Using Cost-Sensitive Learning to Determine
Gene Conversions

Mark J. Lawson, Lenwood Heath, Naren Ramakrishnan, Liqing Zhang

Department of Computer Science, Virginia Tech., USA
(malawso4, heath, naren, lgzhang)@vt.edu

Abstract. Gene conversion, a non-reciprocal transfer of genetic infor-
mation from one sequence to another, is a biological process whose im-
portance in affecting both short-term and long-term evolution cannot
be overemphasized. Knowing where gene conversion has occurred gives
us important insights into gene duplication and evolution in general. In
this paper we present an ensemble-based learning method for predicting
gene conversions using two different models of reticulate evolution. Since
detecting gene conversion is a rare-class problem, we implement cost-
sensitive learning in the form of a generated cost matrix that is used
to modify various underlying classifiers. Results show that our method
combines the predictive power of different models and is able to predict
gene conversion more accurately than any of the two studied models.
Our work provides a useful framwork for future improvement of gene
conversion predictions through multiple models of gene conversion.

1 Introduction

Gene conversion is a process by which all or part of the sequence of a gene
is changed to match the sequence of another gene. Figure 1 gives a schematic
demonstration of how gene conversion between two sequences occurs. Its role
in both short-term and long-term evolution of genes and genomes cannot be
overemphasized. Gene conversion is an important process that can affect the
evolutionary fate of duplicated genes. For instance, gene conversion can affect
how similar two duplicated genes remain after gene duplication. After gene du-
plication, depending on which gene is the donor, any mutations in one gene
could either be made to disappear or be transferred to the other copy through
gene conversion. On the one hand, very frequent gene conversion can lead to two
highly identical duplicated genes even long after their duplication. This supports
the false impression that the two genes arose from a recent gene duplication as
their sequences are highly similar. On the other hand, gene conversion can boost
the amount of variation and divergence between duplicated genes, e.g., in the
major histocompatibility complex (MHC) genes [1].

Detecting gene conversion is computationally challenging. A number of meth-
ods have been proposed for detecting recombinations, of which gene conver-
sion is one type. However, to our knowledge, only a couple of programs (e.g.
GENECONV [2]) are specifically designed for detecting gene conversions. More-
over, previous comparisons of the power of existing software to test for recom-
bination have indicated that, while some perform better than others, no single

program is universally superior [3]. Similarly, little is known about which pro-
gram is the best for gene conversion prediction. To address this problem and to
take advantage of the existing programs of recombination prediction, we propose
an ensemble based learning method to combine optimally the predictions from
different programs to form a unified program prediction and to boost the power
of gene conversion prediction.

As in real life, the incidence of gene conver-

sion in a gene family may be restricted to only 2 Donor 2
a few members, and thus the majority cases are s ----------- FETTEETERER 3
gene pairs that do not exhibit gene conversions. ¥ B LR &
Prediction of gene conversion thus falls into the

rare-class prediction problem, which is a com- z 2
mon phenomenon and has been an issue with &______. oot e 3
many classification problems [4]. Unfortunately, %----- ======" 5
the majority of classifiers will label all data ob-

jects as belonging to the majority class. Thus a 2 , ‘ 2
high accuracy is achieved, however none of the ___77\= =)= __,
rare-class data objects are correctly identified. %-----—————---- %
There are a variety of ways to deal with rare-

class datasets (a paper by Sun et al. provides a] :
nice overview [5]) but for our purposes we went . _______ N
with an implementation of the MetaCost algo- #-----————----'5

rithm [6] as our cost-sensitive learner.

In this study, we investigated the use of Fig.1. Gene conversion be-
cost-sensitive learning, to combine the output UWeen two sequences
of two programs that are specifically designed for detecting gene conversion,
GENECONV [2] and Partimatrix [7]. Our preliminary studies indicate that the
cost-sensitive classifier performs better than either of the two programs.

2 Methods

A variety of programs exist that deal with gene conversions and recombination.
However few programs exist that provide a definitive prediction on between
which two sequences in a set of sequences a gene conversion occurred. Two such
programs are GENECONYV [2] and Partimatrix [7] which we elaborate next.

GENECONYV was developed specifically to identify gene conversions. Given
an aligned file of sequences, it will give a prediction of what sequence fragments
have the highest, unique similarity between two sequences. It then presents p-
values that show the significance of these paired sequence fragments. p-values
are determined both globally and pairwise. Global p-values are determined by
comparing each fragment with all other possible fragments, thus establishing
the overall uniqueness of the paired fragments. Pairwise compares each frag-
ment with the maximum score that would be expected had gene conversion not
occurred.

Partimatrix is designed to identify cases of gene conversion and recombina-
tion and analyze anomalous phylogenetic history in a multiple sequence align-

ment. For each sequence pair it determines a support score for whether a recom-
bination has occurred and a conflict score that identifies the uniqueness of this
recombination. If the support score is significantly higher than the conflict score,
this represents evidence for a recombination event between these sequences.

The basic idea behind ensemble-based learning is to use multiple tools that
predict, for example, gene conversion, and to use these tools in tandem to
achieve prediction results better than each tool could produce alone. Neither
GENECONYV nor Partimatrix is 100% accurate when it comes to determining
gene conversions and preliminary work we did with these programs showed that
they would identify correct gene conversions at different times. After running
extensive evaluations, we determined that GENECONYV performs better in sit-
uations where the gene conversion event was recent and the sequences were not
very diverged. Partimatrix on the other hand performs better on “ancient” dupli-
cation events where the sequences are also more diverged. So through combining
them and also features that are measurable that may be associated with gene
conversion, we hoped to create an ensemble classifier that would predict gene
conversions more accurately than both of these programs.

Each row of attributes used in the classifier is based on data from a pair of
sequences. This means that we must divide each set of sequences into a set of
sequence pairs. So a set of six sequences for instance would constitute 15 sequence
pairs and thus 15 rows of attributes. The attributes include the following data
values: average GC content of both sequences, sequence identity between the
sequences, global and pairwise p-values from GENECONYV, and the support and
conflict scores from Partimatrix.

Especially when considering each row of attributes as a pair of sequences,
the likelihood of there being a gene conversion is very slim. Due to this fact, we
looked into methods of creating a classifier that can handle learning a rare-class.
For this we implemented a version of the MetaCost classifier first proposed by
Domingos [6]. This method takes a cost matrix and applies it to a base classifier
in order to adjust the weights of the training data.

Since our situation is a two-class problem (a gene pair is either labeled as
gene conversion or no gene conversion), the cost matrix is a 2x2 matrix (as seen
in Table 1). Each of the cells corresponds to the following values: true positives,
false negatives, false positives, and true negatives. Within each of these cells, the
user can then set the penalty for misclassifiying a row or potentially the reward
for correctly classifying one. This cost matrix is then applied to a base classifier.

Table 1. Cost Matrix

True Positive False Positive
(Correctly Identified Gene Conversions) (Incorrectly Identified Gene Conversions)
False Negative True Negative
(Incorrectly Identified No Gene Conversions)|(Correctly Identified No Gene Conversions)

The difficulty with this approach however is selecting the right cost matrix.
In our situation, we definitely want to penalize false negatives (situations in
which there was a gene conversion, yet the pair was classified as having none)
and reward true positives. However, we do not want this to increase the amount

of false positives too much as well, so a penalty must also exist for them. Finding
this balance is certainly non-trivial and we have developed a method to do it
automatically based on a greedy-search approach.

Starting with a basic, default cost matrix in which the penalty is 1 for both
false positives and false negatives and 0 for both true positives and true neg-
atives, we determine how the base classifier does after being trained on the
training data and tested on an initial test set. We then increase the penalty of
false negatives and false positives by 1 and decrease the reward value for true
positives by 1 and every combination of these. We do not adjust the reward
for true negatives as this represents the majority class (correctly identified pairs
with no gene conversion). After seeing how the classifier performs on every com-
bination of incrementing/decrementing the cost matrix values (7 in total), we
then take the best combination and then proceed using that as the base matrix.
The determination of best is done through the use of the F-measure (=2 / (1
/ Recall 4+ 1 / Precision)), which represents the harmonic mean between recall
and precision. Because accuracy is not a good metric in rare-class predictions,
a common approach is to use two different metrics: recall and precision [5,8,
9]. Recall (=True Positives / (True Positives + False Negatives)) “measures the
fraction of positive examples correctly predicted by the classifier”, and precision
(=True Positives / (True Positives + False Positives)) “determines the fraction
of [data objects] that actually turns out to be positive in the group the classifier
has declared as a positive class” [10]. These are better metrics than accuracy
as they indicate how many of the rare-class are identified while still indicating
a balance between true and false positives. However, the disadvantage is that
sometime it can be difficult to compare two metrics simulatenously and find a
classifier that give the best values for both metrics. We therefore adopted the
single metric-F-measure to evaluate different classifiers. The cost matrix that
produces the best F-measure is used subsequently as the best cost matrix. Since
not every iteration produces a best cost matrix that is better than the previous
best cost matrix, we keep track of an overall best cost matrix. This can then be
repeated for a user-specified number of iterations (we used 30).

We used four base classifiers as part of our experiments. The first is an
implementation of the NaiveBayes learner. The second is J4.8 which is a variation
of the C4.5 decision tree learner. The third is PART which is a rule-based learner
that creates rules based on partial C4.5 decision trees [11]. The fourth is called
JRip which is an implementation of the RIPPER algorithm [12]. We implemented
these classifiers in the Weka learning environment [13].

As few examples of actual gene conversion events exist, we had to generate our
own training data. The generation of the sequences was done in similar fashion
to that by Marais [14]. Basically a set of sequences was generated from a ran-
domly generated phylogenetic tree, thus creating a simulated gene family. These
sequences are mutated over time and a gene conversion event is inserted between
two sequences. Since genes that exhibit gene conversion are known to have in-
creased GC levels, we included a GC bias when inserting the sequence fragment
into the acceptor gene. These sequences were aligned with MUSCLE [15].

We generated two separate training sets under different conditions. The first
set (SET1) was done under conditions that mirror typical features of gene con-
versions [16]. In this case GENECONV performs very well under these conditions
(and Partimatrix not so well), we created a second dataset (SET2). Recall, Par-
timatrix performs better in conditions where the sequences are highly diverged
and the gene conversion event happened early (i.e. an ancient gene conversion
event). This second dataset was created to reflect this situation. In SET1 the
overall average sequence identity was 0.83 (with values ranging between 0.99
and 0.66) and in SET2 the overall average identity was 0.49 (with values rang-
ing between 0.6 and 0.39). Each training dataset contained 500 sets of sequences.
Each set of sequences contained 6 sequences, in which one gene conversion has
taken place. For each training set, two additional test sets of 100 sequences were
generated, one to determine the cost matrix and one to test the cost matrix.

3 Results
Table 2. SET1
Classifier TP FP TN FN Accuracy Recall Precision F-measure
Perfect 139 02051 O 1 1 1 1
Just Say No 0 02051 139 0.937 0 UNDEF UNDEF

GENECONYV Strict 102 41448 35 0.975 0.745 0.962 0.840
GENECONV LP 123 571395 14 0.955 0.898 0.683 0.776

Partimatriz 9 137 1315 128 0.833 0.066 0.062 0.064
G-or-P 128 191 1261 9 0.874 0.934 0.401 0.561
NaiveBayes 122 58 1394 15 0.954 0.891 0.678 0.770
PART 107 51447 30 0.978 0.781 0.955 0.859
J4.8 109 11 1441 28 0.975 0.796 0.908 0.848
JRip 111 91443 26 0.978 0.810 0.925 0.864

Table 3. SET?2

Classifier TP FP TN FN Accuracy Recall Precision F-measure
Perfect 150 02250 O 1 1 1 1
Just Say No 0 02100 150 0.933 0 UNDEF UNDEF

GENECONYV Strict 1 82092 149 0.930 0.007 0.111 0.014
GENECONV LP 5 682032 145 0.905 0.033 0.068 0.045

Partimatriz 15 135 1965 135 0.880 0.100 0.100 0.100
G-or-P 19 197 1903 131 0.854 0.127 0.088 0.104
NaiveBayes 8 752025 142 0.904 0.053 0.096 0.069
PART 35 214 1886 115 0.854 0.233 0.141 0.175
J4.8 23 160 1940 127 0.872 0.153 0.126 0.138
JRip 40 265 1835 110 0.833 0.267 0.131 0.176

The results for the various classifiers can be seen for SET1 and SET2 in
Table 2 and Table 3, respectively. The upper part represents the “basic classi-
fiers” while the lower part represents the classifiers that were used as the base
classifiers with the MetaCost implementation and the generated cost matrix.
The basic classifiers are as follows: “Perfect” represents an ideal classifier and is

included to see how each of the classifiers compare to it. “Just Say No” repre-
sents a classifier where every gene pair is considered to have no gene conversion.
As can be seen here, a classifier like this has a relatively high accuracy, but a
recall of 0 and an undefined precision (due to a division by zero) and F-measure.
“GENECONYV Strict” represents using GENECONYV with its default settings
and only evaluating the global p-values. “GENECONV LP” also uses the lo-
cal pairwise p-values. Partimatrix does not actually give a finite prediction on
whether a gene conversion has occurred so we took the pair that has the lowest
conflict score as the pair that exhibits gene conversion. “G-or-P” represents a
basic combining of the two classifiers based on one rule: if either GENECONV
LP or Partimatrix says a gene conversion has occurred, then the pair is labeled
as having a gene conversion. In addition, since Partimatrix does not perform as
well on sequences that are too similar it gave no results for some pairs in SET1.
These pairs were excluded and a total of 2190 pairs were used instead of 2250.

In SET1, GENECONYV performs well. “GENECONYV Strict” has a high ac-
curacy, even higher than the “Just Say No approach”. However, through our
method we are able to increase the amount of true positives, increase the ac-
curacy, and most importantly, increase the F-measure. The best performers are
JRip and PART, which is not surprising as they are rule-based classifiers and
rule-based classifiers are known to perform well on rare-class data [10]. Both
have a higher F-measure than “GENECONV Strict”, a higher accuracy, and
both identify more true positives. J4.8 does well too and identifies more true
positives as PART, but more false positives as well. Of all the cost matrix classi-
fiers, NaiveBayes identifies the most true positives, but is hindered by the amount
of false positives it identifies.

In SET2, GENECONV performs poorly. Partimatrix identifies more gene
conversions and G-or-P has the best F-measure of these basic classifiers. This
set also shows the shortcoming of using accuracy as a metric as the “Just Say
No” approach would appear to be the best classifier. Among the cost matrix
classifiers, the NaiveBayes classifiers performs quite poorly. It has an F-measure
lower than G-or-P, so it shows no improvement over a basic classifier (it does
not identify more gene conversions correctly either). But the rule-based classi-
fiers again perform quite well, with both identifying more gene conversions and
having higher F-measures than any of the basic classifiers. In fact, aside from
NaiveBayes, all classifiers exhibit both a higher recall and a higher precision than
the basic classifiers, showing a definite improvement.

Table 4. Cost Matrices

NaiveBayes SET1|-3|2|NaiveBayes SET2|-2| 1
2|0 2/ 0
PART SET1 -4|5|PART SET?2 -3/19
310 110
J4.8 SET1 -2(4|J4.8 SET2 0| 4
310 110
JRip SET1 -4/6|JRip SET2 0| 7
1{0 110

Table 4 shows the cost matrices that were determined for each classifier
by the greedy-based approach and subsequently used to make gene conversion
predictions. It indicates that a cost matrix is highly dependent on both the
classifier and the data being used. No classifier has the same cost matrix across
both datasets and no dataset has a cost matrix that is best for more than one
classifier. In fact, all cost matrices that were determined by our approach are
unique.

Many trends are noticeable when looking at the cost matrices. If we exclude
NaiveBayes, which performed poorly on both datasets, all classifiers have higher
penalties for false negatives than false positives. This makes sense as the initial
problem most classifiers have when dealing with rare-class problems is identifying
those rare-class members and reducing the number of false negatives.

Further interesting to note are trends in the cost matrices for each classifier
when comparing them across the two datasets. The reward for true positives for
SET1 is generally “greater” (i.e., the lower the value is, the greater the reward)
than that for SET2. This seems to reflect the relative comparison of the true
positives between SET1 and SET2 as the number of true positives predicted
by GENECONYV and Partimatrix in SET1 are much higher than that in SET2
(see Tables 2 and 3). Moreover, that the penalty for false positives in SET?2 is
higher or equal to that in SET1 seems also to reflect the relative comparison of
the number of false positives in SET1 and SET2; the number of false positive
predictions in SET2 are slightly higher than that in SET1. Comparatively, the
difference in the penalty for false negatives between SET1 and SET2 does not
seem to be reflected by the difference in the number of false negative predictions
between the two sets.

4 Discussion

In our analysis we have shown how a greedy-search for a best cost matrix can
be a quite effective method to deal with a rare-class dataset and help with the
identification of gene conversions. This method paired with a rule-based classifier
seems to be an effective and robust pairing as in both datasets JRip and PART
were the best classifiers (with JRip usually outperforming PART). Through our
method we have not only improved upon each of the programs GENECONV
and Partimatrix but also on their basic combination (G-or-P). This represents
an exciting step forward in the accurate prediction of gene conversions.

An interesting observation is the necessity for a way to generate a best cost
matrix. As revealed by our analysis, a cost matrix that maximizes the F-measure
is highly dependent on both the dataset and the classifier being used. No cost
matrix was the same across datasets or classifiers. The majority of research on
cost matrices deals with how to implement them [6] and not with how to generate
a cost matrix. However, due to this dependency on both data and classifier, it is
certainly not a trivial task and further research into generating an “ideal” cost
matrix in an efficient and accurate manner is warranted.

SET1 represents a set of sequences in which the gene conversion occurred rel-
atively recently in the life-cycle of the gene family whereas the sequences in SET2

had a gene conversion that was earlier and thus more obscured by mutations that
have occurred in the sequences since. Our method shows more improvement in
SET2 than it does in SET1. In SET1 the best improvement is approximately
0.024 better in terms of F-measure (JRip better than GENECONYV Strict). But
in SET2, we have an F-measure improvement of greater than 0.07 (JRip better
than G-or-P). This shows that while our approach does improve prediction in
both situations, it improves the identification of “older” gene conversions more
than more recent ones. Future studies can be directed to better identify these
relative ancient gene conversion by taking account of sequence mutation patterns
and also incorporating additional gene conversion prediction models.

References

1. Yeager, M., Hughes, A.L.: Evolution of the mammalian mhc: Natural selection,
recombination, and convergent evolution. Immunological Reviews 167 (1999) 45—
58

2. Sawyer, S.: Statistical tests for detecting gene conversion. Molecular Biology and
Evolution 6(5) (1989) 526-538

3. Posada, D., Crandall, K.A.: Evaluation of methods for detecting recombination
from dna sequences: Computer simulations. Proceedings of the National Academy
of Sciences of the United States of America 98(24) (2001) 13757-13762

4. Chawla, N., Japkowicz, N., Kolcz, A.: Editorial: special issue on learning from
imbalanced datasets. SIGKDD Explorations Special Issue on Learning from im-
balanced Datasets (2004)

5. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for clas-
sification of imbalanced data. Pattern Recognition 40 (2007) 3358-3378

6. Domingos, P.: Metacost: A general method for making classifiers cost-sensitive.
Proceedings of the Fifth International Conference on Knowledge Discovery and
Data Mining (KDD-99) (1999)

7. Jakobsen, I.B., Wilson, S.R., Easteal, S.: The partition matrix: Exploring variable
phylogenetic signals along nucleotide sequence alignments. Molecular Biology and
Evolution 14(5) (1997) 474-484

8. Joshi, M.V., Kumar, V., Agarwal, R.C.: Evaluating boosting algorithms to classify
rare classes: comparison and improvements. ICDM (2001)

9. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
Proceedings of the 23rd International Conference on Machine Learning (2006)

10. Tan, P.N., Steinbach, M., Kumar, V.: Introduction To Data Mining. Addison-
Wesley (2006)

11. Frank, E., Witten, [.LH.: Generating accurate rules sets without global optimization.
Fifteenth International Conference on Machine Learning (1998)

12. Cohen, W.W.: Fast effective rule induction. Machine Learning: Proceedings of the
Twelfth International Conference (ML95) (1995)

13. Witten, I.LH., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Second edn. Elsevier (2005)

14. Marais, G.: Biased gene conversion: implications for genome and sex evolution.
Trends Genet 19(6) (2003) 330-8

15. Edgar, R.C.: Muscle: A multiple sequence alignment method with reduced time
and space complexity. BMC Bioinformatics 5 (2004) 1-19

16. Chen, J.M., Cooper, D.N., Chuzhanova, N., Ferec, C., Patrinos, G.P.: Gene conver-
sion: mechanisms, evolution and human disease (2007) Nature Reviews Genetics.

