
Generalizing Interface Design Knowledge:  
Lessons Learned from Developing a Claims Library 

 

Catherine Payne, C. F. Allgood, C. M. Chewar, Chuck Holbrook, and D. Scott McCrickard 
Center for Human-Computer Interaction and Department of Computer Science 

Virginia Polytechnic Institute and State University (Virginia Tech) 
Blacksburg, VA 24061-0106 USA 

{cpayne, callgood, cchewar, cholbroo, mccricks}@cs.vt.edu  
 
 

Abstract 
The experience of preparing interface design knowledge to 
be reusable allows reflection on the process, potential, and 
general challenges of effectively and efficiently using this 
knowledge in design tasks. With an interest in crafting a 
catalog for design claims that would implement recent re-
use theory in the human-computer interaction field, we 
developed and implemented a unique process of creating 
reusable content for notification systems—interfaces used 
for multitasking. This process, which we describe and illus-
trate, extends previous work on capturing metadata related 
to design claims.  The data and metadata are stored in the 
catalog, which is intended to be accessible to other design-
ers for reuse in other domains.  The multitask nature of our 
catalog subject matter highlights  a major challenges faced 
in reuse: the generalization specific and contextual infor-
mation (claims). The challenge of balancing abstraction 
with specificity to ensure both meaningful and domain-
independent data is also addressed.  We believe that our 
approach can generalize to other reuse projects that strive 
for cross-domain knowledge application. 

Keywords: Domain Theory, human-computer interaction, 
scenario-based design, reuse, notification systems 
 

1 Introduction 

Imagine being able to design a software application 
from a catalog, ordering pre-existing parts and snapping 
them together—an easy and ideal approach to software 
engineering. But in order for this dream to be realized, 
someone must first design for reuse, collecting a wide array 
of components and making create mechanisms that allow 
others to find them and understand their use. Just as other 
fields have struggled to define the component structures of 
reusable objects, the metadata, and the search approaches, 
the software design community faces similar challenges. 

Reuse can occur at any or all of the stages in the soft-
ware and interface design process. Source code, software 
design, and requirements specifications are all targets for 

various reuse paradigms, taking the form of class libraries, 
object-oriented patterns (Gamma et al., 1995), or problem 
frames (Jackson, 2001). However, one major difference 
among these paradigms is where they occur in the overall 
system design; in other words whether they are located in 
the problem space or in the solution space. Reuse of soft-
ware design and of source code (component-based reuse) 
occurs in the solution space of a design. Reuse of require-
ments specifications considers the problem space of a de-
sign before arriving in a solution space later in the process. 

Within the early-stage software design discipline of 
human-computer interaction (HCI), there has been increas-
ing research interest in understanding how to reuse design 
knowledge. Sutcliffe argues that the earlier reuse occurs in 
the development cycle, the bigger the payoff in the end. He 
puts forth Domain Theory (discussed thoroughly in the 
next section) as a method for abstracting a problem space 
and its related design knowledge in the form of claims. 
Claims originate from Task-Artifact Theory (Carroll, Kel-
logg, and Rosson, 1991), describing a particular design 
feature and the positive and negative aspects (upsides and 
downsides) of applying this feature in a certain scenario. 
Our work applies and extends Sutcliffe’s techniques to a 
specific interface design challenge—notification systems—
by building our own claims catalog for design reuse. This 
paper describes the process used in generating and general-
izing the content of this library, related issues, and lessons 
learned from our effort. 

2 Background 

To situate our study within broader HCI research, we 
present a review of literature related to design reuse and the 
Domain Theory. We also introduce our knowledge reuse 
field of concern: notification system interface design.    

2.1 Domain Theory and Claims 

Sutcliffe’s Domain Theory functions as a hybrid theory 
of expertise from cognitive and behavioral science applied 



to requirements engineering and reuse. Rooted mainly in 
Gentner’s structure-matching theory of analogy (Gentner, 
1983), it states that people create loose connections across 
real-world problem spaces and reapply those solutions 
when they seem appropriate. Ultimately, Domain Theory 
attempts to provide a set of abstracted problem spaces to 
facilitate cross-domain transference of knowledge in “de-
signer-digestible packets of reusable knowledge” (2000). 

Reusable knowledge about an objects in a grounded 
domain exists in the form of claims, a basis of knowledge 
which Sutcliffe refers to as “the most powerful form of 
knowledge transfer that is directly contained in the Domain 
Theory” (Sutcliffe, 2002) and has been posited elsewhere 
as the chief method of empowering HCI knowledge reuse 
(Sutcliffe and Carroll, 1999). Perhaps the most important 
characteristic of claims is that they concisely state tradeoffs 
about a designed artifact in specific usage context accord-
ing to theoretically based and empirically observed effects 
on a user. Figure 1 shows an example of a claim in simplest 
form.  

Before something can be reused, it must be purposefully 
designed to be reusable. Sutcliffe provides a 14-point for-
mat for initially recording claims, and then a method for 
generalizing these claims so they can be transferred across 
domains (Sutcliffe and Carroll, 1999). A tension exists in 
this process because upsides and downsides of claims are 
grounded in real-world scenarios, and in generalizing a 
claim this context could be lost or misrepresented. Once 
generalized, claims can be indexed and stored in a claims 
library for future retrieval. 

This type of reusable knowledge works well when us-
ing scenario-based design for HCI (Rosson and Carroll, 
2002). Having an available set of claims provides designers 
with tried and tested design ideas, as well as the positive 
and negative impacts of using ideas. A claims catalog or-
ganized with Domain Theory should facilitate application 
of design knowledge across domains. 

2.2 Designing Notification Systems 

Our project involves creation of a claims catalog for a 
unique type of computer interface—notification systems. 
Notification systems can involve a variety of platforms and 
domains, delivering valued information to users while they 
are engaged in other activities. These systems are generally 
desired as a means to access valued information efficiently 
and effectively without introducing unwanted interruptions 
to primary tasks (McCrickard et al, 2003). A simple exam-
ple of a notification system is a stock ticker or an email 
inbox status indicator. More complex systems include in-
vehicle information systems, peripheral or ambient displays 
that slightly alter the surrounding environment, or small 
information summary devices that are designed to perma-
nently reside in the corner of the desktop. These systems 
often use intelligent interfaces to provide recommendations 

Use of Animation for Status Monitoring 
{designed artifact has upside effects:} 
 + Pulsing supports good peripheral detectability, 
  + Users can easily distinguish new items from old, 
  + Pulse rate variations can be associated with meanings, 
  + Fast pulse provides a strong metaphor to urgent items, 
  + Slow screen changes will not cause a lot of distraction, 
{downside effects:} 
  – Important items may not be detected quickly, 
  – Multiple pulsing items are difficult to perceive at the same time and 

are confusing, 
  – Prolonged pulsing may be annoying and difficult to ignore. 

Figure 1. Example claim, relating upsides and 
downsides user effects to designed features. 
 

    

Figure 2. A typical desktop notification system, 
residing in the corner the desktop interface to 
provide convenient and subtle news alerts. 

to users engaged in ongoing tasks. One such system is In 
The Corner (see Figure 2), a system which provides cate-
gorical notification of available news-related content of 
interest to the user. Notification systems can always be 
thought of as interfaces typically used with the smaller 
amount of divided-attention.  

Effectively designing notification systems means suc-
cessfully balancing attention allocation between the pri-
mary task and notification content, while simultaneously 
enabling access to other information (McCrickard and 
Chewar, 2003). In other words, it becomes extremely im-
portant to employ information presentation techniques: 

•  Cause the desired amount of interruption (enough to 
suitably alert the user, without undesired distraction) 

•  Allow a user’s appropriate reaction to new notifica-
tions (such as understanding enough details to transi-
tion tasks or dismiss alerts) 

•  Facilitate long-term gains in comprehension, related to 
notification content (such as appreciating patterns and 
trends or linking new information to other knowl-
edge). 

Users desire different levels of these three goals de-
pending on usage situations and context. Available infor-
mation presentation options range from different types of 
animation (e.g., tickering, blasting, or fading techniques), 
use of color or audio, and other design strategies. However, 
using a simple rating system to describe the desirability of 
each parameter by users (referred to as the IRC framework; 
detailed in (McCrickard and Chewar, 2003)), we can com-
pare notification effects articulated in claims. 



3 Theory Application 

Our challenge lies in organizing knowledge related to 
the design of notification system interfaces to be reusable 
and applicable for various domain requirements. How can 
the Domain Theory be applied to the Notification System 
problem domain? More specifically, how can notification 
systems claims be abstracted for reuse in the development 
of other notification systems? Our efforts involved analyz-
ing existing notification systems to generate claims regard-
ing their design, storing and generalizing these claims in a 
library, and providing a retrieval mechanism. 

3.1 Content Collection 

To establish our claims library for notification systems, 
our first step was to gather content from a wide variety of 
systems. We considered approximately 50 systems, to in-
clude ones that were designed within our research group, 
through research collaboration with other designers, and 
identification of systems from related literature. We inten-
tionally selected systems that included a variety of imple-
mentation platforms and supported a range of user tasks. 

Notification Collage is an example of one of the sys-
tems considered (Greenberg, 1994). This interface is in-
tended for a large-screen display that would be situated 
within a common work area. The system provides a bulle-
tin-board type forum for delivering information regarding 
the status of personal contacts and ongoing events. In con-
tinuing to describe our content creation process, we revisit 
a claim generated from this system. 

As we collected content for our library, we encountered 
two major challenges. The first challenge stems from the 
tension inherent in the claim generalization process itself, 
trying to ensure that a claim contains meaningful design 
knowledge, while maintaining a level of abstraction that 
allows access to the claim via the library’s information 
retrieval mechanism. Preserving this balance proved to be 
difficult. The second challenge was determining the precise 
nature and form of the abstraction layer, which provides 
the structure for the information retrieval process. Once 
resolved (as detailed in the next two subsections), we were 
able to develop an effective classification strategy. 

3.2 Anatomy of a Claim 

We began with a claims format based on the 14-point 
claim recommended by Sutcliffe, which in turn was based 
on a form developed by Sutcliffe and Carroll (1998). This 
format is ideal for collecting not only the important knowl-
edge related to the theoretical grounding of the claim, but 
also the articulation of the design tradeoffs and context. In 
addition, we allow for documentation of claim history. 

As we considered this format in relation to its purpose 
in capturing knowledge about notification systems, we real-

ized that slight adjustments would need to be made. The 
more important adjustments related to the definitions of 
pre-existing fields. For instance, since we were accustomed 
to representing the effects of a notification system with an 
IRC rating, using the Effect (9) field seemed like the logi-
cal place to record this measurement. Similarly, Sutcliffe 
intended the Scope (14) field to provide relation to Domain 
Theory components, and we anticipated that this could be 
different for the notification system’s primary and notifica-
tion tasks. As a result, we broke this field into two sub-
fields. These fields were originally intended to be the pri-
mary indexing mechanisms for the claims library. 

We feel that the users of our knowledge repository will 
value the Upsides (6) and Downsides (7) of the claim, the 
Scenario (8) from which these tradeoffs originate, the re-
lated usage issues (10, 11), and theoretical background 
(12). We augmented this with the addition of the Parent 
Component (15) field to provide contextual reference to the 
system that implements the designed artifact. 

Fundamental information from a maintenance perspec-
tive includes the Claim ID (1) and Author (3a) fields. Less 
obvious is the Relationship (13) field that further estab-
lishes the context of the claim according to other notifica-
tion design issues. We anticipate that designers will be able 
to add most of the claim data themselves; however for 
quality control and index verification, we saw the need for 
an Editor (3b). Claims are intended to evolve as a design is 
iteratively developed and evaluated in actual use, so it 
seemed logical to include a Usage Log (16) to capture these 
changes. Figure 3 shows the modified claim format, indi-
cating our changes. 

3.3 Recording Our Design Knowledge 

Once a claim was created in this format, our next step 
involved generalizing this claim to an abstract layer. Our 
initial definition of this layer was simply a generalized ver-
sion of the original claim, similar to examples provided by 
Sutcliffe. Our abstract claim contained (1) primary and 
notification tasks, (2) IRC ratings, and (3) upsides and 
downsides. We planned to create a relationship between the 
specific claims and the abstract claims on the basis of their 
primary tasks, notification tasks, and IRC value. To create 
this relationship, we needed to describe the tasks in a way 
that allowed them to be grouped in different categories, 
which would then be captured at the abstract level.  

We accomplished this by using a discrete vocabulary 
derived from the generic and generalized task models pro-
vided by the Domain Theory (generic and generalized tasks 
are listed and defined at http://www.co.umist.ac.uk/ 
hci_design/appb.htm). The two models differ on the basis 
of task complexity. Generic tasks describe activity at a 
much more granular level, making them suitable to de-
scribe the notification tasks. As primary tasks tend to be 
broader in the range of activity that they encompass, the 



Field Description 
1. Claim ID Unique identifier for the claim 
2. Title Description given by the claims author 
3a. Author Researcher(s) or practitioner(s) who devel-

oped the original claim 
3b. Editor Person who created the claim record for the 

library and established the IRC rating 
4. Artifact  
(Design Abstraction) 

Description of the claim artifact in terms of 
the design abstraction 

5. Description Natural-language description of the claim 
6. Upsides Positive effect of using claims on a man-

agement objective of system effectiveness 
7. Downsides Negative effects of using claims 
8. Scenarios Originating scenario in which the claim was 

derived 
9. Effect (IRC Rating) Desired, measurable effect that the imple-

mented claim should achieve 
10. Dependencies Problems that need to be solved before 

getting to the root issue 
11. Issues Management issues possible influenced by 

the claim 
12. Theory Underlying theory explicitly reference by the 

claim 
13. Relationship Interclaim links that describe how claims 

evolved during the history of the investiga-
tion 

14a. Scope  
(Primary Task) 

Generalized Task keyword description 

14b. Scope  
(Notification Task) 

Generic Task keyword description 

15. Parent Compo-
nent 

System name and information 

16. Usage Log Running commentary on experience in using 
the claim 

 

Figure 3. Modified Claim Format where the first 14 
fields correspond largely to Sutcliffe (2002). 

more complex generalized tasks (compositions of multiple 
generic tasks) were used. Figure 4 shows how the claims 
creation process mirrors the design process. 

3.3.1 Defining the System and Usage Situation 

The first step was to identify a system from which we 
wanted to capture usability experience, like Notification 
Collage. Next, we identified the usage situation in which 
we wanted to evaluate the system. Here we decided to look 
at the live video feed capability of Notification Collage in 
the case where the feed supports monitoring the status of 
another person. However, the key notification system de-
sign challenge would be that this monitoring would occur 
while the user is simultaneously engaged in other office 
work. Next, we identified the general design technique 
(Design Abstractions in Figure 4) that characterizes how 
the system or system component interacts with the user. 
Discussion of this characteristic is reserved for the next 
subsection. Of interest here, we also identified a claim title 

and chose the key word(s) to describe the primary and noti-
fication tasks, beginning the development of a claim record 
(see Figure 5). 

In this instance, we chose monitor, interpret, and evalu-
ate as notification tasks. The user has goals of maintaining 
awareness about the availability status of another person 
(monitor), and based on his/her understanding of this status 
(interpret), determines a suitable time to interact (evaluate). 
We chose planning-scheduling as the primary task because 
the user will incorporate their understanding of the other 
person’s availability to sequence collaborative and non-
collaborative work activities.  

3.3.2 Developing the Scenarios and Tradeoffs 

Next we develop the scenario, which is used to ground 
the usage context of the system (Rosson and Carroll, 2002). 
To continue the example with Notification Collage, we 
created a scenario to describe a typical usage situation. 
From this scenario, we identified the pros and cons of the 
design, which are articulated in the upsides and downsides 
for the claim. The description summarizes the designed 
artifact in the context of use, as shown in  
Figure 6. 

 
Figure 4. The process we followed to establish 
claim content, describing design knowledge of a 
notification system artifact.  

 

2. Title Video Feed for Status Monitoring 
4. Artifact  
(Design Abstraction) 

Video 

14a. Scope  
(Primary Task) 

Planning-Scheduling 

14b. Scope  
(Notification Task) 

Monitor, Interpret, Evaluate 

15. Parent Compo-
nent 

Notification Collage 

 

Figure 5. A portion of the claim record for our No-
tification Collage example, resulting from analysis 
of the usage situation. 

Design Process 

Design 
Abstraction

Scenario 

Upsides/ 
Downsides

IRC 
Rating

Primary and 
Notification Tasks 

 
Define 
System 

Define 
Usage 

Situation 

Develop 
Scenario,  
Upsides, 

Downsides 

 
Determine 
Notification 

Effects 

Claim Creation 



3.3.3 Determining Notification Effects 

Having established the review of the design feature in the 
context of its scenario of use, we turn our attention to the 
notification effects. This is the primary knowledge that 
notification systems designers will find valuable for new 
design requirements. The IRC rating (discussed in Section 
2.2) provides a measurable description of an artifact’s im-
pact on a user. After establishing this rating, we make note 
of any relevant dependencies, issues, or theories that 
should be considered during notification system design.  
Figure 7 continues our example, showing the completion of 
all non-trivial claim fields. 

3.4 Cataloging the Claims  

During this claims creation process, we indirectly estab-
lished a classification system or indexing mechanism for 
the catalog. However, this process deviated considerably 
from the method Sutcliffe proposes. This section describes 
our experiences, which ultimately lead to our recommenda-
tions regarding the design of a claims library. 

We initially encountered a problem with articulating the  
 

5. Description Using an extraneous video feed displayed on a 
large screen display to monitor the presence of a 
remote individual. 

6. Upsides + Live video allows a quick and easy way of show-
ing presence, 
+ Posting of live video, sticky notes, slide shows, 
etc, affords a wide variety of media forms, 
+ Lack of audio decreases interruption and infor-
mation overload, avoiding sensory overload, 
+ Customizing the rate at which the video feed 
updates allows the user to control interruption. 

7. Downsides – Live video broadcast reduces privacy for users, 
– User-initiated interruption is hindered because users 
don’t have the ability to control the refresh rate on a 
video feed, 
– The user can miss a change of status because of lack 
of audio or other non-visual cues. 

8. Scenarios Bob is working with Alice on some paperwork in 
their lab. Bob must frequently go over to Alice’s 
workstation to get her to look at the paperwork 
and sign documents that are needed. Alice, how-
ever, is often not at her workstation. Bob can fire 
up the Notification Collage (NC) on a second 
monitor and ask Alice to post a video feed of her 
workstation area. Bob will be able to continue 
doing his work, but he is aware of Alice’s pres-
ence. By glancing at the NC when Bob takes a 
break or has a need to talk to Alice, he will be able 
to quickly realize if Alice is present at her work-
station. He will no longer waste time walking 
across the lab to find Alice. 

 

Figure 6. Reusable design knowledge—sample 
claim description, scenario, upsides, downsides. 

9. Effect (IRC Rating) Interruption = 0.2, Reaction = 1.0,  
Comprehension = 0.9 

10. Dependencies Transmission bandwidth, resolution. 
The refresh rate (presumed at every 5 min, 
for some privacy preservation and lower 
bandwidth transmission) prevents monitoring 
of the display during natural primary task 
break points. 

11. Issues Privacy of monitored person 
12. Theory Ackerman’s social-technical gap (privacy); 

McFarlane’s user-initiated interruption (re-
fresh rate); Dourish & Greenberg (aware-
ness for reciprocity and privacy) 

 

Figure 7. Claim fields relating to consideration of 
notification effects, pertaining to the Notification 
Collage example. 

primary task for our usage cases. Some of our systems 
were very ubiquitous, which made identifying a primary 
task in the general case practically impossible. This in turn 
meant that we could not selectively map the specific claims 
to the abstract claims, as Sutcliffe and Carroll’s factoring 
process intends (1999). We solved this problem by not fo-
cusing on what the notification system can support, rather 
on a specific primary task goal. This direction allowed us 
to be able to identify a discrete primary task. 

By increasing our dependence on the scenario, how-
ever, we raised a new issue with respect to abstraction. Our 
claim became even more reliant on context, which is con-
trary to the principle of abstraction and basically removed 
the property of domain extensibility from our abstract 
claims. To resolve this dilemma, we decided to change our 
original definition of an abstract claim. Rather than having 
an abstract claim exist as a generic, higher-level variation 
of a specific claim, we decided to focus on functionality. 

Instead of abstract claims, we used a “footprint” ap-
proach, recognizing that each specific claim exists in an 
abstract, four-dimensional space based on its primary and 
notification tasks (Scope) and two new indices: IRC ratings 
(Effect) and Design Abstraction (Artifact). Because the 
primary and notification tasks were based on the generic 
and generalized task models described in the Domain The-
ory, they already placed the claim on an abstract level. The 
Design Abstraction attribute is a generalized way of de-
scribing how a system interacts with a user (e.g. color, 
animation, or audio). IRC ratings describe the effects that a 
system will have on the user (e.g. causing high levels of 
interruption) in non-specific terms. A claim’s existence in 
this four-dimensional space constitutes library abstraction. 

Continuing our Notification Collage example, we look 
at the four variables used to place the claim in the library. 
Since the primary and notification tasks were already in the 
vocabulary of the tasking models, they are ready to be 
mapped, as is the IRC. The final variable needed to com-
plete the abstraction of our claim is the Design Abstraction 



variable. To find this, we considered possible Design Ab-
stractions and chose those that best described the compo-
nent of the system we were evaluating. In this case, we 
chose Video as our design abstraction. Once we had identi-
fied these four variables, the claim could then be included 
in the library. Note that in this case, there are three notifica-
tion tasks, so there will be three different combinations of 
these variables. The union of all combinations is the foot-
print. If a user’s query falls anywhere in that footprint, the 
claim is returned. 

Deviating from the original abstract claim design came 
with a loss, however. While the footprint serves as an ef-
fective abstraction layer for information retrieval, the holis-
tic effect of these four dimensions does not relate any sort 
of meaningful design information. Were we to use the ab-
stract claim format based on the specific claims (as pro-
posed by Sutcliffe and Carroll (1999)), we would be able to 
capture a general, context-free design claim that would 
work regardless of domain. To maximize the benefit of a 
catalog of design knowledge, cross-domain applicability is 
highly desirable. We revisit the techniques that we used to 
alleviate this concern in Section 6. 

4 Intended Claims Catalog Usage 

Having demonstrated the application of claims creation 
and classification for notification systems, we now describe 
how our claims catalog could be used within a typical sce-
nario-based design process. 

4.1 The Essence of Design Knowledge Reuse 

Once implemented and filled with claims, the library 
would offer designers a convenient location from which to 
draw knowledge when conceiving new systems. From a 
scenario-based design (SBD) perspective, this could be 
used to generate, reinforce, or provide different viewpoints 
on claims related to the system being developed. This could 
be achieved with the library in a number of different ways. 
One way would occur when the narrative of use is created. 
This scenario describes the user’s goals and the processes 
that take place when the system is being used. By accessing 
library content, designers could be prompted to include 
ideas in scenario-writing that they otherwise would not 
have considered. From this narrative, one could generate 
claims that may highlight a particular aspect of the system 
or show a requirements constraint. 

Without the library, a claim would have to be formu-
lated from the designer’s existing knowledge and hypothe-
sized from the obvious implications derived from the sce-
nario. With the library, the designer could search for simi-
lar systems by selecting the appropriate search criteria to 
retrieve claims made about systems with similar abstrac-
tions. Typically, this would include knowledge applicable 
to the current design task. This knowledge would contain 

the upsides and downsides of claims with regard to issues 
noted in previous and current design scenarios. This form 
of reuse could prove invaluable. 

4.2 Cross-Domain Reuse 

While the claims within the library are derived solely 
from notification systems, they can be applied to any do-
main. The information retrieval mechanism (see Figure 8) 
facilitates searching regardless of domain context or claim 
details, preserving this information within the claim to al-
low the designer to determine its relevance.  

For example, large screen displays and PDAs would 
seem to share little in common, aside from the fact that they 
can both be used as notification systems. However, in noti-
fication tasks, users may share many of the same goals (e.g. 
allowing a user to learn of a change in system state with 
little interruption). Claims made for one system may not 
have exactly the same effect as they would on the other, but 
the general deign advice might be similar. For example, a 
flashing screen may not be as noticeable on a PDA as it 
would be on a large screen display, but it would certainly 
have the effect of notifying the user of an event, regardless 
of platform. Using the library to reveal such claims would 
help in a designer’s brainstorming process–providing in-
sight about origins of the claim, while allowing the de-
signer to determine applicable information. 

 
Figure 8. Screenshot of information retrieval interface 
for the notification system claims library. 

4.3 Retrieving Claims 

Imagine that a designer is developing a PDA applica-
tion to monitor the status of complicated factory equipment 
that has a fairly high failure rate. After a scenario of use is 
created (such as the one in  

Figure 6), the design effort focuses on creating a system 
that meets the user goals highlighted in the scenario; spe-
cifically a system that supports the notification task of 
monitoring, the Design Abstraction of feedback, high reac-
tion and interruption, and most types of primary tasks. At 



this point, the designer could brainstorm possible ways to 
implement the system for the scenario. To expedite think-
ing of different designs for the system and identifying the 
costs and benefits of each, the designer turns to the library. 
There, he is able to retrieve claims on systems with similar 
goals, along with the pros and cons of each implementa-
tion.  

A number of different claims are likely to be returned, a 
few of which the designer is immediately able to rule out as 
being unrelated. Others offer advice on obvious implemen-
tations, but give complete descriptions and tradeoffs about 
using them. As an example—using text messages for moni-
toring offers low interruption and high comprehension— 
gives sound and tested advice. Near the end of the search 
results is a claim that intrigues the designer. It is the exam-
ple claim previously described from the Notification Col-
lage system—“Video Feed for Status Monitoring.” Al-
though this claim does not fit exactly within the scenario as 
described above, the designer now sees the possibility of 
using video within the new system to achieve even better 
results. Instead of using text messages to describe the pos-
sible problems with the equipment, the designer now envi-
sions the system taking a picture of the faulty machine that 
would give the user very detailed information about the 
problem and possibly its cause. 

With the knowledge gained from browsing the library, 
the designer is able to revisit the initial scenario and create 
a new one using the video feed. The new design demon-
strates an even more powerful system that, in many cases, 
would save the user from having to physically go to and 
inspect the machine to learn of the problem cause. When 
the designer is finally content with the design, he is able to 
download the executable components linked to the claims 
found in the library and use them to construct his own pro-
totype. After implementing the designed system, the de-
signer adds his own specific claims to the library and up-
dates the claims referenced during the design with links to 
the new ones gained through his experience. 

5 Initial Feedback & Future Work 

After developing the system architecture and claims 
catalog user interface, we were eager to receive feedback 
about how well it supports the design for reuse process.  

5.1 Initial User Evaluation 

We wanted to get feedback on how well our abstraction 
method supported information retrieval, so we had nine 
participants use the system by trying to apply the populated 
library in a series of design tasks. While the design tasks 
tested many aspects of the entire library, we focused on 
how useful the participants felt the claims were in their 
design process and how intuitive and meaningful the re-
trieval process was. We were primarily interested to see if 

library users were able to negotiate the retrieval process 
through the generalized and generic tasks, after abstracting 
the given design tasks. 

5.1.1 Methodology 

The way the participants interacted with the library was 
as follows.  A design problem was presented and the par-
ticipant was asked to search the library for claims that 
would help them most with the task. They would then cre-
ate a query based on a combination of primary tasks, noti-
fication tasks and Design Abstraction key words. The key 
words were listed on dropdown lists and used the same 
vocabulary that was used in describing the primary and 
notification tasks and Design Abstractions. Based on the 
query, a number of claim summaries were returned. If the 
participants wanted more information on a claim, he could 
expand it to view the entire claim. Participants would select 
the claim if it was determined to be helpful to the design 
task. 

5.1.2 Results and Feedback 

After the participants finished the series of design tasks, 
we asked them for feedback on whether the tool helped 
them locate relevant design knowledge, how effective the 
library was in doing so and what the library was most use-
ful for. Roughly half felt the library was useful, and the 
majority overall felt it was most useful in inspiring new 
ideas over reinforcing design assumptions. With respect to 
how effective the library was in helping out with the design 
task, four said it was effective for all scenarios, four said it 
was effective to some degree in all scenarios and one said it 
was effective for some scenarios. Based on these com-
ments, we feel our claims content and format was success-
ful in terms of storing design data. 

We also received feedback on our key words, which 
formed the basis of abstraction. While the majority of the 
participants felt they were able to match the key words to 
the given scenario, some felt that the key words were too 
vague and that there were too many of them. The complaint 
on vagueness is a testament to one of the difficulties in 
finding the right balance of generality and specificity with 
respect to abstraction. 

5.2 Future Work 

Future work will continue to probe the design for reuse 
aspect of our claims library. We would like to extend our 
current work in three ways: formal usability testing, con-
tent development, and user interface refinement. 

From a testing standpoint, we would like to conduct us-
ability tests to determine which of our four abstraction vari-
ables are the most meaningful in queries. To do this, we 
plan on collecting data use of the database to find claims to 
support a design task. During these tests, we would evalu-



ate the effectiveness each variable has in queries. We also 
plan on gathering general usage statistics as well. 

In order to support a robust testing regime and long-
term use, we also plan on developing more content. Not 
only does more content allow a viable database, we gain 
more experience and learn more things about design for 
reuse process, which can be incorporated into our effort. 

Finally, because information crosses domains on the ba-
sis of users interacting with claims from different domains, 
the user interface is important. In particular, we would like 
to investigate different ways to conduct the queries based 
on user feedback about the interface, as well as lessons 
learned about the role each variable plays in retrieval.  As a 
general goal, we recognize great benefits in developing a 
recommender system that can facilitate specification of 
search criteria and suggest content that may be useful. 

6 Discussion and Conclusions 

Advocates of reuse tout it as efficient, both from a 
knowledge management standpoint as well as cost. Design 
by reuse, however, can only be implemented after the de-
sign for reuse process has created enough reusable mate-
rial. The primary cost of reuse resides in the design for 
reuse effort. The question we then ask is: how much addi-
tional burden does design for reuse place on the designer? 

Take the professional scenario-based designer, design-
ing for reuse.  As she steps through the development proc-
ess, we can see that she has the additional overhead of hav-
ing to prepare her claims for future reuse. Depending on 
how many other people in her organization are also taking 
on the extra responsibility for creating reusable compo-
nents, she might never directly benefit from her effort, at 
least not in the short-term. The disparate distribution of 
costs and benefits, which is a common theme in computer-
supported cooperative work as a whole (Grudin, 1994), is a 
major factor that reuse must overcome to be effectively 
implemented. Moreover, not only does the design for reuse 
process put additional burden on the designer, it requires 
additional documentation through the product’s lifecycle, 
since new claims or revisions to existing ones will continue 
to be made as the product is developed and implemented.   

The major challenge we faced in our design for reuse 
effort was abstracting relationships between system dynam-
ics. In our case, to generalize the dual nature of the usage 
scenario, we had to abstract the notification and primary 
tasks in conjunction. We were unable to do so explicitly 
because we kept losing the relationship between the two 
tasks. One reason for this is the tasks were abstracted to 
different levels (notification tasks were described more 
granularly). When both tasks were then further abstracted, 
one of the variables would dominate the other, and the 
original relationship between the two would be lost. 

We were able to overcome the problem of explicitly de-
fining an abstract claim by indirectly doing so. We created 

a footprint for the claim, through the combination of four 
indexing dimensions. This technique provided an abstract 
layer that could support retrieval. Unlike the original ab-
stract claim idea, however, the footprint does not provide 
abstracted meaning, losing a second source of domain-
independent claims. 

Our original goal was to implement a claims library that 
supported domain-independent knowledge transfer. We 
believe we have been successful in doing this, and recog-
nize a need to express the quantifiable benefits of design 
for and by reuse. The designer’s ability to interact with the 
different domain-based claims that are returned and to inte-
grate them into her process is proof that this system imple-
ments the spirit of Domain Theory. 

References 

[1] Anderson, R.E. (1992) Social impacts of computing: Codes 
of professional ethics. Social Science Computing Review, 2 (Win-
ter 1992), pp. 453-469. 
[2] Carroll, J.M., Kellogg, W.A. & Rosson, M.B. (1991) The 
task-artifact cycle. Designing Interaction: Psychology at the Hu-
man-Computer Interface. Cambridge Press. 1991, pp. 74-102. 
[3] Conger, S., and Loch, K.D. (1995) Ethics and computer use. 
Communications of the ACM 38, 12 (December 1995) pp. 30-32. 
[4] Greenberg, S. & Marwood, D. (1994). Real time groupware 
as a distributed system: Concurrency control and its effect on the 
interface. In Proceedings of CSCW'94, ACM Press, pp. 207-217. 
[5] Grudin, J. (1994). Groupware and social dynamics: Eight 
challenges for developers. Communications of the ACM, 37(1), 
pp. 92-105. 
[6] Jackson, M. (2001). Problem Frames: Analyzing and Struc-
turing Software Development Problems. Harlow: Pearson Educ. 
[7] Mackay, W.E. (1995) Ethics, lies and videotape... In Pro-
ceedings of CHI '95, Denver, CO, ACM Press, pp. 138-145. 
[8] McCrickard, D. S. and Chewar, C. M. (2003). Attentive user 
interfaces: Attuning notification design to user goals and attention 
costs. Communications of the ACM 46, 3, ACM Press, pp. 67-72. 
[9] McCrickard, D. S., Czerwinski, M., and Bartram, L. (2003) 
Introduction: Design and evaluation of notification user inter-
faces. International Journal of Human-Computer Studies 8, 5 
(May 2003), pp. 509-514.  
[10] Rosson, M. B. and Carroll, J. M. (2002). Usability Engineer-
ing: Scenario-based Development of Human-Computer Interac-
tion, Morgan Kaufmann. 
[11] Schwartz, M., and Task Force on Bias-Free Language 
(1995). Guidelines for Bias-Free Writing. Indiana University 
Press, Bloomington IN. 
[12] Sutcliffe, A. (2000). On the effective use and reuse of HCI 
knowledge. ACM Transactions on Computer-Human Interaction 
7, 2, ACM Press, pp. 197-221.  
[13] Sutcliffe, A. (2002). The Domain Theory: Patterns for 
Knowledge and Software Reuse, Erlbaum Assoc. 
[14] Sutcliffe, A. G. and Carroll, J. M. (1999). Designing claims 
for reuse in interactive systems design. International Journal of 
Human-Computer Studies, 50, 3, Academic Press, pp. 213-241. 

 


