 of the compensation-based method is the critical part: “Weighted Scan”*

* which also includes a weighted shift operation
GPU Implementation

- Step 2 of the compensation-based method is the critical part: "Weighted Scan"
- Our algorithm handles the changing weights during each stages of the operations
- A hierarchical design is used for GPUs
 - *Register level*: compute how the preceding neighbor affects the current one via *data shuffle instructions*
 - *Shared memory level*: compute how the preceding "warp"* of neighbors affect the current one via *shared memory access*
 - *Global memory level*: compute how the preceding "block"* of neighbors affect the current one via *global memory access*

* which are thread organization units in NVIDIA GPU terminology
Hybrid Parallel Strategy

- Is the compensation-based method sufficient for any types of workloads?
- Observations (using the wavefront shown in the beginning slide)
Hybrid Parallel Strategy

- Our hybrid design can switch to the appropriate parallel method according to the input workloads.
- All the computation follows the compensation-based parallelism pattern.

Proposed hybrid method

Different wavefront problems & workspace matrices

Data dependency

Comput. direction

Spin-lock

Switching point
Outline (Data Dependencies)

• Introduction
• Motivation

• Our Method
 – Compensation-based Method
 – GPU Implementation
 – Hybrid Parallel Strategy

• Evaluation
 – Weighted-scan Kernel Performance
 – Wavefront Kernel Performance
Experiment Platforms

- **nVidia Tesla K80 (Kepler-K80)**, 2496 CUDA cores @ 824 MHz, 240 GB/s bandwidth
- **nVidia Pascal P100 (Pascal-P100)**, 3584 CUDA cores @ 405 MHz, 720 GB/s bandwidth *

We compare our **Weighted Scan** to other tools of
 a. Thrust v.1.8.1 (thrust::exclusive_scan w/ custom comparator)
 b. ModernGPU v.2.0 (mgpu::scan w/ custom comparator)
 – Using 1D array of data to mimic different rows

We compare our **Hybrid Wavefront** kernel with
 a. Tile-based methods [15] (incl. square & diamond tiles)
 b. Compensation-based methods [12, 16, this work]
 – Using 2D array of data to mimic different workloads

* We only show the performance results of P100 GPU in the presentation.
Weighted-scan Kernel Performance

- Processing a row of data with variable sizes

- For \(\circ \neq \bigcirc \), the significant performance benefits of our method can be obtained (mainly because we can calculate the distance-related weights more efficiently in the kernel)

- For \(\circ = \bigcirc \), our method reduces to an ordinary scan kernel
Wavefront Kernel Performance

- Using SOR, SW, and SAT as representative wavefront kernels
- Processing 2D matrices of data with variable dimensions

- Our method (green) can always achieve better performance than previous solutions

Lower the better
Wavefront Kernel Performance

- Using SOR, SW, and SAT as representative wavefront kernels
- Processing 2D matrices of data with variable dimensions

The transformation overhead becomes non-negligible for the diamond-tile method
Wavefront Kernel Performance

- Using SOR, SW, and SAT as representative wavefront kernels
- Processing 2D matrices of data with variable dimensions

Still, our hybrid method exhibits superior performance regardless the workloads and wavefront types.
Performance Discussion

• Tile size selection
 – For some workloads, we need to use tiles and we vary tile dimensions to select the optimal one for our experiments

• Precision
 – For integers, the compensation-based method can obtain exactly same results with the original methods
 – For floats, we observe $\sim 10^{-6}$ relative errors; for doubles, they are $\sim 10^{-8}$

• Generality
 – Applications in a more general data dependency (e.g., FSM) could benefit from our methods, if they fulfil the operator requirements
Conclusion

• Prove the generality and validity of the compensation-based parallelism for wavefront loops on GPUs under which operator properties
• Propose a highly efficient hybrid design of the compensation-based parallelism on GPUs
• Experiments demonstrate that our work can achieve significant performance improvements for different wavefront problems on various inputs
Outline of the Talk

• Motivation
• Contribution & Papers

• Previous Work

• Our Methods
 – Data-reordering (covered in Prelim)
 – SIMD Operations (covered in Prelim)
 – Data-thread Binding (seg_sort)
 – Data Dependencies (wavefront)
 – Data Reuse (stencils)

• Summary and Future Work
Stencil Computations

• Nearest neighbor computations
 – Update every grid cell using its surrounding neighbors
 – Sweep over a structured grid (spatial dimension)
 – Iterate many times (time dimension)

Spatial Blocking for Stencil Computations

- High memory traffic + low arithmetic intensity
 - Memory bound computation
- Blocking optimizations are critical to achieve optimal performance
 - Different blocking strategies, e.g., 3D-blocking and 2.5D-blocking
 - Different GPU cache levels for the reusable data

* This figure serves as a logical diagram rather than a physical diagram
GPU Register Data Exchange

- Using registers as cache in stencils is non-trivial
 - What are the communication patterns?
 - To access north (N) neighbors, first figure out the correct destination threads
 - Which registers are of interest for exchange?
 - Then, figure out the correct registers in the correct destination threads
 - The answers are determined by specific stencils, execution unit sizes and dimensionalities (platforms).
• Overview of the structure

- Stencil types;
- GPU configs;
- Block configs;
- ...

A Compute Unit in AMD GPUs

Vector Registers (4x 64KB) Local Data Share (64KB) L1 Cache (16KB)
Comparison with Open-Source Benchmarks

- **AMD Fiji XT (Radeon-R9)**, 4096 cores @ 1000 MHz, 512GB/s bandwidth, L1/LDS/Rg 16/64/256KB
- **nVidia Maxwell (GTX-980)**, 2048 CUDA cores @ 1126 MHz, 224 GB/s bandwidth, L1/LDS/Rg 16/96/64KB *
- Choose our best performant GPU-UNICACHE codes (in most cases, using registers as cache)

![Graph comparing GPU performance](image)

Compare to the third-party stencils with spatial blocking optimizations

- By simply using the GPU-UNICACHE functions, we can outperform the existing benchmarks by up to 1.5x
Conclusion

• Propose a framework to automatically generate cell-based library codes to use different cache levels for stencils computations.
 – Support different stencils
 – Support different blocking strategies
 – Support different platforms

• Performance:
 – Evaluate relationships between different stencils and cache levels
 – Up to 1.5x performance benefit over existing stencil benchmarks
Outline of the Talk

• Motivation
• Contribution & Papers

• Previous Work

• Our Methods
 – Data-reordering (covered in Prelim)
 – SIMD Operations (covered in Prelim)
 – Data-thread Binding (seg_sort)
 – Data Dependencies (wavefront)
 – Data Reuse (stencils)

• Summary
Summary

Data-Thread Binding in SegSort

- Explored how the data items are stored in the registers for each thread to enable efficient processing on GPUs

Data Dependencies in Wavefront

- Proposed a new parallel pattern to loosen the data dependencies and then compensate the loss caused by that

Data Reuse in Stencils

- Focused on the data reuse in difference levels of memory hierarchies on GPUs
Ph. D. Timeline

Fall 2012

Spring 2014

Ph.D. Qualifying Exam
Delivering Parallel Programmability to the Masses via the Intel MIC Ecosystem: A Case Study, IEEE P2S2

Summer 2015

ASPaS: A Framework for Automatic SIMDization of Parallel Sorting on x86-based Many-core Processors, ACM ICS

Summer 2016

AAlign: A SIMD Framework for Pairwise Sequence Alignment on x86-based Multi- and Many-core Processors, IEEE IPDPS

Spring 2017

Ph.D. Preliminary Exam
GPU-UniCache: Automatic Code Generation of Spatial Blocking for Stencils on GPUs, ACM CF

Summer 2017

Fast Segmented Sort on GPUs, ACM ICS
Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors, IEEE AsHES

Fall 2017

Ph.D. Research Defense (Dept.)
A Framework for the Automatic Vectorization of Parallel Sort on x86-based Processors, IEEE TPDS
Highly Efficient Compensation-based Parallelism for Wavefront Loops on GPUs, IEEE IPDPS

Spring 2018

Ph.D. Final Exam/Defense

Fall 2012