
40 1070-986X/99/$10.00 © 1999 IEEE

Media Spaces

In multimedia
systems, designers
typically link content
and presentation. A
new markup
language, Procedural
Markup Language
(PML), decouples
content and presen-
tation. It lets users
specify the know-
ledge structures,
underlying physical
media, and relation-
ships between them
using cognitive
media roles. This
approach fosters
modular system
design and dynamic
multimedia systems
that can determine
appropriate presen-
tations for a given
situation by allowing
knowledge specifi-
cation to be done
separately from
knowledge
presentation.

S
uppose you’re a homeowner faced with
a leaky faucet. If you’re reasonably com-
fortable with home repair, you might
just plunge in and fix it. If not, you

might seek help from a book or perhaps one of the
new home-repair multimedia guides for your PC.
Will the guide present the information you need
at the level you need it? If you’re confident in
home repair, but don’t know faucets, you proba-
bly want guidance on key steps, without a lot of
detail. If you’re a novice, however, you’re more
likely to need examples, including photos and
diagrams, and extensive explanations.

This hypothetical scenario raises two key issues
in multimedia system development:. How can
information be dynamically presented to meet
users’ needs and prior knowledge? How should
content be encoded so that multimedia develop-
ers can present information tuned to the audience
and adaptable to different devices.

Typically, designers create a system in which
content and presentation are inseparably linked;
they choose specific presentations and naviga-
tional aids for each piece of content and hard-
code it into the system. However, we think
content representation should be decoupled from
presentation design and navigational structure.
This decoupling permits modular system design,
and lets designers build dynamic multimedia sys-
tems that can determine appropriate presenta-
tions in a given situation on the fly.

To this end, we developed Procedural Markup
Language (PML), which uses cognitive media roles
to flexibly specify the knowledge structures, the
underlying physical media, and the relationships
between them. The PML description can then be
translated into different presentations depending
on the context, goals, and user expertise.

Here we describe PML, focusing specifically on
procedural task domains, with examples from
home plumbing procedures. The highlights of our
formalism are:

❚ Domain information is encoded in knowledge
nodes that are connected to each other
through knowledge links.

❚ Information within a particular knowledge node
is represented using physical media clusters that
contain media elements such as text, graphics,
animations, video clips, and sound files.

❚ Physical media are organized under knowledge
nodes using cognitive media roles, such as
“definition” and “example.” A cognitive media
role can contain more than one different phys-
ical media type. For example, a faucet might be
represented using some text and a graphic.

❚ The information contained in knowledge
nodes, knowledge links, physical media clusters,
and cognitive media roles forms the raw mater-
ial of presentation; it determines what users will
see and hear, and which navigational connec-
tions and devices will be available onscreen.
Different presentations can be created from the
same underlying representation based on vari-
ous factors such as the user’s domain expertise,
previous experience, and goals.

Issues in system design
Content representation is a central issue in

multimedia system development, whether on the
Web or as a stand-alone system. The content rep-
resented is the information presented to users. For
example, an educational system to teach chem-
istry must contain information about atoms, mol-
ecules, and gas laws; a training system for
computer technicians must contain information
about memory chips and buses; and a Web site for
amateur home repair must contain information
about kitchens, showers, and faucets.

In designing such systems, you must attend
not only to the content, but also how to present
it. For example, should information about show-

PML: Adding
Flexibility to
Multimedia
Presentations

Ashwin Ram, Richard Catrambone, Mark J. Guzdial,
Colleen M. Kehoe, D. Scott McCrickard, and John T. Stasko

Georgia Institute of Technology

ers be presented graphically? Should information
about installing memory chips appear in an item-
ized list? Should information on gas laws employ
animated video clip showing the movement of
molecules as a gas is compressed? Typically, con-
tent and presentation are coupled: the designer
selects a specific presentation for each piece of
information—perhaps using several media such as
text, pictures, and sound—and hard-codes this
into the system so it displays in the same form
each time. Designers often choose specific navi-
gational aids as well so that a predetermined
hypermedia structure is encoded and available to
the user.

However, our design philosophy treats knowl-
edge representation and presentation design as
separate activities. In this way, the knowledge
engineer or content designer can focus on knowl-
edge representation and structure. The presenta-
tion designer can focus on the multimedia
presentation of this knowledge, deciding, for
example, how to display a diagnostic procedure
and at what detail and expertise level, as well as
what the display might link to, what navigation
aids are needed, and what user-related issues
might arise concerning media comprehension.

Our approach has several benefits. First, it’s eas-
ier for domain experts (who may not be presenta-
tion experts) to build the knowledge representation
without having to worry about how the informa-
tion will ultimately be displayed. Second, it lets
designers build different presentations for the same
information based on user expertise, goals, and
other factors.

Finally, our approach lets designers build truly
interactive multimedia systems in which the sys-
tem creates appropriate presentations on-the-fly
based on the current interactions and context.
Only the knowledge must be specified before-
hand. Whether a diagnostic procedure, for exam-
ple, appears as an itemized list of textual bullets,
a graphical flow chart, an animated movie, or
some combination thereof can be determined
dynamically. When knowledge and presentation
are tightly coupled, each presentation would have
to be created manually in advance and stored as
alternative depictions of the same information.

Of course, the knowledge representation must
ultimately bottom out in media: a textual defini-
tion of a gas law, a photograph of a faucet, or a
schematic of a VLSI chip. Thus, it’s important to
provide a principled means of coupling the knowl-
edge representation structures with the underlying
media, but in a way that provides the flexibility

required for interactive and dynamic presentations.
To this end, we organize media according to

their cognitive role (the function they play in the
user’s cognitive processes).1 Consider, for exam-
ple, a student using an educational multimedia
system to learn chemistry, or a homeowner using
a home repair Web site to help fix a leaky faucet
in a bathroom. The user is unlikely to think, “I’d
like to see some text now” or “I could really use a
WAV sound file now.” The user is more likely to
think, “I could really use an example,” leaving it
up to the system to determine whether that exam-
ple is best presented as text, sound, animation, or
some combination thereof.

Given this, we organize and couple multime-
dia content to knowledge structures using cogni-
tive media roles, such as definition, example,
simulation, worked problem, and so on. A cogni-
tive media role, such as “example,” specifies the
function that the information plays in the user’s
cognitive processes.

Researchers have made significant attempts to
disentangle knowledge representation from pre-
sentation in multimedia. Maybury2 has emphasized
this distinction in his work with intelligent multi-
media interfaces. Feiner3 has shown a system that
can actually construct multimedia representations
on-the-fly, drawing from a knowledge base of con-
tent and a separate knowledge base about represen-
tations. Research teams such as the Hyper-G group
in Austria4 have created Web-based applications
that allow for separation between representation
and presentation, such as keeping link information
separate from the multimedia document itself.

Our work contributes to existing science in two
ways. First, our use of cognitive media roles repre-
sents a theory of effective organization for instruc-
tional multimedia. Second, we contribute the PML
notation, which encodes knowledge so that
designers can generate an effective
representation.

Knowledge representation
Figure 1 summarizes PML’s basic

knowledge structure, which includes
knowledge nodes, knowledge links,
physical media clusters, and cogni-
tive media roles. The information
contained in these elements forms
the raw material used by a presenta-
tion system to determine what users
will see and hear, and what naviga-
tional connections and devices to
make available on the screen.

41

Figure 1. Knowledge

representation in PML.

Definition and Example

are cognitive media

roles and can have more

than one associated

physical media cluster,

such as Audio and

Graphic.

42

Table 1. Knowledge nodes.

Name Description Examples
Thing Represents a system, physical object, part, or substance in its normal state. Things may be Hot water system (system)

composed of other things. Faucet (physical object)

Washer (part)

Water (substance)

State Each thing has one or more states. A thing’s normal state is its usual operational state; other Pilot light off

states represent problem conditions that may need repair. Usually, only problem states are Faucet leaky

represented explicitly; a thing’s main representation is assumed to be its normal state. Washer worn out

Water is brown

Procedure Represents a sequence of user actions that operate on a thing. Procedural actions may Lighting a pilot lamp

themselves be procedures; ultimately, this bottoms out when the “primitive” action is Replacing a leaky faucet

operationalized and can be directly carried out by the user. Installing a shower

Table 2. Knowledge links.

Name Description Examples
Is-a Thing is-a Thing Single-lever faucet is-a Faucet

Represents the broader category of a thing, or (in the other direction) the particular types of Faucet subtype Single-lever

a thing. The reverse link is subtype. faucet

Pilot light is-a Ignition device

Is-a Procedure is-a Procedure Plunge-drain is-a Unclog-drain

Represents the broader category of a procedure, or (in the other direction) particular styles of Unclog-drain subtype Plunge-

a procedure. The reverse link is subtype. drain

Has-a Thing has-a Thing Water heater has-a Pilot light

Represents a subsystem of a system or a part of a physical object. Only things can have parts, Pilot light part-of water heater

which are other things. The reverse link is part-of. Faucet has-a Washer

Hot water system has-a

Shutoff valve

Hot water system has-a

Stepped pipes

Hot water system has-a Water

heater

Connects-to Thing connects-to Thing Shutoff valve connects-to

Represents contiguous or connecting pieces of an overall physical system. The overall Stepped pipes connects-to

physical system, represented as a thing, would have has-a links to the individual things Water heater connects-to Hot

comprising it as well. The reverse link is connects-to. water supply line

Steps Procedure steps Procedure Replace washer steps (Unscrew

Represents the substeps of a procedure: steps that represent the procedure in more detail nut; remove washer; insert

(these steps can be further broken down into substeps). An experienced user may choose not new washer; replace nut)

to see this level of detail. There is an implied ordering of the steps of a procedure. The reverse Unscrew nut step-of Replace

link is step-of. washer

Problem-state Thing problem-state State Water heater problem-state

Links things to their possible problem states. A problem state is an abnormal state that r Pilot light off

equires repair. A thing may have multiple problem states. The reverse link is problem-state-of. Pilot light off problem-state-of

Water heater

Faucet problem-state Faucet

leaky Faucet leaky

Repair-procedure State repair-procedure Procedure Pilot light off repair-procedure

Links a problem state to a procedure that, if successfully completed, repairs the problem and Relight pilot light

returns the thing to its normal state. A problem state may have multiple repair procedures. An

Knowledge nodes
In PML, a knowledge node represents a concept

known to the system. Media clusters contain infor-
mation about the concept, and knowledge links
represent the relationships among concepts. PML’s
structure resembles the semantic net structures
used for reasoning in artificial intelligence systems.
However, unlike semantic net systems, PML nodes
do not contain slot-filler concept representations.
For multimedia presentations, nodes must contain
media to present concepts to the user.

In keeping with basic ontological principles, we
divided represented entities into things, states, and
procedures. Table 1 describes each in more detail.

Based on our experience with several different
domains, this ontology seems sufficient to capture
the distinctions needed in our target domains, which
primarily concern procedural knowledge. In gener-
al, however, PML’s robustness can only be deter-
mined after using this formalism in many domains.

Knowledge links
Knowledge nodes can be linked to other knowl-

edge nodes using knowledge links that represent
conceptual relationships between nodes. Table 2
describes the links and offers examples of each.

Knowledge links are strongly typed. For example,
the precondition link always connects states to

43

installation procedure is also represented as a repair procedure. The reverse link is Relight pilot light repair-

repair-procedure-for. procedure Pilot light off

Faucet leaky repair-procedure

Repair leaky faucet

No bathtub in bathroom

repair-procedure Install

bathtub

Outcome Procedure outcome State Tighten washer outcome Water

Links a procedure, which could be an entire procedure or an individual primitive step within does not leak through

a procedure, to the states that result from carrying out that procedure. The state can be Water does not leak through

presented to the user as evidence that the procedure was successfully carried out. A procedure result-of Tighten washer

can have more than one possible outcome. The reverse link is result-of.

Outcome State outcome State Faucet leaky outcome

When there is no intentional intervening action, an outcome link can link a state to another Basement wet

resulting state. The reverse link is results-from. Basement-wet results-from

Faucet leaky

Precondition State precondition Procedure Pilot light off precondition

Links the preconditions or enabling conditions of an action to the node that represents that Open water-heater access

action. The reverse link is requires. panel

Open water-heater access

panel requires Pilot light off

Uses Procedure uses Thing

Links procedures to tools, instruments, and other required objects. The reverse link is used-in. Shut off water uses Monkey

wrench

Monkey wrench used-in Shut

off water

Related-to Links any node to any other related or relevant node. Used (sparingly) to represent any Hot water system related-to

relationships not specifically captured by existing link types. The reverse link is related-to. Heating system

Install faucet related-to Install

shower

Washer related-to Repair leaky

faucet

(Table 2 continued)

Name Description Examples

procedures. You can list multiple links of the same
type under nodes in any order, with the exception
of steps, which must be listed in the order in which
they should occur. The system can traverse knowl-
edge links in either direction, although each link has
an explicit source and destination endpoint. Table
2 also lists the reverse links, which are static and
managed by the system, rather than created by the
knowledge designer. As with the knowledge nodes,
the link set has proven sufficient in several domains,
but we have yet to test it widely.

Physical media clusters
A physical media cluster contains the knowl-

edge-node information that the system can dis-
play to the user. Media are stored in separate files,
referenced via the Media tag, with the exception
of text, which—for convenience sake—can be
included inline in the PML document. A media
cluster can contain more than one media type,
such as text, video, and so on. A knowledge node
can contain one or more media clusters, organized
using cognitive media roles.

Cognitive media roles
Media roles connect knowledge structures and

media clusters by indicating the role the cluster
plays in the user’s problem-solving task. For exam-
ple, a particular mixed media text-and-pictures
description of a faucet might offer an “example”
of a single-lever faucet. In this case, the knowledge
node for “single-lever faucet” will contain an
“example” role that contains a media cluster rep-
resenting that text-and-pictures description. Table
3 gives descriptions and examples of PML’s five

cognitive media roles.1

Figure 2 shows how the nodes and links fit
together, using a piece of the faucet representation
from the home repair domain.

PML notation
PML lets authors encode our knowledge repre-

sentation in a set of files. PML authoring is analo-
gous to that in Hypertext Markup Language
(HTML) or other markup languages, but with a
crucial difference: The PML author focuses on rep-
resenting domain information rather than pre-
sentation information. In PML, the two types of
information are decoupled. For example, if you
were to use HTML to create a Web page describing
how to install a software release, it might look
something like this:

To install this release, perform the

following steps:

 Download the file.

 Unstuff the file.

 Double-click on the installer

icon.

Notice that the procedure is described using a
series of steps, which you must state using a par-
ticular physical representation (in this case, a
numbered list of items). Using PML, you would
specify the steps independent of the presentation:

<PROCEDURE ID=“install”>

<TITLE>Installing the

44

IE
EE

 M
ul

ti
M

ed
ia

Table 3. Cognitive media roles.

Name Description Examples
Name/Title The (typically short) name of the knowledge-node item. “Pilot light.”

Definition/ “A pilot light is a small gas flame that is

Description The knowledge-node concept’s definition, or more informally, continually burning. It is used to light the

its description. This is typically a textual description . furnace when ...”

accompanied by diagrams [Schematic of pilot light]

Example An example of the knowledge-node concept. [Photograph of an actual pilot light]

“This is an example of a pilot light. In this design,

the small lever to the left [pointer to picture] is

used to ...”

Counter-example An example of an alternative design, an alternative state, and so on. [Photograph of a flint-based lighting system.]

“An alternative to the pilot light is the ...”

Justification An explanation of a step being carried out in a procedure, or an “You want to turn off the water at the supply first

explanation of the functional role of a thing that is part of a larger thing. because ...”

“Faucets have O-rings because...”

software</TITLE>

<DESCRIPTION>To install this

release, perform the following

steps:</DESCRIPTION>

<LINK TYPE=“steps”>

<TARGET ID=“download”/>

<TARGET ID=“unstuff”/>

<TARGET ID=“execute”/>

</LINK>

</PROCEDURE>

This example presents a procedure knowl-
edge node with two cognitive media roles: title
and description. The knowledge node has
step knowledge links to separate “download,”
“unstuff,” and “execute” procedure nodes, which
PML also represents. PML does not specify
whether to display the three steps as a numbered
list, a flow chart, or as three separate pages with
navigational arrows between them; the user can
make that decision independently and, if desired,

45

A
p

ril–Jun
e 1999

Knowledge node

Knowledge link

Thing

Thing

Thing

Thing

Thing

State

Shower

Faucet

Single-level faucet

Faucet is Leaky

Spout

Washer

Cognitive media role

Media cluster

has-a

has-a

has-a

Related-concept

Problem-state

problem- state

is-a

Title

Title

Title

TitleTitle

Title

Definition

Example

Definition

DefinitionDefinition

Example

Example Example

Shower

A shower is

Faucet Leaky faucet

Single-lever faucet

Spout

Washer
Definition

Definition

Example

Example

Example

Example

A faucet is

A single-level
faucet is

A faucet drips

A spout is ...

A washer is...

Here isHere is

Here is

Here is

StateCorroded
Title

Washer
Definition

Example

Example

A washer is...

Representing faucets

Figure 2. A PML

knowledge structure

about faucets.

46

<!—— Things ——>

<!ELEMENT thing (title, (author | description | justification | link | appspecific | example

| counterexample)*) >

<!ATTLIST thing id ID #REQUIRED>

<!—— States ——>

<!ELEMENT state (title, (author | description | justification | link | appspecific | example

| counterexample)*) >

<!ATTLIST state id ID #REQUIRED>

<!—— Procedures ——>

<!ELEMENT procedure (title, (author | description | justification | link | appspecific

| example | counterexample)*) >

<!ATTLIST procedure id ID #REQUIRED>

<!—— Cognitive Media Types & Identifying Information ——>

<!ELEMENT title (#PCDATA | media)* >

<!ELEMENT author (#PCDATA | media)* >

<!ELEMENT description (#PCDATA | media)* >

<!ELEMENT justification (#PCDATA | media)* >

<!ELEMENT example (#PCDATA | media)* >

<!ELEMENT counterexample (#PCDATA | media)* >

<!ATTLIST description type CDATA #IMPLIED>

<!ATTLIST justification type CDATA #IMPLIED>

<!ATTLIST example type CDATA #IMPLIED>

<!ATTLIST counterexample type CDATA #IMPLIED>

<!—— Media ——>

<!ELEMENT media #PCDATA

<!ATTLIST media src CDATA #REQUIRED

caption CDATA #IMPLIED>

<!—— Links & Targets ——>

<!ELEMENT link (target+)>

<!ATTLIST link type (uses | is-a | has-a | connects-to | related-to | steps

| precondition | outcome | problem-state | repair-procedure) #REQUIRED>

<!ELEMENT target EMPTY>

<!ATTLIST target id IDREF #REQUIRED>

<!—— Application-Specific Key/Value Pairs ——>

<!ELEMENT appspecific EMPTY>

<!ATTLIST appspecific key CDATA #REQUIRED

value CDATA #REQUIRED>

Figure 3. The PML Specification.

dynamically (limited only by the physical media
provided). PML also lets the author represent dif-
ferent types of information, such as the proce-
dure’s preconditions and outcomes, things that
might go wrong and how to recover from them,
justifications for the procedures, and so on.
Although these can also be hard-coded into the
HTML representation, the presentation would be
static. Finally, the PML represents procedures and
subprocedures hierarchically; the level of detail
can be determined dynamically depending on fac-
tors such as the user’s expertise.

PML is written in Extensible Markup Language
(XML),5 a language for describing other markup
languages. A markup language is essentially a set
of tags that an author uses to describe parts of a
document. A document that uses these tags is one
kind of structured document. Currently, the most
well-known markup language is HTML, which
contains tags like <TITLE>, <H1>, and .
While these tags are useful for describing basic
document structure, they don’t describe the con-
tent of a document very well. More powerful and
most likely domain-specific markup languages are
needed for this purpose.

XML is a simplified version of Standard
Generalized Markup Language (SGML), an inter-
national standard for creating structured docu-
ments. XML was developed as a common way to

define different markup languages, though it has
utility far beyond the World Wide Web. XML can
also be used as a platform-independent way to rep-
resent knowledge in a machine-readable format.

XML has been used to specify markup lan-
guages for dozens of applications, ranging from
chemistry to electronic commerce.6 Having a com-
mon way to specify these markup languages lets
developers build tools that can work with any of
the languages specified in XML. Our PML-to-HTML
translator uses a PML parser, which is actually
generic given that it understands XML and there-
fore any markup language specified using XML.

The notation used in XML descriptions is fair-
ly standard. Each ELEMENT statement is a pro-
duction rule, with the first item to the left of the
rule and the second item (in parentheses) to the
right. Each element corresponds to a tag in the
markup language. A vertical bar indicates a choice,
and a comma indicates a sequence. The plus sign
stands for “one or more,” and the asterisk stands
for “zero or more.” An ATTLIST statement lists
the attributes of a particular element, such as a
tag. It also specifies the attribute’s type and
whether it’s required (REQUIRED) or optional
(IMPLIED). Figure 3 shows the complete PML
specification; Figure 4 shows an annotated PML
sample from a common procedural domain: cake
baking.

47

<PML> # All PML documents must start with the PML tag

<PROCEDURE id=“cake 1”>

This says we’re beginning a procedure. We’ve given it an id of “cake 1.”

This is the name you use to refer to this procedure in other places.

<TITLE>How to Bake a Cake</TITLE>

<AUTHOR>Colleen Kehoe</AUTHOR>

We define the title of this procedure and the author. Title is required.

The title may be the same as the id in the procedure tag, if desired.

<DESCRIPTION>

This procedure tells you how to bake your basic cake. It assumes you’re at or near sea level.

You’ll need a different procedure if you’re at a high altitude.

</DESCRIPTION>

We give a description of the overall procedure.

Since it is text, we can include it here or reference an external file via a MEDIA tag.

<JUSTIFICATION>

Everybody likes cake.

</JUSTIFICATION>

We give a justification for this procedure. This is optional.

<APPSPECIFIC key=“difficulty” value=“easy”/ >

Here we may associate some application-specific information with this node.

This may be used for indexing purposes or for deciding how to display this node.

Figure 4. An annotated PML sample from the cake-baking domain. (Continued next page)

48

<EXAMPLE>

<MEDIA SRC=“cake.gif” CAPTION=“Here is a picture of someone baking a cake.”/>

<MEDIA SRC=“cake.mov” CAPTION=“Here is a movie of a baker at work.”/>

</EXAMPLE>

An example containing two physical media files.

Any number of examples or counterexamples are allowed.

Now we list all of this links from this node to other nodes in the system.

<LINK type=“uses”> #This is a list of the equipment this procedure uses.

<TARGET id=“mixer”/> #This is a “thing” node.

</LINK>

<LINK type=“problem-state”> # The following nodes are problems.

<TARGET id=“cake didn’t rise”/> # Each is a “state” node.

<TARGET id=“cake burnt”/>

<TARGET id=“cake tastes salty”/>

</LINK>

<LINK type=“outcome”> # The following node is an outcome.

<TARGET id=“cake is done”/> # This is a “state” node.

</LINK>

<LINK type=“steps”> # This is a list of the steps in this procedure.

<TARGET id=“mix ingredients”/> # These are “procedure” nodes.

<TARGET id=“put in oven”/>

<TARGET id=“test for doneness”/>

<TARGET id=“cool”/>

</LINK>

<LINK type=“related-to”> # Other related nodes.

<TARGET id=“baked good”/>

</LINK>

</PROCEDURE>

This marks the end of this procedure.

<PROCEDURE id=“mix ingredients”>

This is the beginning of a new procedure. Notice that this is the first step in the

procedure we just defined above. Procedures are defined hierarchically.

<TITLE>Mix the Ingredients</TITLE>

<AUTHORColleen Kehoe</AUTHOR>

<DESCRIPTION>

Get all the ingredients together and mix them.

</DESCRIPTION>

For this application, we’ve provided two descriptions, both text.

<DESCRIPTION type=“high”>

You will need: 2 eggs, 2 c. flour, 1/2 c. milk, 3 tbsp. butter, 1 tsp. baking soda, 1/4 tsp. salt,

1/4 c. water, 1c. sugar. Combine the dry ingredients in one bowl. Combine the wet ingredients in

another bowl. Gradually add the dry to the wet, blending with an electric mixer.

</DESCRIPTION>

Here, we provide a very detailed description.

As before, we list the links from this node to other nodes in the system.

<LINK type=“uses”> # This is a list of the equipment this procedure uses.

<TARGET id=“mixer”/> # This is a “thing” node.

</LINK>

</PROCEDURE>

These are the rest of the steps in the “cake 1” procedure.

Details are omitted in the interest of space, but they would be similar to the one above.

Figure 4 continued

PML authoring tools
Typing in PML structures can be

a tedious and mistake-prone process.
We thus developed tkPML, a graph-
ical editing tool for creating the
knowledge node/link networks
graphically. Figure 5 shows a tkPML
session.

The tkPML graph-creation inter-
face lets designers enter node and
link information using a point-and-
click interface, with forms for enter-
ing text. In addition to the obvious
benefits, tkPML might also help

49

<PROCEDURE id=“put in oven”>...</PROCEDURE>

<PROCEDURE id=“test for doneness”>...</PROCEDURE>

<PROCEDURE id=“cool”>...</PROCEDURE>

<THING id=“baked good”>

Now we define a “thing” node. This is referred to in the “cake 1” procedure above.

<TITLE>Baked Good</TITLE>

<AUTHOR>Colleen Kehoe</AUTHOR>

<DESCRIPTION>

A baked good is usually found in a bakery. They are things like: bread, cookies, cakes, muffins,

etc.

</DESCRIPTION>

<COUNTEREXAMPLE>

<MEDIA SRC=“fish.mov” CAPTION=“While a fish can be baked, it is not considered to be a baked good.”/>

</COUNTEREXAMPLE>

Here, we provide a counterexample to a baked good.

It is in an external media file, but we provide a textual caption as well.

</THING>

#This marks the end of the thing node.

<STATE id=“cake didn’t rise”>

Now we define a “state” node. This was one of the problem states referred to in the

“cake 1” procedure.

<TITLE>Cake didn’t rise properly</TITLE>

<AUTHOR>Colleen Kehoe</AUTHOR>

<DESCRIPTION>

The cake didn’t rise above the edge of the pan. This is usually caused by accidentally leaving out

the baking powder or salt.

</DESCRIPTION>

<LINK type=“repair-procedure”> # These are links to repair procedures.

<TARGET id=“eat it anyway”/> # These are “procedure” nodes.

<TARGET id=“feed to birds”/>

</LINK>

<LINK type=“related-to”> # This is a link to a related node (here, a similar problem).

<TARGET id=“cake cracked”/> # This is a state.

</LINK>

</STATE>

Other procedures, things, and states are defined similarly.

</PML> # This marks the end of the PML document.

Figure 5. A screenshot of a tkPML

session. Designers create nodes by

double clicking on the background

and move them by dragging the node’s

top “title” portion. Links are created

by dragging from the bottom “link”

portion of one node to another.

Double clicking on an existing node

pops up a node information screen

(shown in Figure 6, next page), which

lets designers edit node information.

designers better establish and maintain mental
models of their PML representations.

In tkPML, designers can create and position
nodes and links with simple mouse actions. They
can view the layout at various levels of detail, from
an overview of large knowledge structures to a
detailed view of a few nodes. Also, as Figure 6
shows, each node can be expanded to view and
change its knowledge.

The tkPML tool saves a PML description file as
a comment in an augmented PML format file,
adding a simple node location to the standard
PML definition. Thus, designers can edit the saved
files by hand or run presentation interpreters on
the files without modification. without modifying
the files. In addition, tkPML can import files writ-
ten in PML, even if they weren’t created using
tkPML. For such files, tkPML generates an initial
display using a simple graph-layout algorithm.

TkPML is written in Tcl/Tk, a platform-inde-
pendent graphical scripting language that can run

on Unix, PCs, and Macintoshes, and in Web
browsers. Designers can thus freely exchange and
edit PML representations.

Presentation tools
There are two ways to create a presentation

based on a PML document. First, you can develop
a PML interpreter-generator that can interpret
PML descriptions, retrieve the appropriate media
within them, and create a hyperlinked presenta-
tion based on users’ situation and needs.

For example, if a novice user is simply trying to
determine whether to call a plumber to repair a
leaky shower, she could initially choose a sum-
mary of the time, expertise, and tools needed,
rather than a display of all the repair details. If the
same user has previously repaired a leaky faucet,
she can select a top-level overview of the general
leak-repair procedure, using links to substeps that
differ. Truly interactive and dynamic multimedia
systems will need such capabilities. We designed
PML to support the very design principles of
instruction and interaction that form the basis of
this type of interpreter-generator.

The second and simpler option is to develop a
PML interpreter that can construct a few prede-
termined presentations. For example, you might
develop one that always displays substeps in
detail, and another that always displays substeps
as titles with links to the details. You could then
use a simple heuristic to decide which presenta-
tion to use.

We chose this second approach for our initial
implementation, a PML-to-HTML translator that
can create presentations based on simple, prede-
termined presentation rules. Figure 7 shows two
such presentations, which we designed to help
users unplug a toilet drain using an auger. Figure

50

Figure 6. View of a

knowledge node in

tkPML. The top of the

screen shows the default

cognitive media roles.

These can be edited, or

others can be added.

Figure 7. Two presentations based on the same PML

source. (a) The presentation aimed at the novice

offers detailed explantions and examples; (b) The

one for an expert is more concise, but with links to

further explanations.

(a) (b)

7a shows a presentation aimed at a novice; Figure
7b shows one for an expert. For the expert, the
basic steps are presented with minimal explana-
tion, but with links that lead to more information,
if desired. For the novice, we provided more intro-
ductory information (not shown here), such as
what an auger is, and for each step offer explana-
tions and examples, as the figure shows.

With both presentations, we assumed that the
target platform was a Web browser on a PC. If the
target were for, say, a handheld personal comput-
er (which might be more useful when working in
the bathroom) or even an audio presentation, we
would create a different structure. With a hand-
held, for example, we would not use a long
scrolling presentation like that in Figure 7b.

Conclusions
Cognitive media roles have been used success-

fully in educational multimedia systems for teach-
ing graph algorithms in an undergraduate
computer science course1,7 and Lewis structures in
an undergraduate chemistry course.8 PML as a
whole has been used for other tasks and domains.
For example, we are using it to represent cases of
object-oriented design and programming,9 and to
encode process information about operations in
an electronic assembly “clean room.”10 Although
not dynamic, these early systems illustrate the
generality and value of the knowledge represen-
tation and the notational tools.

In our current research, we are developing
PML-based systems to investigate cognitive issues
in dynamic multimedia system design. More
broadly, we are investigating how the goals that
students bring to a learning task can affect their
learning processes. We will use this knowledge to
develop a hypermedia support system that can
adjust itself in response to a user’s goals.

PML lets us examine these and other issues
empirically. For example, we would like to sys-
tematically study which factors help determine
the effectiveness of different presentations for the
user. Is it true that a “high-level” presentation of
a procedure for a more knowledgeable person is
more effective than one that provides all the
details? Because PML can help us create alterna-
tive presentations, we can begin to empirically
explore such issues. MM

Acknowledgments
This research was supported by the Office of

Naval Research under contract N00014-95-1-0790.
We thank Mimi Recker for her comments on an
earlier draft.

References
1. M. Recker et al., “Cognitive Media Types for

Multimedia Information Access,” J. of Educational

Multimedia and Hypermedia, Vol. 4, No. 2/3, 1995,

pp. 185-210.

2. M. Maybury, ed., Intelligent Multimedia Interfaces,

MIT Press, Cambridge, Mass., 1993.

3. S. Feiner and K. McKeown, “Automating the

Generation of Coordinated Multimedia

Explanation,” Computer, Vol. 24, No. 10, Oct. 1991,

pp. 33-41.

4. I. Tomek, H. Maurer, and M. Nasser, “Optimal

Presentation of Links in Large Hypermedia Systems,”

Proc. ED-MEDIA 93, 1993, pp. 511-518. See also

http://www.hyperwave.com

5. T. Bray, J. Paoli, and C.M. Sperberg-McQueen, eds.,

“Extensible Markup Language (XML) 1.0,” W3C

Recommendation 10-Feb-1998,

http://www.w3.org/TR/1998/REC-xml-

19980210.html.

6. R. Cover, “XML: Proposed Applications and Industry

Initiatives,” 1998. http://www.oasis-

open.org/cover/xml.html.

7. G. Shippey et al., “Exploring Interface Options in

Multimedia Educational Environments,” Proc. Second

Int’l Conf. on the Learning Sciences, Assoc. for

Advancement in Computing Education, Univ. of

Virginia, Charlottesville, Va., 1996.

8. M. Byrne et al., “The Role of Student Tasks in

Accessing Cognitive Media Types,” Proc. Second Int’l

Conf. on the Learning Sciences, Assoc. for

Advancement in Computing Education, Univ. of

Virginia, Charlottesville, Va., 1996.

9. M. Guzdial, “Technological Support for an

Apprenticeship in Object-Oriented Design and

Programming,” Proc. OOPSLA 97 Educators Symp.,

ACM Press, New York, 1997.

10.M.T. Realff et al., “Multimedia Support for Learning

Advanced Packaging Manufacturing Practices,” Proc.

ECTC 98, IEEE Computer Society Press, Los Alamitos,

Calif., 1998.

51

A
p

ril–Jun
e 1999

Ashwin Ram is an associate pro-

fessor of computer science and

cognitive science at the Georgia

Institute of Technology. His

research interests are in intelligent

systems, cognitive science,

machine learning, and natural language understanding.

He is co-editor of Goal-Driven Learning published by MIT

Press/Bradford Books in 1995, and Understanding

Language Understanding: Computational Models of Reading,

published by MIT Press, 1999. Ram received his BTech

in electrical engineering from the Indian Institute of

Technology, New Delhi, in 1982, his MS in computer

science from the University of Illinois at Urbana-

Champaign in 1984, and his PhD in computer science

from Yale University in 1989.

Richard Catrambone is an asso-

ciate professor in the School of

Psychology at Georgia Tech. His

research interests are in problem

solving, analogical reasoning, and

human-computer interaction. He

is particularly interested in how people learn from

examples in order to solve problems in domains such

as algebra, probability, and physics. Catrambone

received his BA from Grinnell College in 1982 and his

PhD in experimental psychology from the University of

Michigan in 1988.

Mark Guzdial is an associate pro-

fessor in the College of Computing

at Georgia Tech. His research is in

technological support for project-

based learning and computer-sup-

ported collaborative learning. He

received his PhD in education and computer science

from the University of Michigan in 1993.

Colleen Kehoe is a PhD student in

the Graphics, Visualization, and

Usability Center at Georgia Tech.

Her research interests include edu-

cational technology, design edu-

cation, user interfaces for

educational software, and Web-related technologies. She

received her BS in computer science from Stevens

Institute of Technology in Hoboken, N.J. in 1994.

Scott McCrickard is a PhD candi-

date in the College of Computing

and a member of the Graphics,

Visualization, and Usability Center

at Georgia Tech. His interests

include user interface design,

information visualization, and multimedia communi-

cation methods.

John Stasko is an associate profes-

sor in the Graphics, Visualization

and Usability Center and the

College of Computing at Georgia

Tech. His research interests

include software and information

visualization, human-computer interaction, program-

ming environments, and software agents. He received a

BS in mathematics from Bucknell University in 1983

and ScM and PhD degrees in computer science from

Brown University in 1985 and 1989, respectively.

Readers may contact Ram at College of Computing,

Georgia Institute of Technology, Atlanta, GA 30332-

0280, e-mail ashwin@cc.gatech.edu.

52

IE
EE

 M
ul

ti
M

ed
ia

