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1. INTRODUCTION

Interpolation problems arise in many areas where there is a need to construct a

continuous surface from irregularly spaced data points. These areas include car-

tography, geophysics, data mining, engineering, meteorology, landscape ecology,

computer graphics, and scientific visualization. The problem is to find a surface

that approximates a function defined in m-dimensional Euclidean space Em, from

a finite set of data points.

Currently, there are a number of solutions to the scattered data interpolation

problem. The choice of the interpolation technique depends on the distribution of

points in the data set, application domain, approximating function, or the method

that is prevalent in the discipline.

Shepard’s interpolation method, based on a weighted average of values at the

data points, usually creates good approximations. There are several variations of

the original Shepard algorithm based on quadratic, cubic, linear, and trigonomet-

ric polynomials. Quadratic and cubic Shepard’s method variations require more

coefficients, and hence more data, than the linear Shepard method requires. Thus,

in higher dimensions, it is more practical to use the linear Shepard method. Even

though the performance of the linear Shepard method is comparable to other Shep-

ard’s techniques, there are situations where statistically robust least squares fits

are necessary. Applications of such robust local approximations are well known in

image processing.

SHEPPACK contains five different Fortran 95 implementations of the modified

Shepard algorithm. QSHEP2D, QSHEP3D, and QSHEPMD are quadratic Shep-

ard methods. QSHEP2D [Renka, 1988a] and QSHEP3D [Renka, 1988b] are direct

translations of the original ACM algorithms, written in FORTRAN 77, developed

by Renka for two-dimensional and three-dimensional data interpolation, respec-

tively. QSHEP5D (developed by Berry [1999] in C++ as an upgrade to QSHEP3D

for five-dimensional interpolation) has been translated to Fortran 95 in QSHEPMD.

CSHEP2D, a cubic Shepard method, is also a direct translation of the original ACM

algorithm, written in FORTRAN 77, developed by Renka [1999a]. However, since

the original codes were written using single precision, the tolerance for detecting an

ill-conditioned system was changed from the arbitrary value of 0.01 to the square

root of machine epsilon for the current processor. This increases the portability of

the codes. LSHEP is a linear Shepard interpolation method for arbitrary dimen-

sional data. Note that the new code LSHEP is the only one of the five that is

applicable to data of dimension m > 5. The code LSHEP includes, as an option, a
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statistically robust algorithm. SHEPPACK also includes a new hybrid robust piece-

wise linear estimation algorithm called RIPPLE (residual initiated polynomial-time

piecewise linear estimation) intended for data from piecewise linear functions in ar-

bitrary dimension m.

The remaining sections of this paper are organized as follows. Section 2 men-

tions some common interpolation techniques. Section 3 presents Shepard’s original

algorithm and its modified polynomial variations. Section 4 presents a statistically

robust linear Shepard algorithm and the motivation for a hybrid robust estima-

tion algorithm. Section 5 presents the new hybrid robust algorithm RIPPLE for

piecewise linear data. Section 6 presents performance results for all the algorithms

contained in SHEPPACK.

2. INTERPOLATION TECHNIQUES

Shepard [1968] proposed an interpolation method that created a surface based on

a weighted average of values at data points. The weight function was an inverse

distance function of the data points. All methods of this type can be viewed as

generalizations of Shepard’s method. It was later found that this form of a weight

function accorded too much influence to data points that were far away from the

point of approximation. Franke and Nielson [1980] developed a modification in

which the weight function was designed to have local support and localized the

overall approximation. This method is called the local modified Shepard method.

Several variations of the modified Shepard algorithm have been developed.

Coons [1967] proposed a method for describing free form curved surfaces of a very

general kind. Following this work, NURBS (nonuniform rational B-splines) were

proposed by Versprille [1975]. They are a generalization of tensor product B-splines,

and have several useful properties that have contributed to their popularity and

wide commercial use. As in the case of ordinary B-splines, the sum of rational basis

functions of NURBS is equal to unity. By varying the knots, NURBS can satisfy a

variety of smoothness requirements. Using NURBS, it is possible to represent free

form curves and surfaces as well as analytic surfaces (such as conics and quadrics).

A large variety of shapes can be designed by changing the coordinates of the control

points and the weights associated with them. See Piegl [1989a, 1989b] for a more

detailed discussion of the properties of NURBS.

A DACE (design and analysis of computer experiments) model is an interpolating

model based on Bayesian statistics. It uses the prior distribution mechanism in

Bayesian statistics through which one applies past experiences, knowledge, and

intuition when solving a problem. In DACE models, the unknown function is

typically expressed as the sum of a known function and a Gaussian random function.

The known function is usually a constant, which is estimated based on observed

response values. The Gaussian random function is characterized by a covariance

matrix that depends on a correlation function selected by the user. See Guinta

[1997] for a good overview of DACE. A more detailed discussion of the fundamental

statistical and mathematical concepts can be found in Sacks et al. [1989], Koehler

and Owen [1996], Osio and Amon [1996], and Booker et al. [1995].



4 • Thacker et al.

The MARS (multivariate adaptive regression splines) technique adaptively selects

a set of spline basis functions for approximating the response function through a

forward/backward iterative approach. The algorithm partitions the input space into

regions, each with its own regression equation. It then constructs a relation between

the predictor variables and dependent variables (the spline approximation) from a

set of basis functions that are entirely based on the regression data. In general, the

technique is popular because it does not assume any particular type of relationship

between predictor and dependent variables, and thus is widely applicable. See

Friedman [1991] for a complete description of MARS.

Another popular approximation method uses radial basis functions (RBFs). The

significance and usefulness of approximation by RBFs follows from the theory de-

veloped in Schoenberg [1938]. The paper by Micchelli [1986] presents fundamental

theory for approximation by RBFs. This type of approximation works well with

scattered data because the interpolant only depends on the distances from the in-

terpolation points. A popular choice for an interpolant function is a polyharmonic

spline, which is derived from a strictly positive definite function. More details about

the theory behind the choice of the interpolant function can be found in Sibson and

Stone [1991], who obtained results using the thin-plate spline radial basic functions

together with linear polynomials.

For the special case of piecewise linear approximation in one dimension, recent

work includes the algorithm L2WPMA of Demetriou [2007]. The code L2WPMA

(least squares weighted piecewise linear approximation, Algorithm 863) calculates

a piecewise monotonic approximation to n univariate data points contaminated by

random errors. The continuous piecewise linear interpolant consists of k (a positive

integer provided by the user) monotonic linear splines, alternately monotonically

increasing and monotonically decreasing.

An excellent source for modern approximation theory is Cheney and Light [1999],

which describes many different approximation methods.

3. SHEPARD ALGORITHMS

This section describes the original Shepard algorithm, and also presents the

quadratic, cubic, and linear variations of the modified Shepard algorithm.

3.1 Original Shepard Algorithm

Local methods are attractive for very large data sets because the interpolation or

approximation at any point can be achieved by considering only a local subset

of the data. Many local methods can be characterized as weighted sums of local

approximations Pk(x), where the weights Wk(x) form a partition of unity. In order

for the overall method to be local, it is necessary that the weight functions have

local support, that is, be nonzero over a bounded region, or at a limited number of

the data points.

The original global inverse distance weighted interpolation method is due to

Shepard [1968]. All methods of this type may be viewed as generalizations of

Shepard’s method.
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Let Em denote m-dimensional Euclidean space, x = (x1, . . . , xm) ∈ Em, and

for real w let w+ = max{0, w}. The scattered data interpolation problem can

be defined as: given a set of irregularly distributed points x(i) ∈ Em, i = 1,

. . . , n, and scalar values fi associated with each point satisfying fi = f
(

x(i)
)

for

some underlying function f : Em → E, look for an interpolating function f̃ ≈ f

such that f̃
(

x(i)
)

= fi. Assume that every m-simplex formed from the points x(i)

is nondegenerate (has a nonempty interior). (A somewhat weaker, though more

complicated local assumption suffices.)

Define an approximation to f(x) by

f̃(x) =

n
∑

k=1

Wk(x)fk

n
∑

k=1

Wk(x)
,

where the weight functions Wk(x) are defined in the original Shepard algorithm as

Wk(x) =
1

∥

∥x− x(k)
∥

∥

2

2

.

However, this form of the weight functions accords too much influence to data

points that are far away from the point of approximation and may be unacceptable

in some cases.

3.2 Modified Shepard Algorithm

Franke and Nielson [1980] developed a modification that eliminates the deficiencies

of the original Shepard’s method. They modified the weight function Wk(x) to

have local support and hence to localize the overall approximation, and replaced fk

with a suitable local approximation Pk(x). This method is called the local modified

Shepard method and has the general form

f̃(x) =

n
∑

k=1

Wk(x)Pk(x)

n
∑

k=1

Wk(x)
,

where Pk(x) is a local approximant to the function f(x) centered at x(k), with the

property that Pk

(

x(k)
)

= fk. The choice for the weight functions Wk(x) used by

Renka [1988a] was suggested by Franke and Nielson [1980] and is of the form

Wk(x) =







(

R
(k)
w − dk(x)

)

+

R
(k)
w dk(x)







2

,
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where dk(x) =
∥

∥x− x(k)
∥

∥

2
is the Euclidean distance between the points x and

x(k), and the constant R
(k)
w > 0 is a radius of influence about the point x(k) chosen

just large enough to include Nw points. The data around x(k) only influences f̃(x)

values within this radius.

There are several variations of the original Shepard algorithm based on polyno-

mial and trigonometric functions for Pk.

The polynomial function Pk is written as a Taylor series about the point x(k)

with constant term fk = Pk

(

x(k)
)

and coefficients chosen to minimize the weighted

sum of squares error
n
∑

i=1

i6=k

ωik

[

Pk

(

x(i)
)

− fi

]2

,

with weights

ωik =







(

R
(k)
p − di

(

x(k)
)

)

+

R
(k)
p di

(

x(k)
)







2

,

and R
(k)
p > 0 defining a radius about x(k) within which data is used for the least

squares fit. Rw and Rp are taken by Franke and Nielson [1980] as

Rw =
D

2

√

Nw

n
, Rp =

D

2

√

Np

n
,

where D = max
i,j

∥

∥x(i) − x(j)
∥

∥

2
is the maximum distance between any two data

points, and Nw and Np are arbitrary positive integers. The constant values for Rw

and Rp are appropriate assuming uniform data density. The recommended values

for Nw and Np for the various Shepard algorithms are given below.

3.3 Quadratic Shepard Algorithm for Two-dimensional Data

QSHEP2D (quadratic Shepard algorithm for two-dimensional data) is Algorithm

660 developed by Renka [1988b]. The subroutine QSHEP2 in SHEPPACK is a

direct Fortran 95 translation of Renka’s FORTRAN 77 code of the same name.

The parameters Np and Nw for QSHEP2 were chosen by computing the error

using p-norms ‖ · ‖p, p = 1, ∞ for all parameter values Np ∈ {9, 10, . . ., 16}
and Nw ∈ {1, 2, . . ., 30} over an assortment of test functions and data sets. The

optimal pair of parameter values was found to vary widely with the choice of norm,

test function, and data set, but in each case, the error norms vary smoothly with

Np and Nw, generally increasing monotonically and slowly with distance from the

optimal pair. The recommended values are Np = 13 and Nw = 19.

3.4 Quadratic Shepard Algorithm for Three-dimensional Data

QSHEP3D (quadratic Shepard algorithm for three-dimensional data) is Algorithm

661 developed by Renka [1988c]. The subroutine QSHEP3 in SHEPPACK is a

direct Fortran 95 translation of Renka’s Fortran 77 code of the same name.
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The parameters Np and Nw for QSHEP3D were chosen by computing the error

using p-norms ‖ · ‖p, p = 1, ∞, for all parameter values Np ∈ {11, 12, . . ., 18} and

Nw ∈ {6, 7, . . ., 35} over an assortment of test functions and data sets. The choice

of optimal values is less clear than in the two-dimensional case due to more rapid

variation of some of the error norms with respect to Np values. The optimal range

of parameters was found to be Np ∈ {13, 14} and Nw ∈ {31, . . ., 35}.

3.5 Quadratic Shepard Algorithm for Higher Dimensional Data

Algorithm 798 developed by Berry [1999], is a quadratic Shepard algorithm for

higher dimensional data (up to five dimensions). The Fortran 95 subroutine

QSHEPM provided in SHEPPACK is a direct translation of Berry’s C++ code

QSHEPM. The visualization of results using netcdf file format has not been incor-

porated in the translation.

Following the recommendation of Renka [1988a], QSHEPM accepts parameters

Np and Nw as follows. For an m-dimensional hypervolume with N known nodes,

Np and Nw must satisfy

m(m+ 3)

2
≤ Np ≤ min{50, N − 1}, 1 ≤ Nw ≤ min{50, N − 1}.

3.6 Cubic Shepard Algorithm for Two-dimensional Data

CSHEP2D (cubic Shepard algorithm for two-dimensional data) is Algorithm 790

developed by Renka [1999a]. The subroutine CSHEP2 in SHEPPACK is a direct

Fortran 95 translation of Renka’s FORTRAN 77 code of the same name.

The parameters Np and Nw were chosen using Renka’s recommendation [1988a].

The optimal values were found to be Np = 17 and Nw = 30.

3.7 Linear Shepard Algorithm for Arbitrary Dimensional Data

The basis function Pk(x) was the constant fk in the original Shepard algorithm.

Later variants used a quadratic polynomial, a cubic polynomial, and a cosine

trigonometric polynomial (Renka [1999b]) as basis functions. The primary dis-

advantage for large data sets is that a considerable amount of preprocessing is

needed to determine the closest points and calculate the local approximation. The

second order polynomial models have (m + 2)(m + 1)/2 coefficients for m design

variables, therefore the number of data points required to estimate Pk(x) is at least

(m+ 2)(m+ 1)/2, which is prohibitive for a problem in which m≫ 5 and function

values fk are expensive. If Pk(x) has degree d, the number of coefficients is
(

m+d

d

)

,

requiring at least that many data points.

This consideration motivates the choice of Pk(x) as linear, which would require

only (m + 1) function values to be computed in order to construct the local least

squares fit. Define Np = min{n, ⌈3m/2⌉ + 1} as the number of points used in the

local least squares approximation and

R(k) = min
{

r | B(x(k), r) contains at least Np of the points x(i)
}

,
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where B(x, r) is the closed ball of radius r with center x. Then, the radii Rp and

Rw vary with k and are taken to be R
(k)
p = 1.1R(k), R

(k)
w = min{D/2, R(k)}. The

choice of Np derives from the statistics rule of thumb that 3m/2 data points are

required to reasonably estimate m parameters.

The linear Shepard method would choose Pk(x) as

Pk(x) = fk +

m
∑

j=1

a
(k)
j

(

xj − x
(k)
j

)

.

Let S =
{

i1, i2, . . . , iNp−1

}

be the set of indices corresponding to theNp−1 points

closest to x(k) (or those with the smaller indices in case of a tie) that determine the

local least squares approximation Pk(x). Their weights satisfying ωijk > 0 since

R
(k)
p is slightly larger than R(k).

Define the (Np − 1) ×m matrix A and (Np − 1)-vector b by

Aj· =
√
ωijk

(

x(ij) − x(k)
)t

,

bj =
√
ωijk

(

fij
− fk

)

.

The coefficients a(k) of Pk(x) are then the minimum norm solution of the linear

least squares problem

min
a∈Em

‖Aa− b‖2 ,

found by the SVD factorization of A via the LAPACK subroutine DGELSS.

In the unlikely event that for some k the matrix A corresponding to the index set

S is ill-conditioned, the computation proceeds using the minimum norm solution,

which is possible since the least squares problem is solved via SVD factorization.

In this event, an error flag is set indicating that at least one ill-conditioned least

squares problem was encountered.

The choice of the blending influence radius R
(k)
w is determined by the diameter

D of the point set and the number of points used for a local linear least squares

approximation. Depending on the relative location of x(k) within the point set and

the shape of the point set, either of the two expressions in the min may determine

the minimum.

The subroutine LSHEP in SHEPPACK implements the linear Shepard algorithm

as described above, for arbitrary dimension m. The function LSHEPVAL returns

the approximate function value f̃(x). If the weight function Wk(x) is zero for all

local approximations, LSHEPVAL returns the approximate function value defined

in the original Shepard algorithm using only the m + 1 closest points to x (and

again, if the smallest ball B(x, r) containing the closest m+ 1 points also contains

more than m+1 points x(i), then only the m+1 points x(i) with the lowest indices

i are used).



Algorithm XXX: SHEPPACK • 9

4. ROBUSTNESS IN LINEAR SHEPARD ALGORITHM

As described in the previous section, in the linear Shepard method, the coefficients

of the linear polynomial Pk(x) are the minimum norm solution to a linear least

squares problem. Even though the performance of the linear Shepard method

is comparable to other Shepard’s techniques [Gantovnik et al. 2004; Iyer et al.

2006], there are situations when statistically robust least squares fits are necessary.

Applications of such local approximations are well known in image processing [Besl

et al. 1989]. This section develops a robust linear Shepard algorithm, which is an

option in the subroutine LSHEP.

4.1 Robust Linear Approximation Using M-estimation

By its inherent nature, least squares approximation allows “bad” data points to ex-

ert a disproportionate influence on the fit. A robust approximation is intended to be

resistant to such deviant data points. Effectively, data points with larger residuals

will have smaller weights and thereby less influence in the fit. M-estimation (max-

imum likelihood-type estimation) is a statistically robust technique that minimizes

the sum
∑

ρ(ri) of residuals ri contributed by points being used in the fit.

In a robust linear fit using M-estimation, the coefficients of Pk(x) = a(x−x(k))+

fk are chosen to minimize the weighted least squares error function

E(a) =

Np−1
∑

j=1

ρ
(

Pk

(

x(ij)
)

− fij

)

,

where the function ρ gives the contribution of each residual rj = Pk

(

x(ij)
)

− fij
to

the total error E(a). The number Np here is the same as for the linear Shepard

method. The function ρ should be C1 and have the following properties: ρ(r) ≥ 0,

ρ(0) = 0, ρ(r) = ρ(−r), and ρ(rs) ≥ ρ(rt) for rs > rt > 0.

Let ψ be the derivative of ρ. Differentiating the function E(a) with respect to

the coefficients a, and setting the partial derivatives to zero, produces a system of

equations

Np−1
∑

j=1

ψ

(

a
(

x(ij) − x(k)
)

+ fk − fij

)

(

x(ij) − x(k)
)

= 0.

Let the weight function be defined as ω(r) = ψ(r)/r, r 6= 0 and ω(r) = 1, r = 0,

and let ωj = ω(rij
). The system of equations can then be written as

Np−1
∑

j=1

ωj

(

a
(

x(ij) − x(k)
)

+ fk − fij

)

(

x(ij) − x(k)
)

= 0.

Solving this system of equations is a weighted least squares problem, similar to

the one in Section 3.7. The only difference is that now ωj depends on the unknown
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solution a, which makes it a nonlinear system. The standard approach to solve this

problem, called iteratively reweighted least squares (IRLS), is to compute and fix

the weights ωj for given a, then solve a linear system for new a, and iterate until

convergence.

When the Huber minimax function [Huber 1981] is used for ψ, the data points

with larger residuals (outliers) will be “downweighted” proportional to the mag-

nitude of the residual error. The weights will never be equal to zero, unless the

residual is infinite. If the ψ function is redescending with the property that ψ(r) = 0

for |r| > c like the bisquare minimax function [Huber 1981], where c is a preselected

cutoff value determined, in part, by the scale estimate of the residual error, then

the data points with large residual errors are completely ignored. The scale of the

residual error is estimated by the rescaled median absolute residual (MAR).

In practice, five iterations of IRLS with the Huber minimax function as ψ are

applied first with all initial weights equal one. Five iterations of IRLS with the

bisquare function are applied after that to give less weight to extreme outliers.

Since IRLS with the bisquare ψ may diverge, E(a), using the bisquare ρ function,

for the estimate of a after the five Huber iterations is compared to E(a) with the

final a. If the latter is larger, then the estimate of a from the Huber iterations is

used for Pk(x). The influence radius R
(k)
w is then adjusted such that the closed

ball B(x,R
(k)
w ) only includes points with weights larger than some threshold, say

0.8. This adjustment of R
(k)
w only for robust local approximations is empirically

validated.

4.2 Motivation for a Hybrid Statistically Robust Estimation Algorithm

The breakdown bound [Huber 1981, Rousseeuw 1987] for the M-estimator is

1/(p + 1), where p is the number of parameters to be estimated. The value of

the breakdown bound for the M-estimator is low. This means that a large number

of data points might be required to obtain robust estimates. Using the M-estimator

with the linear Shepard method constructs better approximations than the standard

linear Shepard method [Iyer and Watson 2006]. However, the primary advantage of

the linear Shepard method is that, in m-dimensional space, it requires O(m) data

points to construct the fit, which is no longer possible when M-estimation is used,

since the number of points required by M-estimation is O(m2). (If F is the fraction

of points that are outliers, (m + 2)F ≤ 1
(m+2)

(m + 2) ⇒ (m + 2)2F ≤ m + 2, so

O(m) outliers requires O(m2) data points.) This computational complexity prob-

lem (the requirement for O(m2) data points) is solved by using a different robust

estimation technique, least median of squares (LMS) [Rousseeuw 1984], which has

a breakdown value of 1/2, independent of the dimension m. Thus, LMS would re-

quire O(m) data points to construct a robust linear Shepard approximation. LMS

achieves this optimal breakdown value by constructing all
(

n
p+1

)

possible fits to sub-

sets of p+1 points, where again p is the number of parameters being estimated. For

some n and p, this is practical, but in general this factorial complexity is computa-

tionally untenable. This motivates the use of a hybrid statistically robust method,
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somewhere between M- and LMS-estimation, that requires fewer data points than

the quadratic Shepard method and yet produces better approximations than the

standard linear Shepard method.

5. RIPPLE

RIPPLE [Iyer and Watson 2007] is an acronym for residual initiated polynomial-

time piecewise linear estimation, a new algorithm described next. As seen in the

previous sections, as the space dimension m increases, the amount of data required

for quadratic nodal functions Pk(x) becomes computationally prohibitive. In gen-

eral, the use of polynomials of degree < 2 is not sufficient to locally describe the

behavior of highly nonlinear functions. However, in many engineering problems,

the individual response functions are piecewise linear and thus can be approxi-

mated by using linear local approximations. An example of such a function is the

penalty function based fitness function used for the design of composite structures

via genetic algorithms [Gantovnik et al. 2004]. The core idea is that away from the

breakpoints between the linear pieces, the standard linear Shepard approximation

is adequate. Near a piecewise linear breakpoint, a robust linear estimator may be

able to choose the “correct” linear piece, resulting in an accurate approximation,

f̃(x).

The standard linear Shepard algorithm uses weighted linear least squares to con-

struct the local approximation. It uses all the data to construct the local fit. As

a result, it does not produce good approximations near a piecewise linear function

ridge as it “averages” all the facets near the ridge. When M-estimation is used,

the linear Shepard method ideally picks the facet that is consistent with a majority

of the nearby data. Even though this is usually better than the standard linear

Shepard method, there are cases when the required majority of data points may

not lie on the same facet as the point of approximation. This produces large errors,

which can be reduced if the points to be used in the fit are chosen carefully, as LMS

estimation would have done.

Let S = {i1, i2, . . . , iNp−1} be the set of indices as defined in Section 3.7. The

most consistent points (not necessarily a majority) in the set S must be used for

the local least squares approximation. Suppose that based on some criteria, the

points in this set could be classified as ‘inliers’ and ‘outliers’ such that each inlier

produces a lower absolute residual (vertical distance to the approximation) than

all outliers. Intuition suggests that if a point is classified as an inlier, the points

close to it have a higher probability of being classified as an inlier. However, if two

points that have equal distance from an inlier are on two different facets, then the

corresponding function values are “averaged”, resulting in a large approximation

error. Thus, it is not possible to pick the inliers based solely on the criterion of

distance from the point of approximation x. Also, it is not possible to predict how

many data points will be used for constructing the local approximation.

Suppose that the best set (set of points producing minimum sum of squared

residuals) of the minimum number of points required to construct the fit is chosen.

It is now possible to examine every other data point and determine whether it
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should be added to the best set based on the residual that is produced. Thus,

the problem is now reduced to finding the best minimal set of points. The idea

for choosing minimal sets of points required to construct the fit has been borrowed

from the RANSAC (random sample consensus) algorithm [Fischler and Bolles 1981],

which chooses the minimal sets of points at random. If the data dimension is m,

the number of parameters in Pk(x) to be estimated is m, requiring at least (m+ 1)

data points to construct a linear approximation. The total number of data points is

Np − 1. The best minimal set lies among
(

Np−1
m+1

)

possible sets. However, in general

this has exponential complexity and is therefore untenable.

The best minimal set of points can be approximated in polynomial time by using

a special distance criterion that is described as follows. Define the (Np−1)×(m+3)

distance matrix D such that D.1 = (i1, i2, . . . , iNp−1)
t
and Di,j+1 is the index of the

point that has least Euclidean distance from the point whose index is Di,j , for i = 1

to Np − 1 and j = 1 to m+ 2, subject to the constraint that every row of D must

contain distinct indices. In case x(is) and x(it) are equidistant from x(Di,j), choose

the one closer to x(k). If that choice also results in a tie, use index is (assuming

is < it).

Compute the local approximation Pk(x) using x(k) and different sets of (m+ 1)

distinct points x(i) that are picked as follows. For each row t, t = 1 to Np−1, in D,

pick the point corresponding to index Dt,1. The remaining m points can be picked

in
(

m+2
m

)

ways from row t. Thus, the total number of local approximations Pk(x)

computed using x(k) and a set of (m+1) other points will be (Np−1)
(

m+2
m

)

. For each

approximation, compute the absolute residuals (vertical distances) for the (m+ 1)

points used to compute the least squares fit. Record which set of (m + 1) points

produces the minimum least squares error. Let R = {i1, i2, . . . , im+1} correspond

to the indices of these m+ 1 points. In case of a tie for this best set, choose the set

containing the points closer to x(k) (precisely, sort the distances ‖x(ij)−x(k)‖ into an

(m+ 1) vector in increasing order, then compare the two vectors lexicographically;

if these distances are equal, sort and compare lexicographically the sets of indices).

Once the best set of minimal points is obtained, compute the linear interpolant

at x(k). Compute the average residual produced by the points x(i), i ∈ R, and

record the coefficients of the linear interpolant. Use M-estimation to determine

the set T ⊃ R of points for computing the final local approximation. For solving

the nonlinear system using the iteratively reweighted least squares method, use the

coefficients and MAR of the linear fit obtained from set R as the initial linear least

squares approximation and scale estimate, respectively. Compute the final local

approximation Pk(x) = fk +
m
∑

j=1

a
(k)
j

(

xj − x
(k)
j

)

using points x(k) and x(i), i ∈ T .

The algorithm RIPPLE described above is implemented in the subroutine RIP-

PLE in SHEPPACK, for arbitrary dimension m, and RIPPLE uses the same func-

tion LSHEPVAL as LSHEP uses to return the approximate function value f̃(x).

RIPPLE is specifically intended for sparse scattered data from approximately piece-

wise linear continuous functions. In other contexts RIPPLE may perform erratically

compared to, say, LSHEP.
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6. PERFORMANCE

All the test results in the papers for QSHEP[23M]D and CSHEP2D have been

replicated with the Fortran 95 translations in SHEPPACK, so there is no need to

describe those tests again. Instead, the focus here is on the new codes LSHEP and

RIPPLE, data sets with outliers, and piecewise linear functions in high dimensions.

Five continuous, piecewise smooth test functions fi : [0, 1]m → E, (i = 1, . . ., 5),

similar to functions occurring in many applications [Besl et al. 1989; Gantovnik et

al. 2004], are used to test the performance of the algorithms in SHEPPACK. The

test functions f1, f2, f3, f4, and f5 for m = 2 are shown in Figures 1–5, respectively.

The function f1 in m dimensions is

f1(x) =















2
m

m
∑

i=1

xi,
m
∑

i=1

xi ≤ m
2

,

− 2
m

m
∑

i=1

xi + 2,
m
∑

i=1

xi >
m
2

,

which has the maximum f1(x
∗) = 1 at

m
∑

i=1

x∗i = m
2 .

The function f2 in m dimensions is

f2(x) = 1 − 2

m

m
∑

i=1

|xi − 0.5|,

which has the maximum f2(x
∗) = 1 at x∗i = 0.5, for i = 1, . . ., m.

The function f3 in m dimensions is

f3(x) = 1 − 2 max
1≤i≤m

(|xi − 0.5|),

which has the maximum f3(x
∗) = 1 at x∗i = 0.5, for i = 1, . . ., m.

The function f4 in m dimensions is

f4(x) =

m
∏

i=1

gi(x),

where

gi(x) =

{

2xi, xi ≤ 1/2,
2(1 − xi), otherwise,

which has the maximum f4(x
∗) = 1 at x∗i = 0.5, for i = 1, . . ., m.

The function f5 in m dimensions is

1 − 1

0.5m + 0.5m

(

m
∑

i=1

|xi − 0.5| +
m
∏

i=1

|xi − 0.5|
)

,

which has the maximum f5(x
∗) = 1 at x∗i = 0.5, for i = 1, . . ., m.
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Fig. 1. Test function f1. Fig. 2. Test function f2.
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Fig. 3. Test function f3. Fig. 4. Test function f4.
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Fig. 5. Test function f5.

Each test function was sampled at n0 random (uniformly distributed) scattered

points of Q = [0, 1]
m

to generate the data set
{

x(i)
}n0

i=1
used to construct the

Shepard interpolants. The approximation error has been characterized using three

error metrics. These are the maximum absolute error emax, the mean absolute error

ē, and the root mean squared error er. The absolute approximation error is defined

as

ei =
∣

∣f̃
(

z(i)
)

− f
(

z(i)
)
∣

∣,
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Fig. 6. fi(x), i = 3 and 5, m = 5. RMS error plots for LSHEP (solid), robust LSHEP (dashed),

and RIPPLE (dotted) versus n0 = 100 ·2k, n1 = 8. (A) Noisy data. (B) Noisy data with outliers.

where f̃(x) is the interpolant function, f(x) is the test function, and z(i) are the

points of a uniform n1 × · · · × n1 grid G ⊂ [0.1, 0.9]
m

. The total number of grid

points is n = nm
1 .

Using this notation, the maximum absolute error is

emax = max
1≤i≤n

ei,

the mean absolute error is

ē =
1

n

n
∑

i=1

ei,

and the root mean squared error is defined as

er =

√

√

√

√

n
∑

i=1

e2i

/

n.

Figure 6 shows the interpolation errors for two test problems f3, f5 with m = 5

(five-dimensional) and the results for the three other test problems are similar.
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Fig. 7. fi(x), i = 2 and 4, m = 10. RMS error plots for LSHEP (solid), robust LSHEP (dashed),

and RIPPLE (dotted) versus n0 = 100 ·2k, n1 = 4. (A) Noisy data. (B) Noisy data with outliers.

The results are only shown under the root mean square error measure, since the

maximum absolute error emax offers little information as emax is usually determined

by points z(i) (far from all the interpolation points x(i)) where all local linear

approximations have little or no effect, and the behavior of the mean absolute error

ē is very similar to er.

The first test is conducted withN(0, 10−6) normally distributed noise (zero mean,

standard deviation 0.001) added, with results shown in Figure 6(A). Next, to test

how well outliers in the data are dealt with, contaminated function values

fi(x) + 0.001µ + 0.1χ[0,0.2](ν),

are used, where µ is a N(0, 1) normally distributed random variable, ν is a U [0, 1]

uniformly distributed random variable, and χ[0,0.2] is the characteristic function of

the interval [0, 0.2]. The effect is to add small noise everywhere and large noise

producing an outlier with probability 0.2. Note that since the Shepard approxima-

tion f̃(x) interpolates all the data points
(

x(i), fi

)

, if x is close to an outlier x(i)

then f̃(x) will have a large error. The goal is to have f̃(x) for x away from outliers

to be controlled by inliers, and thus be accurate. Although SHEPPACK does not
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support this, one could consider modifying the outlier data values to be consistent

with the inlier data, and use a Shepard approximation based on these modified

data values. This strategy, for piecewise linear functions, is called the “slope facet

model” in image processing, and is a special case of more sophisticated “variable

order” facet models [Mainguy et al., 1995]. Figure 6(B) shows the results of using

the noisey data with outliers. Figure 7 is analogous to Figure 6 for two other test

problems f2 and f4 with m = 10 (ten-dimensional).

In most situations, RIPPLE has less RMS error than LSHEP (the codes using

statistically nonrobust least squares estimation) and the robust linear estimation

option in LSHEP. However, the robust linear estimation option in LSHEP does

not always improve and generally degrades the approximation result without the

option. The reason for this is illustrated in Figure 8, which shows two simple one-

dimensional examples. Plots on the left side show a case where LSHEP with the

robust option could improve the approximation result, however, plots on the right

show a case where the robust option makes the approximation worse.

The differences between all these are explained by the different ways weights

are determined when constructing the local linear approximation Pk about each

sample point x(k). In LSHEP without the robust option, weights are determined

totally by distances between other sample points and x(k). However, in LSHEP

with the robust option, weights are determined mostly by function values, i.e.,

points with function values closer to fk tend to get larger weights. In RIPPLE

large weights are credited to points that form the best local fit around x(k) (best

in the sense of producing minimum least squares error). The numerical results

show the RIPPLE strategy is the best when approximating piecewise functions in

high dimensions, while robust LSHEP is not so good and nonrobust LSHEP is

somewhere in between. However, RIPPLE is considerably more expensive in high

dimensions than the robust LSHEP option, which performs well in the presence of

a few outliers compared to LSHEP (cf. the left side of Figure 8). Thus the robust

M-estimation option in LSHEP, while not generally the best choice, is still worth

keeping as an option.

Figure 8 also shows an inherent problem of linear Shepard algorithms, especially

for RIPPLE. In the two plots for RIPPLE in Figure 8, the local linear approximation

functions are very close to the test function f1, however, the approximation error

is still quite significant around the vertex/ridge of the piecewise linear function.

This happens whenever the radius of influence of a sample point on one facet of the

piecewise (linear) function extends over other facets of the function. In this case,

even if the local approximation is correct, applying the local approximation within

its radius of influence still results in a large approximation error. In the new code

LSHEPVAL, a warning flag is turned on if the angle between the tangent plane of

f̃(x) at point z(i) and that of some local approximation Pk(x) with nonzero weight

Wk(z(i)) is over a threshold of 30◦, indicating potential proximity to a ridge/vertex

of a piecewise (linear) function where the approximation error could be significant.
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Fig. 8. Local linear approximation functions and Shepard approximation functions for f1(x) using

LSHEP without the robust option, with the robust option, and RIPPLE, from two different sets

of sample points. The dotted nodes are the data set {(x(i), f1(x(i)) + 0.001µ)}n0

i=1 used to build

local approximations and the radius of each local approximation (solid lines) is R
(i)
w . The dotted

lines are the interpolant function f̃(x). The sample size for the local fits is 3.
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