Lessons Learned in Creating Real-World
Interfaces

David C. Wrighton, Dillon T. Bussert, D. Scott McCrickard

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg VA 24061-0106 USA

dwrighto@vt.edu, dbussert@vt.edu, mccricks@vt.edu

Abstract. Informational displays have been developed that use light-
ing, air flow, and physical objects external to the computer screen, but
typically lacking are simple and straightforward steps for creating these
displays. This paper describes our experiences in creating a real-world
interface (RWI) using X10 devices and common household appliances,
and outlines our framework for creating RWIs quickly, easily, and inex-
pensively.

Presentation preferences in order: POSTER/DEMO, 5-MINUTE PRE-
SENTATION

1 Introduction

The goal of this work is to develop a framework and programming interface
for creating interfaces using real-world objects. We call the resulting informa-
tional displays real-world interfaces, or RWIs. Typical user interfaces use but-
tons, scrollbars, sliders, and similar on-screen visual displays to convey and in-
teract with information, whereas RWIs will augment or replace these displays
with changes in the surrounding environment that will convey information in a
less direct but noticeable manner. For example, changes in lighting could cor-
respond to the upcoming forecast for temperature, changes in air flow could
reflect fluctuations in the stock market, and changes in ambient music could
signal an upcoming meeting. We plan to provide programmers with the ability
to use real-world devices in much the same way that they would use a standard
user interface toolkit.

As a first step, we have constructed a RWI that displays weather information
using changes in lighting and air flow. The RWI was created using X10 devices,
which provide the means to send signals from computers to household devices
like lamps and fans. As X10 devices are typically not used in this way, we found
several issues at the programming interface level that makes it difficult to create
robust, reliable RWIs. We describe these issues and outline methods for dealing
with them.



2 Related work

This work was inspired by several projects in the area of ubiquitous computing.
Mark Weiser from Xerox PARC developed the notion of “calm technology” that
seeks to encalm and inform simultaneously [5]. The work is illustrated by artist
Natalie Jeremijenko in her “Dangling String”, an attractive wire hanging from
the ceiling in a hallway that reacts to signals from an Ethernet connection. A
quiet network results in only occasional twitches, while a busy network causes
the wire to whirl around noisily. Hiroshi Ishii and his Tangible Media Group at
MIT have developed the concept of tangible user interfaces that use physical
objects as tangible embodiments of digital information [4,2, 3]. For example, a
light pattern on the ceiling reflects the activity of the lab hamster and traffic
noises indicate the level of network traffic. Scott Hudson at CMU designed an
information percolator that uses bubbles passing through transparent tubes to
display images and patterns, thus communicating information in a pleasing yet
non-intrusive manner [1].

While these and similar projects provide interesting theories and examples of
interfaces outside the desktop, few steps have been taken to enable programmers
to build their own devices. While previous work has argued that lighted interfaces
in the environment may be too distracting [1] or that certain elements like air
flow may be too difficult to notice or too difficult to control [3], one can certainly
thing of scenarios when people want an interface to distract them (when the
interface is used as an alarm) and would notice air flow (when it was placed near
a door or narrow hallway. We hope to empower designers with the techniques
necessary to create real-world interfaces quickly, easily, and inexpensively.

3 Background

In our work, we are leveraging the X10 protocol and hardware. The X10 protocol
defines an overlaying method for sending signals over power lines between X10
hardware devices. Using this protocol, up to 256 different channels could be
used with a single in-house power grid. X10 hardware devices sends signals from
transmitters to receivers. Originally, transmitters were wall-mounted switches or
remote controls, though devices have emerged allowing users to control and check
the status of household receivers from a computer via a device that connects to
the serial port. The simplest receivers plug into any 110-volt wall outlet, toggling
power to appliances plugged into them. More complex receivers include dimming
and querying capabilities.

The X10 protocol has been in use for over 20 years, primarily for security
systems (programming lights to turn on when away) and convenience (remote
control access to lights and other devices, cameras, and motion detectors). How-
ever, we see significant possibilities in the areas in the communication and in-
teraction with information. The lighting, sounds, and visual effects generated by
typical household appliances have the ability to inform users, and the dimming
capabilities with newer X10 devices provide a richer, more subtle set of cues.



We created our initial RWIs in Perl. We chose Perl because it is widely used,
platform independent, and has available the interface and string manipulation
capabilities that are necessary for parsing the information we plan to display
using RWIs.

4 Approach

As a first step, we wanted to gain experience in building interfaces that use
X10 technology. Our goal was to understand the unique difficulties that arise in
treating an X10 receiver like a typical widget in a user interface. We acquired
an X10 PowerLinc device capable of sending and receiving signals from a com-
puter, a number of X10 two-way modules that can receive signals and respond
to state queries, and several household lamps and fans. Figure 1 shows the X10
components we used in constructing our RWI.

Fig. 1. X10 components used in constructing a RWI. The black box is the Powerlinc
interface that allows a computer to send signals via the serial port through the power
lines. The white boxes are X10 receivers into which appliances can be plugged. Each
receiver should have a different code, with up to 256 different codes available.

We created a RWI that uses changes in lighting and air flow to preview the
weather forecast. Weather data are extracted from a popular weather Web site
(www.weather.com), parsed to identify the predicted temperature and wind in
the upcoming hours relative to the current measured values, and used to control
the brightness of a lamp and the degree of air flow from fans all connected to
X10 devices. The RWI can continually preview the weather in a set number of
hours (say, three hours from now), or it can cycle through the predicted weather
for a given number of hours (say, for the next 12 hours). The RWI is located in



a lab near a door, with the expectation that as people leave the lab, they will
have a sense of the weather outside and will be reminded to bring a coat or hat,
if necessary. In addition, those in the lab can look at, listen to, or feel the effects
of the RWI to get a sense of the weather outside. Figure 2 shows a user sitting
at a computer next to our RWI.

Fig. 2. A user at a computer with a RWI at the right. The RWI consists of a lamp and
a fan.

We encountered numerous problems in designing our initial RWI, mainly
because the existing X10 command set is not designed to be utilized in the same
way as a typical user interface toolkit. Information can only be communicated
very slowly, at a rate of approximately 4 bytes per second. When information
was transmitted more quickly, X10 devices reacted unpredictably or erroneously.
It is not surprising that the developers of the X10 protocol did not consider these
issues in designing the toolkit as they did not expect people to use the commands
in the way that we do. However, to effectively create interfaces using X10 devices,
it is necessary to mask these problems. As such, we plan to create a module of
functions for Perl that will provide an effective programming layer for using
electrical appliances in the development of interfaces.

Below are some key concepts that we are incorporating into our module.

— Provide a non-blocking programming interface for all commands.
Given the slow transmission time in sending commands, it is unreasonable
to require programs to halt while waiting for completion and verification
of the commands. As such, systems that interface with our library will not
block upon calls to our library. This becomes far more critical as the systems



we interface with do things other than just create their output through our
library.

— Provide built-in status/error checking, detection, and recovery. We
plan to check for the presence of a signal on the interface before it begins its
transfer. There are several reasons for this, but primarily, it is poorly defined
how frequently one should check for the presence of a communication on the
line. To avoid failure in trying to send a command too soon after it sent the
last one, despite the device reporting that it is ready to send, we plan to
maintain state at the controlling computer, then use regular communication
between the home X10 device and the remote appliance devices to help
ensure consistency.

— Associate special meanings with remote control access to X10
devices. X10 users can control electrical appliances in a variety of ways:
through the computer, via wall switches or motion sensors, or with a remote
control. Our module will allow programmers to associate different behaviors
with each control. For example, dimming a RWI using a remote control may
mean that the end-user wants less noticeable alerts from the RWI: less in-
tense lighting changes, quieter audio alerts, etc. Alternatively, it may signify
that the end-user is less interested in seeing updates, so the rate at which
the RWI is updated may decrease with dimming. Our module will provide
the programmer with the power to associate unique meanings to external
end-user inputs.

Our next step will be to create a Perl module that provides a programming
interface that incorporates the previously mentioned concepts. The commands
will be based on on the ones used to interface Tk, a popular graphical toolkit.
With compact, simple commands using a syntax familiar to any Perl program-
mer, a programmer can control the power levels to an electrical device or can
associate the power levels with changes to variables. The end product will be
a Perl module that, with the appropriate hardware, will allow programmers to
create applications for real-world interfaces.

As we develop the module, we plan to construct additional RWIs. In so
doing, we expect that we will learn more about the needs of programmers in
developing RWIs, knowledge that we will use in designing and improving the
module. Specific areas in which we plan to develop RWIs include the following;:

— Augmenting handheld computers. Handheld computers like the Palm
have enjoyed a burst of popularity in recent years, but their small screen
sizes make their output abilities somewhat limited. By grabbing desktop
synchronization data, we will develop RWIs that integrate with the core
handheld programs: calendars, address books, to-do lists, and notepads. For
example, a RWI could cause a fan to blow progressively harder as a meeting
in the calendar approaches, or the brightness of a lamp could represent the
percent of completed items in the to-do list.

— Computer management. We intend to support awareness of computer
system behavior at both the user level and the administrator level. For typ-
ical users, RWIs could be used to show the the ambient temperature inside



case, temperature of speed of computer fan, CPU usage, and battery avail-
ability. For system administrators, RWIs could reflect system logins, network
usage, or server hits. One potential way to show this information would be
to use an aquarium bubbler, where problem levels in the system would be
reflected with a loud motor and lots of bubbles, thus providing audio and
visual cues of the problem.

— Tracking Web information. Information on the Web changes frequently,
to the point that it is impossible for a user to keep track of new information.
These changes can be monitored with a script and displayed using a RWI.
Stock prices, traffic data, weather data, news, sports scores, and library
checkouts all exemplify this type of information.

When the development of the RWI module has been completed, we plan to
use it in human-computer interaction courses. The students in the classes will
use the toolkit to create RWIs similar to ones in the list above or of their own
invention. Upon completion of the classes, we expect to have a toolkit and set
of sample applications that is robust enough for general use.

5 Conclusion

This paper described our experiences in creating a RWI using X10 devices and
common household appliances. We discussed the issues that arise when using X10
devices in this way, and we outlined a set of concepts that should be considered
to help overcome them. We described our plans for a toolkit for building RWIs
and a series of tools that could be built using this toolkit.

References

1. Jeremy M. Heiner, Scott E. Hudson, and Kenichiro Tanaka. The information per-
colator: Ambient information display in a decorative object. In Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST ’99), pages
141-148, Asheville, NC, November 1999.

2. Hiroshi Ishii, Ali Mazalek, and Jay Lee. Bottles as a minimal interface to access
digital information. In Conference Companion of the ACM Conference on Human
Factors in Computing Systems (CHI ’01), pages 187-188, Seattle, WA, April 2001.

3. Hiroshi Ishii, Sandia Ren, and Phil Frei. Pinwheels: Visualizing information flow in
an architectural space. In Conference Companion of the ACM Conference on Human
Factors in Computing Systems (CHI ’01), pages 111-112, Seattle, WA, April 2001.

4. Hiroshi Ishii and Brygg Ulmer. Tangible bits: Towards seamless interfaces between
people, bits, and atoms. In Proceedings of the ACM Conference on Human Factors
i Computing Systems (CHI ’97), pages 234-241, Atlanta, GA, March 1997.

5. Mark Weiser and John Seely Brown. Designing calm technology. PowerGrid Jour-
nal, 1.01, July 1996.



