
Augmenting Undergraduate Computer Science Education
With Programmable Smartwatches

Andrey Esakia, Shuo Niu, D. Scott McCrickard
Department of Computer Science

Virginia Tech
Blacksburg VA 24060-0904

{esakia,shuoniu,mccricks}@vt.edu

ABSTRACT
Smartwatches are emerging as wrist-based computers capable of
complex calculation and communication, and the computer
science curriculum should reflect the challenges and
opportunities that they provide in the education domain. This
paper puts forth an experience report focused on efforts to
incorporate smartwatches in an upper-level undergraduate
mobile application development class during two academic
terms. Lectures, in-class activities, homeworks, and projects
were tailored toward providing rich design and implementation
experiences for the students that engaged them in developing for
the smartwatch and a paired mobile device. Our experiences
highlighted how incorporating smartwatches into a mobile app
development class adds a valuable dimension in terms of design
and implementation challenges and allowed students to exercise
some of the fundamental computer science topics.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]

General Terms
Design, Human Factors

Keywords
Smartwatch; Pebble; Mobile; Android; Multi-platform

1. INTRODUCTION
A smartwatch is a wrist-based computing device with primary
functionality as a watch but with added functionality made
possible by the inclusion of a capable processor, graphical
display, sensors, and wireless communication capabilities.
Following many years of speculation and prototypes, major
technology companies like Google, Samsung, LG, and Motorola
are engaged in smartwatch development and support, and
startups like Pebble are attracting record funding. Many of the
smartwatch platforms provide open distribution channels for
smartwatch applications (apps), providing opportunities to get
apps in users’ hands quickly and easily. As such, it is important
to consider how smartwatches can fit into the computer science
(CS) curriculum, toward identifying the most appropriate
lessons to be learned from smartwatches and providing

opportunities for students to design apps with broad availability.

Key in designing for smartwatches is consideration for their
unique form factor. To ensure broad appeal and utility,
smartwatches are intended to be attractive and compact, to be
resilient to various environmental conditions, and to have a long
battery life—supporting constant wear and close integration
with daily tasks. Smartwatch manufacturers seek to balance
features like screen size and sensor integration with appearance
and durability, and while there is not yet consensus on essential
features, most smartphones include a screen no larger than 2.5
inches on the diagonal, some sort of accelerometer or motion
detector, and a means to communicate wirelessly like Bluetooth
or Wi-Fi. Other features in select smartwatches include a
camera, thermometer, GPS, touch screen, speaker, heart rate
monitor, and external storage. The common features provide a
baseline for designing educational activities, while the growing
and changing feature set offers opportunities for innovation.

Increased miniaturization of computing and sensor technologies
means that smartwatches can act as standalone devices, with
significant computing power and capabilities (e.g., Samsung’s
Tizen smartwatches). But the greatest emerging opportunities
seem to reside in coordinated use of smartwatches with other
mobile and wearable technologies, seeking to leverage the
strengths of each. This model is core in smartwatches such as
Pebble, NikeFuel, and Samsung Galaxy Gear. As such, when
teaching students to design for smartwatches, it is important to
emphasize the multi-device coordination aspects that are
essential to maximize utility.

Ironically, the popularization of the new technology brings to
the forefront issues from the past that are often covered
minimally in many CS education classes—most notably
memory management, processing speed, power issues, and small
screen design. The need to create a technology that is small and
power-efficient leads to devices that lag in performance and
capability compared to larger devices (i.e., desktops, laptops,
and even tablets and mobile phones). With increased market
presence of smartwatches and other very small technologies
emerging, it is important that students understand how to design
and program for hardware limitations.

 In summary, this paper explores four fundamental CS topics
that can be exercised through developing for smartwatches in an
upper level mobile app development class:

• Considering a unique form factor

• Designing and programming for sensors

• Addressing multi-device coordination

• Handling hardware limitations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ACM SIGCSE ’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright 2015 ACM 978-1-4503-2966-8/15/03�$15.00.
http://dx.doi.org/10.1145/2676723.2677285

The novelty and popularity of smartwatches translates to
enthusiasm among CS students, which offers a good building
point. This paper puts forth an experience report for integration
of smartwatches into the computer science curriculum.
Specifically, we focused on a junior-senior level mobile design
class that students take after completing CS2, and we chose the
Pebble smartwatch as our design platform.

This paper first explores key elements of smartwatches that are
important to cover in the upper level computer science
curriculum. It then examines work related to mobile and
wearable sensor-based platforms similar to smartwatches. The
remainder of the paper describes two class sections for which
smartwatches were an integral part of lectures, in-class
activities, assignments, and projects—culminating in lessons
learned and challenges for the future.

2. SMARTWATCHES AND EDUCATION
To appropriately integrate a novel device into a CS class
curriculum it is important to analyze and understand the
characteristics, features, and general nature of the device. We
believe that a smartwatch is capable of adding additional
dimensions to the educational experience that students get in an
advanced (junior-senior) CS class—building on lessons learned
in early courses such as C and Java programming, data
structures, and algorithms. Additionally, smartwatches have the
capacity to provide an exciting platform for key later topics.

This section explores smartwatch characteristics with regard to
important aspects of CS education. Each discussion category
highlights general features of smartwatches, both with regard to
development as well as specific to education, with a focus on the
junior-senior undergraduate level for which we have direct
experience. We seek to frame the lessons in terms general to all
smartwatches, though our experiences were with the Pebble.

Pebble seeks to create an inexpensive smartwatch with long
battery life through judicious selection of features. Pebble
hardware characteristics reflect a very power efficient embedded
class device. Pebble smartwatches have a Cortex M3 CPU with
a maximum frequency of 80mhz, 4MB of internal storage,
128kb of RAM (96kb allocated for the OS). In addition to
conservative computational capabilities, it has a low resolution
monochrome screen with 139 pixels per inch and total resolution
of 144x168. For other interactions the Pebble has no touchscreen
and no sound—though it can provide haptic feedback through a
vibrating motor. Interaction is via four hardware buttons that are
located on Pebble’s edges. Pebble runs a proprietary operating
system that must be programmed in C (limited features can be
programmed in JavaScript). Pebble is intended to be paired with
another device (e.g., a mobile phone) via Bluetooth, allowing it
to serve as an extension to the device and to leverage its more
extensive hardware capabilities.
Form factor. Smartwatches are designed to worn as watches—
on the wrist at all times. Thus, the smartwatch utilization
paradigm is different from the one that is with smartphones and
other mobile devices. The dimensions of the smartwatch impose
certain limitations on the types of interactions that are possible.
For example, the watch-like appearance limits possible display
and interactions due to fewer pixels, fewer buttons, and more
limited finger input sets. Techniques like voice commands,
gestures, and accelerometer inputs are promising, and deserve
thorough exploration. These form factor features of
smartwatches can present additional challenges to students
designing smartwatch apps. Solving such usability problems will

allow students to learn to better utilize the unique hardware
resources. Lessons learned from such design processes will
apply to other devices as well.

Sensors. Smartwatches contain various sensors and devices, that
have included accelerometer, magnetometer, microphone,
speaker, thermometer, barometer, GPS, touch screen, heart rate
monitor, light sensor, and camera. While these sensors may not
be new to students with smartphone experience, the limited form
factor of the smartwatch often results in unique combinations of
sensors, often of lower quality. In addition, having sensors on
the wrist tends to have great appeal for students, creating new
challenges for the design and implementation of apps.

Multi-device coordination. While it is possible to create
standalone smartwatch applications, the most engaging
applications for the majority of smartwatch platforms tend to
leverage data from one or more companion devices (e.g., via an
external internet connection, a larger memory store, or
additional sensors). Since Pebble and a companion device run on
completely different platforms the communication and its
representation in code varies dramatically between the devices.
Thus, implementing communication mechanisms on both
platforms allows students to gain deeper knowledge about the
concepts of device-to-device communication as they implement
similar communication functionalities on different platforms.

Limited resources. Smartwatch form factor suggests that the
quality of resources available will always lag behind larger
devices (e.g., desktops, laptops, and even tablets and mobile
phones). As such, programmers will need to address limitations
in memory and processing speed when developing for this
platform. For example, Pebble hardware runs on a very power
efficient embedded class hardware with limited memory, and as
such does not support memory allocation using traditional C
commands like malloc and sprintf. Thus, limited resources of
Pebble give students experience developing for low performance
hardware—lessons that will serve them well for smaller devices.

3. RELATED WORK
Smartwatches have been included in CS courses, but generally
as an option for projects and not as a major focus point for
engaging core CS concepts. However, the four CS topics
defined in the previous section certainly have been addressed
elsewhere within CS education, particularly in relation to mobile
and wearable computing. This section provides a few examples
for each topic with mention of their relevance.

Form factor has proven useful and appealing in courses that
address issues of mobile and wearable computing throughout
different stages of CS education. For example, the Android
platform and App Inventor has been used to motivate K-12
students to get involved in computer science [4]. The authors
provided students with projects and exercises that covered
capabilities such as sensors and networking to teach Java
programming and Android SDK development. The Sofia system
provided a programming interface to simplify Android
programming for early undergraduate CS classes [5]. The
Android platform has been used in upper-level courses as well,
such as an agile software engineering focus on socially relevant
problems like disabilities [9] and in courses focused on
operating systems [1] and databases [8] due to the unique
dimensions provided or enhanced by the small form factor. The
smartwatch takes these challenges to another level, providing
fewer pixels and inputs but an even more ubiquitous presence.

Sensors have grown in popularity as an educational topic with
the rise of mobile and wearable computing. A working group on
mobile computing courses noted that mobile devices provide
opportunities for learning about sensors. Mobile and wearable
sensors have been the key platform for teaching many sensor-
driven application development undergraduate classes (e.g.,
[4,6,10]). From this prior work, it is clear the importance of
sensor issues related to the reliability, lag, threading, and more,
and as smartwatches become more sensor-rich, we expect they
will be platforms to explore these issues.

Multi-device communication and networking issues are
important in mobile phones. Burd and his colleagues note that
programming for multiple platforms can put students in a better
position to think critically about each platform [2].
Communication between platforms forces students to consider
the growing concerns regarding Android OS security threats,
toward understanding fundamental security concepts such as
cryptography, network security, and security policy [7]. Since
smartwatches (particularly the lower-priced ones like Pebble)
rely on communication with another device for the bulk of their
operations, communication and networking issues will be of
even greater importance.

In addressing hardware limitations we can draw from the lessons
from years past, when issues like memory and processor speed
were important even for relatively small data sets. As noted by
the Burd working group [2], issues like these provide the
opportunity to introduce classic CS topics like responsiveness,
memory allocation, algorithm complexity, and limited graphics
and animation. We certainly found this to be true in teaching
Pebble, which has extremely limited memory and a slow
processor relative to student expectations.

Each of these topics are important on their own, but the issues
become more interesting when considered together. Section 3
examines these topics in detail, balancing general facets of them
with aspects specific to the Pebble smartphone and our target
course. The subsequent sections provide details about
smartphone integration into the course, focusing on these topics.

4. SMARTWATCH IN THE CLASSROOM
We taught two consecutive mobile app development courses
aimed at junior/senior level CS major students—one in Spring
2014 and another in Summer 2014. Input about the first class
was taken into account for the second iteration of the class.
Course materials are at http://research.cs.vt.edu/ns/smartwatch

We were able to provide a Pebble smartwatch for over half the
members of the first class, and for all of the members of the
second class, thanks to a gift from Pebble. The smartwatches
were handed out to students at least a week before the
instruction about Pebbles to encourage students to use them and
better understand potential utility of a smartwatch prior to
designing and implementing any applications for it.

4.1 Spring course
The spring semester mobile app development course was our
first effort to teach mobile software development on Android as
a CS3 level course aimed at juniors and seniors of our
university’s computer science department. We divided the
course into two-week modules, where every module covered
fundamental aspects of mobile development with Android OS.
One module focused primarily on smartwatches.

Our spring course had a relatively large enrollment of 63
students (56 males). Class met twice a week for 75 minutes per
session over a 15-week semester. All students had or were given
an Android mobile device for their use during the semester, and
over half the students were loaned a Pebble. Pebble assignments
were done in pairs, and students were given the option to include
a smartwatch in experience reports and a group project.

All of the students had had multiple years of Java experience.
Many of the students had CS2 mobile app development class
taken that uses Sofia package as the teaching platform for
Android development [5], and most others had Android
experience gained through their own initiative or other
opportunities. Almost all indicated familiarity with the C
programing language to a level in which they felt comfortable
with pointers, memory allocation, and other relevant features.

4.1.1 Lectures
Two class periods were dedicated to teaching introductory
aspects of smartwatches and two class periods specifically
focused on teaching Pebble development. We sought to balance
a historical view of the evolution of wearables and smartwatches
as well as overview of the core features, while focusing also on
Pebble specific development. We discussed at a high level the
hardware aspects of Pebble; we mentioned hardware limitations
such as low memory with slow bandwidth and the resulting
restrictions from developer’s perspective in C environment.
Although the majority of the class was familiar with C, we
decided to go over the more challenging parts of C such as
pointers, structs and function pointers.
The Pebble API overview and instruction covered core concepts
of form factor, multi-device connectivity, sensors, and hardware
limitations. We spent significant time on multi-device
connectivity, covering the Android side of the development on
how to create a companion app on Android and how to
exchange information with Pebble. We concluded by informing
students about the ways in which the interactive development
platforms can be set up for Pebble and how to use them.

One class was a lab-style session in which students practiced
app and companion app development for Pebble. Students
brought their Pebbles to class and worked individually on the
lab, sharing Pebbles as needed to complete our tutorial. The
tutorial consisted of series of steps necessary implement a
shopping list app that allowed creating a shopping list on the
phone and passing the list to the Pebble. Students were given a
skeleton code that, when completed, resulted in a shopping list
created on a mobile device that could be checked off with the
Pebble. With this lab students were exposed to two key
smartwatch topics: advantages gained from different form
factors and multi-device coordination.

4.1.2 Assignments
Students were required to do the homework for Pebble that we
designed for the class. As all students had completed a highly-
structured lab, the homework was very open-ended. We asked
students to utilize two core smartwatch functionalities: device-
to-device communication (as in the lab) and integration of
sensors (accelerometer, magnetometer, or light sensor).

4.2 Summer course
We taught the same mobile app development course as a
summer course. The course met 5 days per week for 75 minutes
per class session over 7.5 weeks. The class underwent changes
based on difference in format and on feedback received from the

previous course. The background and demographics of this class
were similar to the spring offering, though this class had a
enrollment of only 14 students (12 males). Due to the smaller
size of the class we were able to hand out Pebble smartwatches
to every student and make all assignments individual.

4.2.1 Lectures
Most lectures were the same as in the spring, but we added a
session in response to feedback received from the spring class
(see results section) to provide students with more practical
examples and more hands-on experience. Thus, prior to the lab
session, we conducted a hands-on lecture for which students
were asked to bring their laptops installed with the Pebble
development environments. During the lecture we walked
students through a development of an example app and asked
them to follow along and implement the example app on their
laptops. The example app was a synchronized counter that
allowed incrementing and decrementing a counter on the Pebble
as well as on the companion device (see Figure 1).

It should be noted that the process of displaying a number on the
Pebble’s screen was not trivial, as memory limitations of the
smartwatch had to be addressed (string conversion without
sprintf). This example app served as the basis for the homework
assignment and it helped students with three core smartwatch
lessons: leveraging various form factors, overcoming hardware
limitations, and multi-device coordination.

Figure 1. Pebble activity/assignment in which students
leverage accelerometers to increment, decrement, and
synchronize counters on both devices.

4.2.2 Assignments
For the summer class we decided to establish more control on
the learning experience from the homework assignment. As one
step, we assigned very specific homework that asked students to
build on the counter app from the class activity and enhance it.
The app from the activity needed one major improvement: it had
no means of verifying successful and failed information
deliveries between the Pebble and the companion device. With
the app it was very common to see communication interruptions
between the Pebble and the companion device, resulting in
asynchronous numbers displayed on both devices. We asked the
students to fix this problem by utilizing failed and successful
message delivery handlers provided by Pebble SDK, thus
synchronizing the counter on both Pebble and the companion
device (and, of course, broadening the students’ understanding
of multi-device coordination). We also wanted students to
practice accelerometer sensors programing, so we asked them to

implement a simple linear gesture detection that would
increment and decrement the counter by a number determined
by the direction and the axis of the linear gesture. Students were
supposed to implement this on both the Pebble and the
companion device. This assignment helped students practice
cross-platform communication and synchronization as well as
accelerometer gesture detection and noise handling—both core
concerns for this experience.

5. EXPERIENCE REFLECTIONS
Although our spring and summer classes varied dramatically in
terms of enrollment and duration, our results indicate that
incorporating Pebble development component into a junior-
senior level mobile app development class, did encourage
students to explore CS topics in a novel way.

5.1 Spring course experiences
Due to high enrollment in our spring course, students worked on
the Pebble homework in pairs. We were able to allocate a full
course module (two weeks) for the Pebble homework. Thus,
students were given adequate time not only to innovate in terms
of app design but also to implement quality apps.

A total of 33 submissions were made for the Pebble homework.
Upon analyzing the functionality of the applications submitted
we observed a significant diversity in terms of both, design and
implementation. The following six applications caught our
attention as the most prominent ones that addressed the core
lessons we sought to communicate.

(1) Camera trigger: A Pebble app that triggers taking a picture
from a companion device equipped with a camera.

(2) Speedometer: A Pebble app that receives information about
the changing location of a companion device, measured by
GPS, and calculates and displays the speed on its screen. The
app warns the user if certain speed is exceeded.

(3) Navigator: A Pebble app that periodically receives
navigational directions from a companion device and
displays them on its screen.

(4) Pacekeeper: This Pebble app allows for a recording of a
tapping pattern on the companion device, uploading the
pattern to the Pebble and then recreating it via Pebble’s
vibration feature.

(5) MLB score updater: This Pebble app receives latest Major
League Baseball scores from the web, through a companion
device, and displays the scores on its screen.

(6) Realtime Twitter: For this Pebble app, user enters a search
term into a companion device and then receives realtime
updates, for that term, onto the Pebble’s screen.

These example apps serve to demonstrate of how an integration
of smartwatch device development into a mobile app
development class can add extra dimensions to design and
implementation aspects as well as revisit some of the core
computer science problems in novel setting. Camera trigger app,
for instance, was built as an addition to one of the earlier
Android image capture homework apps, adding support for
taking pictures remotely from the companion device directly or
via a timer. Several of the apps required students to overcome
transfer limitations of Pebble to support the intended
functionality, in which Pebble does not receive information in
chunks bigger than 128 bytes—students divided up the

information into 128 byte chunks on the companion device, then
sent one chunk at a time and merge upon receipt of all chunks.

We asked all of the students to describe the Pebble homework
experience and to identify some of the challenges identified.
Upon analyzing the responses we discovered three most
prominent issues related to the Pebble development. One on the
issues being the lack of proper documentation and consistence
across different versions of SDK e.g.,

“One of the big limitations was the documentation. It seems that
there are several built-in functions that do not work from
version to version.”

And

“In comparison to most other devices and languages, there was
hardly any documentation on developing for the Pebble. Even
simple things, like reading in data from the accelerometer, were
difficult to find. The methods themselves were there, but
examples were rare and in some cases, nonexistent.”

Another obstacle was the lack of support of standard C libraries
due to the limited memory resources of the Pebble. Many
students were unpleasantly surprised to discover that Pebble
does not support conversion from numbers to strings using
sprintf() function, e.g.,

“Pebble’s current API does not currently support some standard
C programming functions. We encountered this problem when
attempting to convert a “long” type variable to a “char *” type
using C’s standard library function “snprtinf”. As a
workaround, we were able to find an open source adaptation a
Pebble user developed to overcome this limitation, but it was
surprising to realize Pebble did not support such calls”

Additionally, a lot of students complained about the lack of a
dedicated Pebble SDK for Windows. Currently the only
supported operating systems are Linux and Mac OS. Pebble
does offer a cloud based IDE, but it lacks debugging support.

Figure 2. Synthesizer app that allows users to control
overdrive and reverberation using Pebble’s accelerometer.

5.2 Summer course experiences
In contrast to the spring course, the summer class had far fewer
students (14). The duration of the session was half as long,
which meant half the time per assignment—only one. With this
in mind, and with consideration that all coding assignments were
individual, we provided more design details and specific
requirements for the assignments. Thus, the Pebble homework
did not allow design creativity as much so as in the spring.
However, we encouraged students to incorporate Pebble
components into their semester project by offering them bonus
points and the opportunity to skip the Pebble homework without
penalty. As a result, six mobile app term projects incorporated

Pebble, with three example term project apps that incorporate
Pebble functionality listed here (see Figure 3 for screenshots).

(1) Facebook page monitor: An app that aggregates
information from the Facebook page into a single screen and
notifies its user of updates (see Figure 3). Update
notifications (for example, “page like”) are pushed both to
the mobile device and Pebble within a user specified period,
or the Pebble select button can be used to request an update.

(2) Synthesizer: An app that simulates a synthesizer keyboard
with various sound effects on the mobile device. Pebble acts
as an additional interaction device, by pivoting the Pebble
against x, y or z axes the synthesizer changes its sound
characteristics; e.g., reservation, echo (see Figure 2 & 3).

(3) Temperature monitor: An app that allows temperature and
humidity monitoring of a remote room. Temperature and
humidity sensors are placed in a room and the readings are
being sent to a web server. The mobile app retrieves the data
from the server and then allows Pebble to request the data
from the phone. Pressing the select button on Pebble,
downloads temperature and humidity information from the
mobile device, and displays it on its screen (see Figure 3)

The Facebook page monitor app was originally conceived as a
standalone mobile app, without any wearable components.
However, after hearing about the Pebble, the student decided to
incorporate its functionality into the term project that had
already been designed and partially implemented. Incorporating
the Pebble functionality prompted the student to reconsider her
design for the app and add the notification functionality, thus
naturally simulating a design evolution experience caused by
external factors.

Similarly, the student behind the synthesizer app had not
planned for Pebble inclusion originally. His original plan was to
use mobile device’s touchscreen the way rotate virtual knobs
that changed synthesizer sound characteristics. After getting
accustomed with Pebble and learning about the sensor
capabilities through the lecture and homework, he decided to
augment the sound altering controls for the accelerometer. The
student discovered how to address accelerometer sensitivity
issues by processing the accelerometer values prior sending
them to the synthesizer app.

Since summer Pebble assignments were individual, all students
undertook both design and implementation for Pebble. However,
issues that the students experienced were similar to the previous
class. Students complained about poor online documentation and
lack of important programming supports. We received no
complaints about the lack of Windows SDK as we provided
students with the instructions that allowed them to install
Ubuntu virtual machine that allowed them to use the full Pebble
SDK with debugging tools.

Figure 3. Pebble screenshots from three of the summer apps,
highlighting the look and feel of Pebble apps.

5.3 Discussion
By incorporating a novel and “cool” device into a mobile
development class, we leveraged student enthusiasm for
smartwatches, and wearables in general. Tasks of designing and
implementing apps for a smartwatch, helped students think
about design and implementation in terms of two devices and
helped them think of interactions of users with two devices.

The limitations of our device of choice, Pebble smartwatch,
played an important educational role. The limitations often
forced the students to devise workarounds in the form of
algorithms, in order to implement their ideas. The manifestation
of limitations was natural and physical, in a form a smartwatch
device. Thus, students solved limitation-induced problems in a
natural way—with an actual device with limited capabilities.

From an instructor’s perspective, the benefits that stem from the
usage of a novel device like a smartwatch come at a price,
especially when such device comes from small vendor. Just like
our results indicate, the novelty of a device is usually
synonymous with limited online documentation and code
example availability. This could result in extra workload on
teaching staff as the students inevitably will resort to the most
available help—instructors and teaching assistants.

6. CONCLUSIONS AND FUTURE WORK
This paper seeks to highlight the potential of smartwatches in
enhancing computer science education by incorporating a
Pebble smartwatch development into our upper level
undergraduate mobile application design class. We taught this
class during two semesters and used the experience to evolve
our teaching model. Through the smartwatch lectures and
assignments the students not only gained knowledge about
specific design and development techniques for the unique form
factor and integrated sensors, but also tackled some of the
fundamental computer science problems that arise due to
resource limitations and multi-device communication issues.

At the start of this experience, we identified four key areas
relevant to that we felt were most interesting and relevant to
smartwatches. We revisit them here, capturing key lessons and
challenges for each that seem important for future consideration
in incorporating smartwatches into CS courses.

• Consider unique form factor. By repurposing the watch, the
smartwatch is restricted to small size—but high accessibility
in daily use, even more so than a mobile phone. It is vital to
ask students to design for usability, but these lessons must be
balanced with opportunities to explore new smartwatch uses.

• Design and program for sensors. The teaching of sensors has
been explored and discussed, but the high visibility, small
form factor, and decreasing cost of smartwatches positions
them as a learning tool throughout the curriculum—from an
early-course initial experience with sensor programming to
one of many devices in an upper-level course focusing on
advanced topics like distributed computing and networking.

• Address multi-device coordination. The vast majority of
smartwatches require device pairing through Bluetooth, Wi-
Fi, or another communication mechanism to generate broad
and interesting apps. Designing for a multi-device situation
will be unfamiliar to most students, requiring careful
consideration by teachers to provide early experiences
addressing it while allowing students to explore possibilities
that maximize the capabilities of all coordinated devices.

• Handle hardware limitations. Even though hardware will
continually improve, it seems likely that there will continue
to be a performance gap between the smaller smartwatch and
the larger desktop, laptop, and even tablet and mobile phone
(just as [2] noted a gap between mobiles and desktops). This
limitation can be viewed as an opportunity—providing the
chance for students to broaden their skill set and revisit (or
rediscover) design and programming techniques.

This paper puts forth initial areas for consideration in integrating
smartwatches into the CS curriculum. Google’s Android Wear
and Apple’s Apple Watch have recently joined the smartwatch
market, suggesting that this emerging technology has promise.
The computer science education community must be poised to
help students design and implement for smartwatches armed
with appropriate knowledge and insight. Future plans will
leverage the unique hardware, rich interaction capabilities, and
seamless developmental experience to exercise human computer
interaction aspects associated with the form factor and the
information affordance offered such smartwatches.

7. REFERENCES
[1] J. Andrus and J. Nieh, "Teaching operating systems using
android. in Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, 2012, pp. 613-618.
[2] B. Burd, J. P. Barros, C. Johnson, S. Kurkovsky, A.
Rosenbloom, and N. Tillman, "Educating for mobile computing:
addressing the new challenges," in Proceedings of the Final
Reports on Innovation and Technology in Computer Science
Education 2012 Working Groups, 2012, pp. 51-63.
[3] H. Chen and K. Damevski, "A teaching model for
development of sensor-driven mobile applications," in
Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education, 2014, pp. 147-152.
[4] M. H. Dabney, B. C. Dean, and T. Rogers, "No sensor left
behind: enriching computing education with mobile devices," in
Proceedings of the 44th ACM Technical Symposium on
Computer Science Education, 2013, pp. 627-632.
[5] S. H. Edwards and A. Allevato, "Sofia: the simple open
framework for inventive android applications," in Proceedings
of the 18th ACM Conference on Innovation and Technology in
Computer Science Education, 2013, p. 321.
[6] A. Forster and M. Jazayeri, “Hands-on approach to teaching
wireless sensor networks at the undergraduate level,” in
Proceedings of the 15th ACM Conference on Innovation and
Technology in Computer Science Education, 2010, pp. 284-288.
[7] M. Guo, P. Bhattacharya, M. Yang, K. Qian, and L. Yang,
"Learning mobile security with android security labware," in
Proceedings of the 44th ACM Technical Symposium on
Computer Science Education, 2013, pp. 675-680.
[8] Q. H. Mahmoud, S. Zanin, and T. Ngo, "Integrating mobile
storage into database systems courses," in Proceedings of the
13th Annual Conference on Information Technology Education,
2012, pp. 165-170.
[9] V. P. Pauca and R. T. Guy, "Mobile apps for the greater
good: a socially relevant approach to software engineering," in
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, 2012, pp. 535-540.
[10] S. Rollins, “Introducing networking and distributed systems
concepts in an undergraduate-accessible wireless sensor
networks course,” in Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, 2011, pp. 405-410.

