
Links for a Human-Centered Science of Design:
Integrated Design Knowledge Environments for a Software Development Process

C. M. Chewar1 and D. Scott McCrickard

Center for Human-Computer Interaction and Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0106
{cchewar, mccricks}@cs.vt.edu

1 Author’s current address: Department of Electrical Engineering and Computer Science, United States Military Academy, West Point, NY 10996

Abstract

Based on extensive empirical observation of design
activities that might be supported by a knowledge
repository, we report conclusions from three case studies.
Seeking to improve research infrastructure necessary to
cultivate a “science of design” within human-computer
interaction, we focus on identifying essential activities
that help proceduralize the key requirements of
knowledge management within a software development
effort. From related literature, we selected five focus
points for our analyses, which in turn, guided
development of our repository in terms of how design
knowledge is used, reused, and harvested through system
tools. The case studies successively validate potential
activities, while exposing breakdowns in process or
practice that show promise of being resolved with
additional tool features highlighted in other cases.
Emerging largely from our case studies, we present
general guidelines and tradeoffs for developing a design
knowledge repository, as well as directions for further
empirical study.

1. Introduction

As our field becomes more mature and we settle on
processes, the prospect of having reusable knowledge
units has much appeal. Within the concerns of software
development, human computer interaction (HCI)
researchers and engineers ensure that interfaces allow
users to accomplish goals. HCI as an area of research
concerns itself with basic questions of human perception
(e.g., choice of colors, and elemental interface layout),
ranging to interaction techniques (e.g., design of widgets,
and manipulation strategies) to selection of critical task-
related activities. The processes essential to human-
centric design have only begun to take shape in the last
two decades, yet still are inconsistently applied and are
continually evolving with the introduction of new
technologies. However, researchers have already begun
laying the groundwork in establishment of a “science of

design” to allow a more systematic, deductive approach to
advancing our body of knowledge.

We expect that three key benefits will emerge from
establishing infrastructure that will support a science of
design. First, we need to facilitate the transfer of
knowledge from basic researchers (i.e., psychologists,
sociologists, industrial engineers) to software developers,
who combine the guidelines and principles developed
through basic research into a working software system. In
turn, the use of this system provides opportunities for
reflection on the basic theories, which should transfer
back to appropriate research activities. Second, we wish
to have more thorough understanding of the design spaces
we hope to advance. This understanding must convey to
a community of researchers the common problems where
solutions exist, as well as those that still require
innovative design initiatives—thus, allowing comparison
of systems, suggestions for reuse, and recognition of
progress. Third, we see the benefits that emerge from all
well-established science disciplines: a practical, value-
adding engineering process. That is, through the
structures on which we base our science, we should also
be able to develop new interface products reliably, cost-
efficiently, and of higher quality.

One approach toward developing a science of design
infrastructure has been the development of knowledge
repositories to hold potentially reusable techniques for
achieving usability goals. There have been several
approaches underlying various implementations of design
knowledge repositories (as reviewed in the next section).
However, a common theme seems to be that if we can
manage this knowledge in a more efficient way,
researchers will be able to apply it between domains,
sparking cross-domain reuse and innovation.

Our work seeks to extend the conceptualization of
design knowledge repositories within the discipline of
HCI and the practice of software development. We wish
to adopt work on knowledge management and support for
design reuse from other disciplines, where it has been
more completely applied and understood. As we set out
on this goal, we recognize three fundamental questions
that must be answered:

1. What are the most valuable paradigms from
knowledge management and software reuse that will
support the activities required of a design knowledge
repository?

2. How can we embody foundational HCI concepts in the
general design of a knowledge repository?

3. How might a design of knowledge repository activities
accommodate novices in a domain or novice
designers?

To probe these questions and provide general
recommendations for design knowledge repository
development, we reflect on a specific design domain—
notification systems—and three interface design cases
that benefited from design reuse.

2. Related work

In this section, we begin our review broadly by
considering general knowledge reuse supporting
innovation, then turn our focus more specifically to
software development and HCI. Through this, the
difference in scope between knowledge management and
software reuse becomes clear, and we identify key points
to focus the work described in this paper. We also review
background related to a specific kind of design knowledge
repository, a claims library.

2.1. Knowledge management and reuse

We first look to work that has emerged from the
management science community to better understand the
general knowledge reuse process. Majchrzak provides a
study serving two purposes to this work. First, their case-
centric approach proved to be an effective research
method for examining existing processes and supporting
key findings related to a knowledge management
approach [9]. As this paper presents details about their
research design and case selection process, we are able to
follow a similar method in our own domain. Second, they
motivate the need to build an argument distinguishing
between knowledge transfer for replication and for
innovation. Through their own review of literature in the
field, they argue that support for radical innovation must
be approached much differently in terms of staged
processes. Their conclusions present six distinct stages in
a knowledge reuse for innovation process that take
researchers through the processes of reconceptualizing a
problem, deciding to search for reusable ideas, conducting
the search, evaluating potentially reusable ideas (both
briefly and in-depth), and developing the innovative idea.
Their recommendations are unique to the specific
knowledge reuse goal—that of support for innovation—
suggesting the importance of tailoring design of reuse-
related activities to specific goals. Within their staged

model, they emphasize the importance of providing
search facilities at multiple levels of detail and emphasize
the importance that innovators place on meta-knowledge
of knowledge units.

As we move closer to the domain of software
development, Rus and Lindvall [15] introduce the role
and issues pertaining to knowledge management in
software engineering. From this work, the distinction
between knowledge management and reuse becomes
clear. Knowledge management involves the capture and
dissemination of an individual’s experience, to include the
background, assumptions, and decision criteria related to
a particular fact or decision, policy or practice, or other
type of knowledge. The authors highlight many
motivations for knowledge management within software
engineering, to include business outcomes like decreasing
production time and increasing quality, and satisfying
information needs within an organization (e.g., providing
knowledge about new technologies, specific domains, or
collaboration opportunities). At a lower level, software
reuse involves the core code components developed by
programmers and placed in a common repository. While
knowledge management may include support for software
reuse, a more full knowledge package may include
information related to the project budget, schedule,
stakeholder requirements, and other background needed
to understand programming approaches.

Specific to software reuse, Krueger provides a survey
of approaches to software reuse and develops four key
dimensions a reuse system must support: abstraction,
selection, specification, and integration 0. This emphasis
on abstraction and generalization resonates with
Majchrzak’s recognition of the importance of a multi-
level search strategy for untargeted browsing. Within the
requirements engineering and HCI fields, Sutcliffe has
developed a similar argument for supporting reusable
design knowledge components, also focused on
techniques for facilitating abstraction and generalization
[16]. He argues that, for collection and maintenance of
reusable components to be economically viable, they must
have some potential to apply to a broad range of new
problems within multiple domains. Therefore, Sutcliffe
has designed a knowledge representation ontology for
generic user tasks and information exchange operations—
all conveyed as abstract models. With his general views
of problems, developers are provided with a structure to
describe context for processing requirements. This
structure can be applied to specific claims about the
psychological effects of design features, allowing such
claims to be applied in similar context that may be
characteristic of a different domain.

2.2. Knowledge units for HCI reuse

Carroll and others have long argued that the emergence
of a design science within the practice of interface
development would result from analysis of design
rationale. Carroll first introduced the notion of claim
schemas to summarize key aspects of design rationale,
expressing the psychological effects on users that result
from a designed feature within a particular scenario of use
[2,3]. Claims express both positive and negative tradeoffs
that may be expected, providing a record for others to
understand why specific design decisions were made.
Carroll and Sutcliffe have demonstrated how claims can
be combined and reused in other design contexts to result
in design transfer and innovation [17]. Together, they
develop a vision for claims libraries, design knowledge
repositories consisting of general versions of claims,
which designers browse to aid their development.

Certainly, claims are not the only approach. For
example, compelling arguments have been made for
design patterns as a lingua franca for HCI knowledge
storage [6]. While other approaches may provide more
specific information related to the actual design solution,
claims provide more direct focus on the psychological
effects at the core of requirements-level HCI focus (where
we expect reuse to be most beneficial).

2.3. Key focus points for repository activities

As we reflect on some of the arguments from the

related work, particularly with respect to the fundamental
questions raised in the introduction, we can begin to
identify five key focus points for developing activities for
a design knowledge repository (i.e., broad tasks that a
user would accomplish with a system):

1. Design knowledge repository activities need to be
developed to support designers’ specific motivation to
reuse. For instance, Majchrzak distinguished between
reuse for cross-domain acquisition (as Sutcliffe targets)
and reuse for innovation.

2. Processes that allow designers to narrow focus of
concern to identify components of interest are critical
activities in design knowledge repositories. For example,
Majchzak describes a three-level search strategy that
helps developers move from broad to detailed
considerations of their requirements.

3. Designers need to be able to index components in
abstract terms, allowing application to a broader range of
requirements. Both Krueger and Sutcliffe note the central
role that abstraction plays in reusable component
design—that by stripping the context from the initial
presentation of content, the general underlying solution
can be recognized by future developers.

4. To allow developers to relate to generic abstractions,
use of design knowledge repository structures must
provide sufficient context. Through Sutcliffe’s use of
generic building blocks (object models and task
structures), he demonstrates a structure that allows
designers to judge details of the original context, helping
them match it to their own. Though seemingly
contradictory to the previous point, context, while not
initially as important as other factors, in fact is important
at progressive levels of component evaluation.

5. Repository solutions must also account for the many
barriers to knowledge management. Though not
described in our related work, Rus outlines several
challenges, such as the overhead in preparing components
to be reusable and the fast pace of technology change.

These key focus points, revisited in Table 1, become
central to our analysis of design practice and
recommendations for an approach to developing design
knowledge repositories.

3. Creating a design knowledge repository

Having synthesized from literature key focus points for
development of activities in a design knowledge
repository, we turn to a specific design area to explore
concrete requirements and implementations of these
activities. Although we focus on a specific design domain
to achieve depth in our analysis, we continue to probe
activities that can be generalized to any human-centered
design concern. First, we introduce our specific design
domain—notification systems. Next, we discuss some
initial decisions and continuing questions driven by the
key focus points. These questions motivate the case
studies presented in Section 4, which further illustrate our
key focus points and proposed guidelines.

3.1. Designing notification systems

In selecting a specific design area to support with a
design knowledge repository, we had two criteria. First,
we wanted to ensure that design challenges inherent in the
area were deep and primarily based on human
psychological characteristics, rather than technological
constraints. Second, we were eager to identify an area of
design research where advancements could inform a
variety of other design challenges (e.g., support for
universal access, ensuring usability for different user
demographics, and adapting information display with
situationally appropriate presentation) and design
domains (e.g., ubiquitous computing, computer supported
collaborative work (CSCW), and multimodal interfaces).

We argue that the emerging discipline of notification
systems provides an ideal design area of inquiry.
Specifically concerned with interfaces that are intended to
be used in divided attention situations, notification

systems deliver additional information of interest to their
multitasking users without introducing unwanted
interruption to a primary task [11]. These interfaces can
be found in many implementation forms and on a variety
of platforms. Perhaps classic desktop systems are the
most readily identifiable—instant messengers, status
programs, and stock tickers. Other familiar examples hint
at the range of potential systems, such as in-vehicle
information systems, ambient media, collaboration tools,
and multi-monitor displays. Since notification systems are
often lightweight tools (often small peripheral displays in
the corner of a computer desktop) informing users about
everyday information (e.g. airline ticket prices, news
headlines, presence of collaborators or loved ones),
designers are generally able to address important concerns
with a relatively simple implementation effort.

However, a user’s initial acceptance and continued use
of a notification system largely depends on satisfaction of
their multitasking usage goals—leading to difficult design
tradeoffs that are rooted in human psychological
constraints. In an effort to understand the essential design
questions within the area of notification systems, we have
conducted extensive work that has led to identification of
general sub-classes of systems and information processing
characteristics of the sub-classes. This in turn has led to
key user goals underlying divergent design
requirements—control of interruption, reaction, and
comprehension outcomes (or IRC) as users trade their
attentional resources for some anticipated utility from a
notification system [10]. Other work has formalized the
IRC factors so that they can be used as a scoring
mechanism within interface usability testing practice, and
the IRC factors have also proven suitable for
classification of specific design artifacts [4]. That is, we
have tools available that help classify a design artifact in
terms of the relative amount of user interruption, reaction,
and comprehension it affects (an IRC rating).

3.2. A claims library for notification design

As we begin to conceptualize what a claims library
might be like for notification design artifacts, it is
important to recall our general goal of promoting a
science of design through transfer of basic research
results, understanding of design spaces, and facilitation of
a practical software interface development process. With
this goal in mind, we revisit the key focus points
introduced in the previous section. Although we are able
to make some initial decisions toward a specific approach
for a design knowledge repository based on the design
domain (notification systems) [14] and general arguments
that guide HCI research and practice, other focus points
only generate questions for further reflection at this point.

Addressing the first focus point, since we need to be
able to support designers’ specific motivations to reuse,
we must clearly identify those motivations. Of course, we

wish to support design-related innovation, so we look for
the answer to a narrower question: Outside of a specific
design project, how might we gauge opportunities where
innovation is needed and judge the merits of a proposed
solution? Norman’s theory of action has long been
thought of as a guiding beacon for HCI (i.e., as seen in
[1]). As part of this theory, Norman recognizes two
different expressions of a task (physical and
psychological) that must be resolved within a human-
computer interaction system for it to function as expected
[13]. Inherent in this resolution process is achieving
consistency between two conceptual models—the design
model held by the designer and the user’s model based on
the user’s understanding of the system. Reuse for user-
centered design should further our ability to resolve these
models (judging the merits of a proposed solution), or
identify general problems that are not addressed by
sufficient solution options (suggesting the opportunity for
innovation). Therefore, our design knowledge repository
will help designers compare the two conceptual models
for user requirements and design artifacts in question.

Key focus point #2 involves development of design
knowledge repository activities to narrow the focus of a
designer’s concern to identify components of interest. In
HCI, the components of interest should have impact on
psychological effects, and for notification systems design,
we have argued that the IRC factors are the critical
psychological effects of interest. In more general terms,
these three psychological effects are called critical
parameters, a term introduced to the HCI design
community by Newman. To conduct meaningful
modeling and usability evaluations that allow systems to
become progressively better, Newman argued we first
must define or adopt critical parameters, or figures of
merit that transcend specific applications and focus on the
broader purpose of the technology [12]. Rather than
develop a design knowledge repository that includes
reusable knowledge related to a wide variety of
psychological effects, we propose a claims library that
focuses on most essential critical parameters of a system
class—for notification systems, the IRC factors.

For key focus points #3 and #4, Sutcliffe’s Domain
Theory, coupled with IRC ratings, provides a starting
point for indexing and providing context for components.
However, we are uncertain how these types of generic
structures will be used in the course of design work, so
further reflection is needed. Additionally, we need to
more carefully study typical design processes to
overcome barriers to knowledge management (the fifth
focus point) that may be common in design practice.

4. Case Studies

In this section, we present three case studies of actual

notification systems design projects, all of which include
some component of design artifact reuse supported by a
prototype notification claims library. Each case depicts
real events and outcomes, as experienced by other
designers within our research lab. Case observations were
made about once per week on average, including
discussion with designers, review of materials and testing
results, and reflection on final reports. Throughout a
narrative of each design process, we discuss implications
for activity development within the claims library. Case
observations expose breakdowns in proposed activities,
suggest alternate implementations, and validate specific
parts of our ongoing development effort.

4.1. Case 1: Thumb-Type

The first case describes a development process for an

input method to an in-vehicle information system (for
additional details see [1]). The intent of this design was
to provide a competing technique to input methods like
voice recognition or gesture systems to be used in the
attentionally demanding driving situation. Although
product development was discontinued after initial user
testing, we view this as a successful design case because
access to reusable knowledge helped expose design flaws
before the development effort became costly.

Having heard that a colleague successfully developed
a graffiti-like input method for in-vehicle digital music
selection [7], the designer was eager to adapt the input
method to allow selection of characters for a vehicle
navigation system. The prior development effort for the
graffiti-like system had involved several months of
hardware and software development, as well as lab-
based user testing. Through a comparison with a touch-
screen interface and a voice recognition mockup, the
graffiti-like input method was shown to promote
enhanced awareness required for complex menu
traversal, thus decreasing distraction from the driving
task. While the graffiti-like method required fairly high
learn time, as an input method for digital music selection
that would be generally marketed to a young
demographic eager to adopt new technology, this was
not determined to be a serious issue.

These psychological effects and the design decisions
that caused them were recorded as claims within a
prototype version of our claims library. Each claim was
characterized by an IRC rating describing the usability
test outcomes as well as the generic task(s) it supported
(based on Sutcliffe’s Domain Theory [16]).

As he began reasoning about specific requirements for
the adapted input method, the designer turned to the
claims library to consider the intended psychological

effects and specific implementation settings, as well as to
obtain benchmark usability criteria for his own user
testing. The claims library contained claims about
several different input methods, including the ones his
colleague designed and compared his design against, as
well as several others that were part of the collection.

So far, the designer’s activities with the design knowledge
repository leverage basic “science of design” benefits
present through a repository infrastructure.

Reflecting on the IRC ratings for each of these claims,
he saw that no input method was able to achieve high
reaction without also affecting either moderately high
interruption or comprehension. In turn, the designer
realized that the vehicle navigation system would be
marketed to a broader demographic that would include
users less willing to learn any complicated skill,
suggesting that the graffiti-like input method would be
inappropriate (it would cause unacceptably high
interruption or reaction). The designer recognized an
opportunity for developing an input method that could be
used almost automatically, requiring very little attention
or working memory access.

At this point in the case, the designer has recognized an
opportunity for innovation, rather than adaptation,
encouragement that the claims library may be a step in the
right direction toward key focus point #1. The designer’s
realization was spurred by consideration of the three-
dimensional design space suggested by IRC factors. He
was able to identify that the required IRC factors (forming
the design model) were different those targeted or
achieved by existing methods. Although this realization
could have emerged from user surveys, marketing
analysis, or even user testing, these types of processes
would have been more costly than the analysis performed
by the designer—validating the concept and our
implementation of key focus point #2.

Seeking inspiration for a new design to support
automaticity (indicated by low interruption and high
reaction goals) in the generic task of selection, the
designer continued to browse the claims library. Instead
of just looking for knowledge related to design of input
methods, this time he focused on abstract search indices
that indicated the generic design task and desired IRC
values. He conveyed confidence in this search strategy.

Use of the abstract search indices provided some hope
that key focus point #3 was being adequately supported.
However, we note here that this designer was very
experienced with Sutcliffe’s generic task ontology.

Although several claims were returned by this search,
the designer was disappointed that more claims were not
available and that claim quality and evidence was
inconsistent. Some claims summarized observations
made in usability studies or presented in published
papers, while the source of other claims was unclear.

Here, we start to see some tensions resulting from barriers
to knowledge management (key focus point #5). In the
version of the claims library that this designer was using,
the process of adding claims to the system was an action
designers performed (or, more often, did not perform)
during the documentation phase of their project. Although
administrators sporadically enforced claim quality, no
mechanisms existed to encourage quality or submission.

However, one of the claims returned sparked an idea
for the designer. The claim made reference to providing
selection capability “at the fingertips of a user.” When
the designer extended the analogy to an in-vehicle
navigation system, he thought of steering-wheel mounted
controls that would allow a user to type alpha-numeric
characters with two 8-directional pads manipulable with
a thumb (thus, Thumb-Type). Character mapping
decisions were made to promote ease of learning
through the most intuitive orientation—it was assumed
that users would be able to select characters as easily
when they were driving as they could when they were
focusing on the selection task. The designer developed a
simple prototype in a few days, adequate for conducting
testing of users driving in a simulator.

Based on the IRC benchmarks obtained with the
original graffiti-like input method for the music selection
task, user testing of Thumb-Type was discouraging.
Actual user performance data indicated this particular
implementation was not close enough to the design goals
(supporting low interruption, high reaction, and low
comprehension) to suggest continued development might
lead to a valuable innovation. However, results and
design rationale were archived as a point of comparison
for alternate implementations, and the idea was brought
to closure in a few weeks, rather than months.

Unfortunately, the design process outcome in this case did
not lead to a successful design product, but in the “science
of design” context, it was a valuable process. A relatively
inexperienced designer recognized an opportunity for
innovation and the initial design was ruled out
expediently. Furthermore, the knowledge resulting from
the initial design effort (otherwise unworthy of
publication due to its failure), once archived in the claims
library, would prevent another designer from making the
same incorrect design choices and assumptions. Most
importantly, this case exposed strengths and weaknesses
of the claims library for supporting the activities noted in
a few of the key focus points. The next case study looks at

a design facilitated by an improved version of the design
knowledge repository.

4.2. Case 2: NewsBar Notification

As preliminary work for an interface development bid,

seven design teams (which consisted of 4-5 members,
including industrial systems engineers, programmers,
and HCI specialists) developed rapid prototypes of a
notification system that could deliver news-related
information to desktop computer users. The interface
was envisioned to be part of a subscription service for
premium news feeds—a persistent desktop interface
client would ensure that the subscriber (user) stayed
aware of late-breaking information that was essential to
him, and could readily access full versions of the news
content. Another essential design requirement was
ensuring that the system would not be annoying to a user
during short or long-term use (through any unwanted
distraction or interruption), since that could impact
satisfaction with their subscription.

Note that these user goals relate to desired (rough) levels
of interruption, reaction, and comprehension, or IRC.

The seven development teams each pursued separate
design proposals. They gathered detailed requirements
through interview and focus group sessions with
potential users, reflected on psychological tradeoffs for
various design options, and developed limited-
functionality prototypes (all seven designs displayed
content from the same static source for a two-hour
period of time—we were interested in comparing the
effectiveness of the display techniques). A single testing
team obtained performance metrics and subjective
feedback for each prototype after it was used for several
minutes by users engaged in other work tasks. Each
prototype was also analyzed by three experts to
determine its effectiveness at supporting the user goals.

Strengths and weakness of each prototype, as related
to specific dominant design features, were identified,
recorded as claims, and placed in the claims library.
Since multiple designs showed strong development
potential, the decision was made to have a new
developer design another option, attempting to reuse
several of the strongest features from the initial
prototypes (specific features to reuse were not specified).

Before continuing, we discuss some decisions made to
enlarge the concept of the claims library, which affected
the new developer’s approach. After observing the
designer from Case 1 and other design projects, we were
encouraged by success with following the process in
Figure 1. We began to envision a design knowledge
repository that included broader design process support
activities through overall project archival, including

identification of design objections and outcomes. Our
general thought was that designers would normally access
reusable design knowledge in the course of a specific
design—if we could store data about their specific
objectives, the repository components found useful, and
repository contributions, then we might overcome some
of the knowledge management barriers noted in Case 1.

Figure 1. Design processes surrounding use of a design
knowledge repository, suggesting enlargement of the
system to an integrated design environment (IDE).

As we were exploring how to integrate project archival
services with design knowledge repository access points,
we asked the new developer (the continued subject of
Case 2) to perform specific activities that would allow us
to reflect on these services before they were fully
implemented. Again, our motivation in observing the
design process was to validate portions of our knowledge
repository activity design, as well as uncover new
breakdowns and areas for improvement.

First, the developer (an undergraduate programmer)
proceeded through a few requirements analysis steps to
narrow specification of the problem and facilitate its
translation to abstract terms. After drafting scenarios to
describe anticipated user interaction, the developer
identified the generic tasks that users would perform and
sequenced them as a hierarchical task analysis (HTA)
within Norman’s six stages of action (i.e., perceive,
interpret, etc.)[13]. Next, he used a tool that had been
developed to help designers obtain specific IRC ratings
for their design model (described in [5]).

After using the IRC tool, designers are provided with a
template that suggests how each critical parameter (i.e.
interruption) could be expected to change as the user
interaction transitions through the stages of action. These
types of features (an extension of key focus point #2)
were designed to address key focus point #4 and should
be most useful to users that have difficulty with
abstracting their requirements or finding generic design
knowledge that might be applicable to their needs.

Once this process was complete, the developer was
pleased that he was thinking about the design in very
thorough and high-level terms. He admitted that going
through the process made him abandon an idea that he
initially had when first hearing about the design
assignment (recognizing that it would not be suitable).
At this point, he had a framework of generic tasks and
IRC ratings to guide his search for suitable claims. He
was able to identify many claims that influenced his
design, to include several from the initial prototypes and
a few others that had come from both analogous and
very different systems.

This satisfactorily demonstrated how expanded design
tools and services helped further key focus point #1
through clearer establishment of the design model.
Coupling tools, services, and the design knowledge
repository results in a web-based integrated design
environment (IDE) prototyped as LINK-UP [5].

After the developer prototyped a new notification
system design (NewsBar), an expert evaluator predicted
how well the system would support user goals by
estimating a user’s model IRC rating, (using an
assessment technique for the IRC critical parameters
described in [4]). Comparing his design model with the
user’s model, the developer was able to instantly
recognize that his design would not produce a high
enough level of user reaction and trace the expected
problem to specific claims and design features (which
were included to produce appropriate reaction). He
made several changes to both the design and his design
model, noting that the combination of two claims, one
pertaining to ticker rate and another related to relative
size, could not be combined as easily as he first thought.

 Through further effort (the entire effort took less than
a week of full-time work), the developer was able to
produce a design that experts determined would meet the
user goals. While inspired by elements of other systems,
it bore little resemblance to any in the end.

Here, we see validation for our focus point #1 strategy, as
well as some ideas for resolving knowledge management
tensions (focus point #5).

Reflecting on this case, the designer was able to craft a
reliable notification system that would fulfill key user
goals by synthesizing the experience of many other
designers who had addressed similar problems. We expect
that, through continued design work and design
knowledge collection in a domain such as input methods
for in-vehicle systems (the focus of Case 1), a designer
would be able to follow the process illustrated in Case 2
for any domain to produce sound interface designs.

Narrow development objectives to a specific design
model (expressed in terms of critical parameters)

Collect reusable design ideas and
tradeoffs to support the design model

Build a prototype interface

Conduct testing to determining user’s model
(also expressed in terms of critical parameters)

4.3. Case 3: Notifly

While there is certainly some value in enabling a

design process that reliably produces adequate design
products (fulfilling basic requirements for usability and
utility), we aspire to a loftier goal—toward supporting
exceptional interface design. Case 3 demonstrates such a
design product and reviews the system support that played
an integral part in its development.

A very successful design project emerged from a 15-
week undergraduate seminar activity in which seven
computer science students interested in HCI were
challenged to develop notification systems. Although the
system was required to deliver users information about
airline flight prices that were available online, the
instructors did not specify user goals that the system
should support, but instead encouraged students to
identify the critical parameter levels they thought were
important, and to develop their systems accordingly.
Students proceeded through the same requirements
analysis steps identified in case 2: developing problem
scenarios and generic hierarchical task analysis, as well
as using the IRC design model rating tool.

Group discussions showed that students had a variety
of different conceptions about the important goals. It
was somewhat disappointing that they tended to cover
all of the bases with their designs rather than identifying
tradeoffs among the three critical parameters. Although
the individual designs that the students developed did not
gravitate to any distinct system class within the
notification systems design space [10], promising
features began to emerge in each.

Some of these features were identified through
reusable claims in the claims library, while others were
artifacts of the students’ own invention. However, the
most promising aspect of these features was that they
embodied a strong tradeoff between the three
parameters, even if the tradeoff was not supported by the
system as a whole.

At this point in the case, the students were struggling to
define strong design models (focus point #1), but the
reasoning process based on critical parameters was
starting to provide the necessary focus for design
improvement (focus point #2). Recognizing this state, the
instructor drew out discussion to highlight desired
differences between the critical parameters students were
targeting, often having students compare intentions.
While some students were able to identify and reuse
design artifacts successfully, they generally had more
difficulty with the generic indices (key focus point #3)
than designers in Case 1 and 2, but the recommendation
features supporting key focus point #4 (described in Case
2 commentary) were not yet implemented within the IDE.

To help the students further realize some of the
limitations in their designs, the instructor organized two
usability evaluation processes, both using the integrated
design environment (IDE). First, students transferred
design rationale and screenshot depictions into the
claims library through the IDE. Then, other students
acted as anonymous expert reviewers and, with the help
of a user’s model IRC assessment tool [4], they provided
each other with user’s model ratings. Next, the
designers each used a tool within the system to prepare
and conduct an empirical test with a few participants,
obtaining performance metrics in a dual task situation
that allowed calculation of an actual user’s model IRC.
As expected, none of the designers were not particularly
pleased with their results.

By conducting these evaluations through the IDE, not
only were the designers facilitated in receiving feedback,
but the design expectations and actual results became a
permanent part of the claims library—a natural
knowledge byproduct of the design process. This strategy
effectively addressed key focus point #5, especially
through the capture of poor design decisions (still an
extremely valuable source of knowledge) that would not
have normally been archived.

While the students reflected upon their individual
design intentions and products, they were given the
freedom to continue their development efforts as they
saw fit—they could revise individual design models and
interfaces or work in teams to improve a more promising
prototype. An upcoming undergraduate research
symposium provided motivation to produce the highest
quality system possible, since the top submissions would
receive large cash prizes. Therefore, it was somewhat
surprising that, with only a month left before the
symposium, all seven students decided to work together
on a completely new system (although still a flight price
notification system). They reasoned that they had the
best chance of creating a high-quality system by reusing
features from several of the prototypes to support four
distinct design models that would correspond to user
customization options.

Certainly, this was not the path of least resistance
(especially working as a large team), nor a strategy that
would position each individual with the chance for the
largest cash award (any prize would have to be split in
seven parts). However, the decision reflects the
confidence students gained in the approach of selecting a
distinct design model in terms of critical parameters and
deliberately developing and reusing appropriate interface
design components to match (key focus points #1 and 2).

Figure 2. Screenshots of a Notifly transition and earlier
prototype features that were reused in the redesign effort
(indicated by dotted arrows).

As the team of students developed their new design,
they drew from each other’s claims, which were
accessible through the claims library and supported with
evaluation results (see Fig 2). They made rapid progress
and generated a new prototype, which they validated
with user testing just in time for the symposium.

We attribute much of the students’ ability to rapidly
organize their design goals and achieve consensus about
interface decisions to the structure imposed by the design
process. Continually questioning the design model IRCs
when there was doubt about implementation options and
referring to results obtained in earlier testing (apparent
through the claims library) helped the students judge their
own progress and readiness to move to new issues.

 At the symposium, the resulting system, Notifly, was
selected overwhelmingly by the approximately one
hundred symposium attendees for the “People’s Choice”
award. In addition, the four groups of industry judges
representing corporate program sponsors chose Notifly
for the 2nd Place “Industry Choice” award.

Few at the symposium would have guessed that the
award-winning Notify had been developed in such a short
iteration cycle, or had been based on such different initial
prototypes. Although there were many factors that may
have influenced this outcome, we believe that the most
dominant factor was the use of the claims library through
the IDE processes. With this tool, the team was able to
take advantage of reusable design knowledge and apply it
in an innovative way that resonated with real people.

Table 1. Summary of our key focus points for design knowledge repositories, with connections to case observations.
Key Focus Points Case Observations, noted as interpretations of case events

 User Requirement to
Support

Exposes Initial
Breakdown Demonstrates

Effective Activities
Affects Design

Outcome Suggests Next Step
for Design Tools

1

Facilitate designers’
specific motivation
to reuse knowledge

Need to establish a
clear and distinct
design model
 (Notifly)

Systematic, tool-
supported questioning
of Norman’s conceptual
models
 (NewsBar, Notifly)

• Rapid rejection of
design (Thumb-Type)

• Guided successful
dvlp effort

 (NewsBar, Notifly)

Implement process
in Fig 1 as IDE
services
 (NewsBar, Notifly)

2

Narrow the
designer’s focus of
concern

[established in
prev work]

Critical parameter
analysis to focus on
essential psychological
effects (all cases)

• Prompted innovation
 (Thumb-Type)
• Streamlined design

decision making
 (NewsBar, Notifly)

Integrate critical
parameters
wherever possible
into design tools
 (all cases)

3

Index components to
allow broad
application to many
problems

High learning curve
required to use for
faceted search
 (Notifly)

Abstraction with
Sutcliffe’s generic tasks
and domain specific
critical parameters (i.e.,
IRC) (all cases)

Reuse happened thru
abstract indices
(Thumb-Type,NewsBar)

Rely on abstraction
for system or expert
constructed searches
only
 (all cases)

4

Provide context to
facilitate relation to
generic structures

More support to
traverse abstract
structures needed
for less experienced
designers (Notifly)

Use design model and
design activity context
to infer finer-grained
search indices
 (NewsBar)

Helped designer
abandon incorrect initial
assumptions
 (NewsBar)

Fully implement
recommender
features into IDE
 (Notifly)

5

Overcome barriers to
knowledge
management

Poorly developed
knowledge content
 (Thumb-Type)

Archive reusable
knowledge as a by-
product of design
activity (Notifly)

• Good design based
on reusable content

(Thumb-Type,NewsBar)
• Structure facilitated

groupwork (Notifly)

Tightly couple
repositories with
dvlp environments
 (NewsBar, Notifly)

6. Conclusions

Based on the case observations (summarized in Table
1), we are able to offer the following general guidelines,
suggested by our successes and failures, for developing
design knowledge repositories and their users’ activities:

• Consider the broad rationale-related requirements

typical of knowledge management activities, beyond
lower-level activities analogous in software reuse,

• Combine repositories with integrated design
environments to support foundational HCI processes
and produce reusable knowledge with little extra effort,

• Use domain-specific critical parameters to guide
continual design questioning of psychological effects,

• Integrate system-driven recommendation features to
facilitate searches for abstract reusable components.

Of course, there are tradeoffs inherent in this

approach. Since we have developed our repository and
associated processes especially to enhance the work of
novice designers, these guidelines may not be as
applicable for seasoned designers or groups working
within industry. The general design process built into our
IDE constrains methodological approaches to design, but
modules can be added to support other approaches. Our
case studies must be followed up with more controlled
research methods to compare outcomes with current
approaches, as well as test cases that involve designers
external to our lab. However, we are pleased with the
initial progress we have made toward understanding how
to develop research infrastructure to support a science of
design. Since techniques and methods for teaching,
engineering, and evaluating usability for interfaces like
notification systems have not been fully developed and
evaluated, we are eager to explore how a design
knowledge repository like ours can be a catalyzing force.

References

[1] Christian F. Allgood. “The Claims Library Capability
Maturity Model: Evaluating a Claims Library.” Virginia
Tech, (Master's Thesis), 2004.

[2] John M. Carroll and Mary Beth Rosson. “Getting
around the task-artifact cycle: How to Make Claims and
Design by Scenario.” ACM Transactions on Information
Systems (TOIS) 10(2), 181-212, April 1992.

[3] John M. Carroll, Mark K. Singley, and Mary Beth
Rosson. “Integrating Theory Development with Design
Evaluation.” Behavior and Information Technology 11,
247-255, 1992.

[4] C. M. Chewar, D. Scott McCrickard, and Alistair G.
Sutcliffe. “Unpacking Critical Parameters for Interface

Design: Evaluating Notification Systems with the IRC
Framework.” In Proc of the ACM Conf on Designing
Interactive Systems (DIS ’04), 10 pgs, Aug 2004.

[5] C. M. Chewar, Edwin Bachetti, D. Scott McCrickard,
and John Booker. “Automating a Design Reuse Facility
with Critical Parameters: Lessons Learned in Developing
the LINK-UP System.” In Proc. of the 2004 Intl Conf on
Computer-Aided Design of User Interfaces (CADUI ’04),
236-247, Jan 2004.

[6] Thomas Erickson. “Lingua Francas for Design:
Sacred Places and Pattern Languages.” In Proc. of the
ACM Conf. on DIS ’00, 357-368, 2000.

[7] Chuck Holbrook. “Input Methods for Notification
Systems: A Design Analysis Technique with a Focus on
Input for Dual-task Situations.” Virginia Tech, (Master's
Thesis), 2003.

[8] Charles W. Krueger. “Software Reuse.” ACM
Computing Surveys 24 (2): 131-183, 1992.

[9] Ann Majchrzak, Lynne P. Cooper, and Olivia E.
Neece. “Knowledge Reuse for Innovation.” Management
Science 50 (2): 174-188, Feb 2004.

[10] D. Scott McCrickard, C. M. Chewar, Jacob P.
Somervell, and Ali Ndiwalana. “A Model for Notification
Systems Evaluation—Assessing User Goals for
Multitasking Activity.” Transactions on Computer-
Human Interaction (TOCHI) 10 (4): 312-338, Dec 2003.

[11] D. Scott McCrickard, Mary Czerwinski, and Lyn
Bartram. “Introduction: Design and Evaluation of
Notification System Interfaces.” International Journal of
Human-Computer Studies 8(5): 509-514, May 2003.

[12] William M. Newman. “Better or Just Different? On
the Benefits of Designing Interactive Systems in Terms of
Critical Parameters.” In Proc. of the ACM Conf. on DIS
’97, 239-245, 1997.

[13] Donald A. Norman. “Cognitive Engineering.” In D.
A. Norman and S. W. Draper, Eds., User Centered
Systems Design: New Perspectives on Human Computer
Interaction, 31-62, Lawrence Erlbaum Associates, 1986.

[14] C. Payne, C. F. Allgood, C.M. Chewar, C. Holbrook,
and D. S. McCrickard. “Generalizing Interface Design
Knowledge: Lessons Learned from Developing a Claims
Library.” In Proc. of 2003 IEEE Intl Conf. on Information
Reuse and Integration (IRI '03), 362-369, 2003.

[15] Ioana Rus and Mikael Lindvall. “Knowledge
Management in Software Engineering.” IEEE Software
19 (3), 26-38, May/June 2002.

[16] Alistair G. Sutcliffe. The Domain Theory: Patterns
for Knowledge and Software Reuse. Lawrence Erlbaum
Associates, 2002.

[17] Alistair G. Sutcliffe and John M. Carroll. “Designing
Claims for Reuse in Interactive Systems Design.” Intl
Journal of Human-Computer Studies 50, 213-241, 1999.

