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1.1 Introduction

The functioning of a living cell is governed by an intricate network of interactions among
different types of molecules. A collection of long DNA molecules called chromosomes, that
together constitute the genome of the organism, encode for much of the cellular molecular
apparatus including various types of RNAs and proteins. Short DNA sequences that are part
of chromosomal DNA, called genes, can be transcribed repeatedly to result in various types
of RNAs. Some of these RNAs act directly, such as micro (miRNA), ribosomal (rRNA),
small nuclear (snRNA), and transfer (tRNA) RNAs. Many genes result in messenger RNAs
(mRNAs), which are translated to corresponding protein molecules, a diverse and important
set of molecules critical for cellular processes. A plethora of small molecules that are outside
the hereditarily derived genes-RNAs-proteins system, called metabolites, play a crucial role
in biological processes as intermediary molecules that are both products and inputs to
biochemical enzymatic reactions.

These complex interactions define, regulate, and even initiate and terminate biological
processes, and also create the molecules that take part in them. They are pervasive in
all aspects of cell function, including transmission of external signals to the interior of the
cell, controlling processes that result in protein synthesis, modifying protein activities and
their locations in the cell, and driving biochemical reactions. Gene products coordinate
to execute cellular processes – sometimes by acting together, such as multiple proteins
forming a protein supercomplex (e.g., the ribosome), or by acting in a concerted way to
create biochemical pathways and networks (e.g., metabolic pathways that break down food,
and photosynthetic pathways that convert sun light to energy in plants). It is the same gene

0-8493-8597-0/01/$0.00+$1.50
c© 2001 by CRC Press, LLC 1-1



1-2

products that also regulate the expression of genes, often through binding to cis-regulatory
sequences upstream of genes, to calibrate gene expression for different processes and to even
decide which pathways are appropriate to trigger based on external stimuli.

The genomic revolution of the past two decades provides the “parts list” for systems
biology. Advances in high-throughput experimental techniques are enabling measurements
of mRNA, protein, and metabolite levels, and the detection of molecular interactions on
a massive scale. In parallel, automated parsing and manual curation have extracted in-
formation on molecular interactions that have been deposited in the scientific literature
over decades of small-scale experiments. In combination, these efforts have provided us
with large-scale publicly-available datasets of molecular interactions and measurements of
molecular activity, especially for well-studied model organisms such as S. cerevisiae (baker’s
yeast), C. elegans (a nematode), and D. melanogaster (the fruitfly), for pathogens such as
P. falciparum (the microbe that causes malaria), and for H. sapiens itself.

These advances are transforming molecular biology from a reductionist, hypothesis-driven
experimental field into an increasingly data-driven science, focused on understanding the
functioning of the living cell at a systems level. How do the molecules within the cell in-
teract with each other over time and in response to external conditions? What higher-level
modules do these interactions form? How have these modules evolved and how do they con-
fer robustness to the cell? How does disease result from the disruption of normal cellular
activities? Understanding the complex interactions between these diverse and large body
of molecules at various levels, and inferring the complex pathways and intermediaries that
govern each biological process, are some of the grand challenges that constitute the field
of systems biology. The data deluge has resulted in an ever-increasing importance placed
on computational analysis of biological data and computationally-driven experimental de-
sign. Research in this area of computational systems biology (CSB) spans a continuum
of approaches [IL03] that includes simulating systems of differential equations, Boolean
networks, Bayesian analysis, and statistical data mining.

Computational systems biology is a young discipline in which the important directions are
still in a state of flux and being defined. In this chapter, we focus primarily on introducing
and formulating the most well-studied classes of algorithmic problems that arise in the
phenomenological and data-driven analysis of large-scale information on the behavior of
molecules in the cell. We focus on research where the problem formulations and algorithms
developed have actually been applied to biological data sets. Where possible, we refer
to theoretical results and tie the work in the CSB literature to research in the algorithms
community. The breadth of topics in CSB and the diversity of the connections between CSB
and theoretical computer science preclude an exhaustive coverage of topics and literature
within the scope of this short chapter. We caution the reader that our treatment of the
topics and their depth and citation to relevant literature are by no means exhaustive.
Rather, we attempt to provide a self-contained and logically interconnected survey of some
of the important problem areas within this discipline, and provide pointers to a reasonable
body of literature for further exploration by the reader. By necessity, this chapter introduces
a number of biological terms and concepts that a computer scientist may not be familiar
with. A glossary at the end of the chapter provides an easy resource for cross-reference.

1.2 An Illustrative Example

To elucidate how a typical biological process may unfold, and help explain some of the mod-
els used in systems biology, consider a generic process by which a eukaryotic cell responds
to an external signal, e.g., a growth factor. See Figure 1.1 for a specific illustration of such
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FIGURE 1.1: An illustration of a cellular signaling network (a Wikipedia image released
by the author into the public domain).

a process. The growth factor binds to a specific receptor protein on the cell surface. The
receptor protein dimerizes (i.e., protein molecules with bound growth factors themselves
bind to each other). The dimerized form of the receptor is active; it phosphorylates (adds
phosphate groups to) other proteins in the cytoplasm of the cell, which in turn physically
interact with or phosphorylate other proteins. Multiple such signaling cascades may be
activated. The cascade culminates in the activation of a transcription factor; the transcrip-
tion factor (TF) moves to the nucleus, where it binds to target sites on genomic DNA that
recognize the TF. The TF recruits the cellular apparatus for transcription, resulting in the
expression of numerous genes. These genes are converted to proteins in the ribosome of the
cell, and then transported to various locations within the cell to perform their activities.
Some proteins may be TFs themselves and cause the expression of other genes. Others
may catalyze enzymatic reactions that produce or consume metabolites. Synthesized pro-
teins may activate other signaling or reaction cascades. Ultimately, the initial binding of
the growth factor with its receptor changes the levels and activities of numerous genes,
proteins, metabolites, and other compounds, and modulates global responses such as cell
migration, adhesion, and proliferation.

High-throughput experiments shed light on many of these interaction types. Interactions
between signaling proteins (e.g., kinases and phosphatases) and their substrates constitute
directed protein phosphorylation networks. Undirected protein-protein interaction (PPI)
networks represent physical interactions between proteins. Directed transcriptional regula-
tory networks connect TFs to genes they regulate. Biochemical networks describe metabolic
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reactions with information on the enzymes that catalyze each reaction. Taken together, the
known molecular interactions for an organism constitute its wiring diagram, a graph where
each node is a molecule and each edge is a directed or undirected interaction between two
molecules. As generally conceived, a wiring diagram contains molecules and interactions of
many types.

Wiring diagrams usually contain direct interactions between molecules. Sometimes they
are augmented with indirect interactions. A prominent example is a genetic interaction:
two genes have a genetic interaction if the action of one gene is modified by the other. An
extreme case of a genetic interaction is a synthetically lethal interaction, where knocking
out each of two genes does not kill the cell but knocking out both genes results in cell death.
For other examples of indirect or “conceptual” interactions, see functional linkage networks
in Section 1.3 and reverse-engineered gene networks in Section 1.6.2.

1.3 Gene Function Prediction

The genomes of more than 600 organisms (including more than 70 eukaryotes) have been
completely sequenced [LMTK08]. However, a fundamental roadblock to progress in sys-
tems biology is the poor state of knowledge about the biological functions of the genes
in sequenced genomes [Kar04, RKKe04, Rob04]. Many genes of unknown function might
support important cellular functions. Discovering the functions of these genes will provide
critical insights into the biology of many organisms. In addition, discovering these functions
will improve our ability to annotate genomes that are sequenced in the future.

The phrase “gene function” has a variety of meanings. It often refers to the “molecular
function” of the protein the gene codes for, e.g., whether the protein catalyzes a reaction or
binds DNA to regulate the expression of a target gene. More generally, the phrase refers to
the context in which the protein acts in the cell, e.g., the component of the cell it is localized
to; the pathway or biological process it is a member of; the cell type the gene is expressed
in (in the case of multi-cellular organisms); or the developmental stage during which the
gene is active. In this section, we will restrict our attention to three structured controlled
vocabularies (ontologies) developed by the Gene Ontology (GO) Consortium [ABBB00]:
molecular function, cellular component, and biological process. Each ontology is a Directed
Acyclic Graph (DAG) where each function is connected to parent functions by relationships
such as “is a” or “part of”. By design, a function represents a more specific biological
concept than any of its parents. GO annotations follow the true path rule: if a gene
is annotated with a function, then the gene must be annotated with all parents of that
function.

A powerful method for predicting gene function relies on the evolutionary conservation
of gene and protein sequences. Thus, if a gene in an organism has a nucleotide sequence,
amino-acid sequence, or protein structure very similar to that of a gene with a known
function [GJF07], then the function can be transferred to the first gene. These methods
are primarily useful for determining the molecular function of a gene, which often depends
directly on the structure of the protein encoded by the gene. Further, these methods do
not provide annotations for the more than 40% of eukaryotic genes that do not have high
sequence or structural similarity to any genes in other organisms [EKO03].

A promising approach to gene function prediction starts by constructing a functional
linkage network (FLN) connecting genes of interest. In such a network, each node is a
gene and each edge connects two genes that may share the same function, based on some
experimental or computational evidence. For instance, two genes may be linked if they
have similar expression profiles in some experiment; if the proteins they code for inter-
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FIGURE 1.2: A subgraph of an FLN in S. cerevisiae for the biological process “ribosome
biogenesis.” Each node is a gene. Each edge corresponds to two genes whose protein
products interact. Using the notation in the text, the rectangles are members of V +

f (where
f is “ribosome biogenesis”), the circles are elements of V 0

f , and the diamonds are in V −f .
To improve readability, we display only interactions involving genes in V 0

f . (Figure taken
from Karaoz et al. [KMLe04].)

act physically or catalyze reactions involving the same metabolite; or, if knocking-out or
silencing the expression of both genes produces the same phenotype. Constructing biolog-
ically meaningful FLNs from functional genomic data is an active area of research. Most
existing methods proceed by estimating the probability that a given pair of genes should
be functionally linked based on a given type of data and then integrating signals from
multiple data sets [MT07, LLC+08]. Many such FLNs are available in publicly-accessible
databases [BCS06].

In this section, we focus on the problem of predicting gene functions assuming that an
FLN is given as input. We denote the FLN by an undirected graph G = (V,E), where V is
the set of nodes and E is the set of edges. For an edge (u, v) ∈ E, let 0 ≤ wuv ≤ 1 denote
the weight of the edge in E between u and v; we interpret wuv as a measure of confidence
that u and v should be annotated with the same function. Note that the edge (u, v) suggests
that u and v could perform the same function in the cell but does not specify what that
function is. Let f be a function of interest in the Gene Ontology. We cast the problem
of predicting which nodes (genes) in G have the function f as a semi-supervised learning
problem [CSZ06]. We partition V into three subsets V +

f , V 0
f , and V −f , corresponding to

positive examples, unknown examples, and negative examples, respectively. A node v is in
V +
f if v is annotated either with f or with a descendant of f in the GO DAG; v is in V 0

f

if v 6∈ V +
f and there is a function f ′ that is an ancestor of f that annotates v; and v is a

member of V −f otherwise. See Figure 1.2 for an example.
For each gene in V 0

f , our goal is to predict whether that gene should be an element
of V +

f or V −f . We formulate the problem in general terms as computing a (mathematical)
function r : V → R that is “smooth” over the nodes of G, i.e., for every edge (u, v) ∈ E,
the larger wuv is, the closer r(u) and r(v) are. After computing such a function, we predict
every node v ∈ V 0

f such that r(v) ≥ t, for some input threshold t, as being annotated with
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f . Note that r(v) is directly compared with the threshold, and not with the r(u) values
for each node u connected to v. This is because edge weights are used to ensure that r is
smooth - i.e, for a highly weighted edge (u, v), it is likely both u and v are classified the
same way due to the closeness of r(u) and r(v). There are a number of ways to ensure that
r is smooth. A popular technique [ZGL03] is to fix r(u) = 1 for each u ∈ V +

f , r(u) = −1
for every u ∈ V −f , and to compute r so that it minimizes the “energy”

E(G, r) =
∑

(u,v)∈E
u∈V 0

f or v∈V 0
f

wuv(r(u)− r(v))2. (1.1)

For a node v ∈ V , let Nv denote the neighbors of v in G. Karaoz et al. [KMLe04] restrict
r(v) to be either −1 or 1; in this case, they can equivalently minimize

−
∑

(u,v)∈E
u∈V 0

f or v∈V 0
f

wuvr(u)r(v).

An algorithm that iterates over all the nodes in V 0
f and for each node v sets

r(v) = sgn

(∑
u∈Nv

wuvr(u)

)
(1.2)

until the r(v) values converge, will yield a value of energy that is at most half as large
as the smallest value possible [KBDS93]. Nabieva et al. [NJAe05] and Murali, Wu, and
Kasif [MWK06] note that this problem can also be solved by computing minimum cuts in
an appropriately transformed version of G. Nabieva et al. solve the problem as a special
case of the NP-hard minimum multiway k-cut problem using integer linear programming.
However, their approach allows a gene to have only one among a set of k functions. The
approach adopted by Murali, Wu, and Kasif transforms G into a flow network; they compute
the minimum s-t cut in this graph using standard approaches [GT88].

Other approaches to gene function prediction based on FLNs include the use of frame-
works such as Markov Random Fields, support vector machines (SVMs), and decision
trees. We refer the reader to two recent surveys for discussions of these and other ap-
proaches [NBH07, SUS07, PCTMe08].

A thorny issue in gene function prediction is that biological experiments rarely report
that a gene does not perform a particular function. Hence, the set V −f is hard to de-
fine accurately. A few approaches attempt to predict gene functions only from V +

f and
V 0
f [CX04, NJAe05]. How best to exploit the hierarchical dependence between functions in

GO is an active research problem [BST06, PCTMe08]. There may be other types of depen-
dencies between functions, e.g., genes annotated with function f1 may have a surprisingly
large number of edges in G to genes annotated with function f2. What is the best way to
detect such dependencies and utilize them to predict gene function? Finally, the question of
systematically using FLNs to transfer function between organisms has received surprisingly
little attention [NK07, SSKe05].

1.4 Gene Expression Analysis

Gene expression is the process by which a gene is first transcribed to messenger RNA
(mRNA) and then translated into a protein. The expression level of a gene is the number
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of copies of its mRNA that are present in a cell. Genome sequencing and the concomitant
advent of DNA microarrays have allowed biologists to simultaneously measure the expression
levels of all the genes in a sample of cells; the expression level so measured is an average
over all the cells in the sample. DNA microarrays have revolutionized biological research
since they capture a snapshot of the activity of all genes in the cells in the sample. A typical
gene expression dataset usually consists of measurements from multiple samples under a
particular experimental condition; the samples can correspond to multiple time-points after
exposing cells to a particular treatment or stimulus or to multiple patients diagnosed with
a particular disease.

1.4.1 Gene expression clustering

Let V denote the set of genes in an organism. The gene expression data set for a condition
consists of a set of samples S, each with an expression level for each gene in V ; we denote
by gS the vector of expression levels for gene g in the samples in S. Let d = |S| and n = |V |.
Typically, d� n.

A natural problem that arises now is to cluster the vectors VS = {gS | g ∈ V }.1 Clustering
allows the grouping of genes based on the similarity of their response in the condition; since
similarly-expressed genes may perform the same function in the cell, such clusters can
be the basis for constructing FLNs for gene function prediction (see Section 1.3). Two
popular methods are k-means clustering and hierarchical clustering. In k-means clustering,
the goal is to partition V into k sets such that the sum of squared distances from each
gene to the centroid of the partition it belongs to is minimized. This problem is known
to be NP-hard even for k = 2 when d and n are part of the input [DFKe04]. Feldman,
Monemizadeh, and Sohler developed a polynomial-time approximation scheme (PTAS) for
this problem [FMS07]. Given parameters ε, λ > 0, their algorithm computes a (1 + ε)-
approximate solution in time O(nkd+ d(k/ε)O(1) + 2Õ(k/ε)) with probability at least 1−λ.
In practice, most applications of k-means clustering use Lloyd’s heuristic [Llo82] – start with
a random set of k centers and repeatedly apply the following two steps until convergence: (i)
associate each gene with the center closest to it, and (ii) move each center to the centroid
of the genes associated with it. Har-Peled and Sadri [HPS05] prove that the number of
iterations taken by variants of this algorithm is polynomial in |V |, k, and the spread of
VS , which is defined to be the diameter of VS divided by the distance between the two
closest genes. Denoting by ∆2

k(VS) the optimal solution to the k-means problem for VS ,
Ostrovsky et al. [ORSS06] developed a linear-time constant-factor approximation algorithm
and a PTAS that returns a (1 + ε)-optimal solution with constant probability in time
O(2O(k(1+ω2)/ε)dn), when VS is ω-separated, i.e., if ∆2

k(VS)/∆2
k−1(VS) ≤ ω2.

The agglomerative version of hierarchical clustering is typically used to analyze gene
expression data [ESBB98]. It starts by putting each gene in a separate cluster and repeatedly
merging the closest pair of clusters. Typically, these algorithms continue until only one
cluster remains. To specify this algorithm completely, it suffices to define the measure of
distance between two genes and between two sets of genes. Let δ(a, b) denote the distance
between two genes a and b and let A and B be two sets of genes. In single-linkage clustering,
we define the distance δ(A,B) = mina∈A,b∈B δ(a, b); hierarchical clustering under this model
is equivalent to computing the minimum spanning tree of the complete graph whose nodes

1Clustering the vectors corresponding to the samples is also useful. For the sake of concreteness, we
focus on clustering the vectors corresponding to the genes.
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are genes and an edge between two genes has weight equal to the distance between them.
For the frequently used Pearson correlation metric, Seal, Komarina, and Aluru [SKA05]
provide an O(n log n) algorithm for single-linkage clustering by exploiting the geometric
transformation that the Pearson correlation coefficient between two gene expression vectors
is equal to the cosine of the angle between the corresponding vectors. In complete-linkage
clustering, δ(A,B) = maxa∈A,b∈B δ(a, b), whereas in average-linkage clustering, δ(A,B) is
the distance between the centroids of A and B. Naive algorithms usually run in O(dn2) time
and may require O(n2) space (for storing all pair-wise distances between genes). Krznaric
and Levcopoulos [KL02] present an O(n log n) time and O(n) space algorithm for complete
linkage clustering under the L1 and L∞ metrics; for every other fixed Lt metric, their
algorithm approximates the complete linkage clustering to an arbitrarily-small factor with
the same bounds. Borodin, Ostrovsky, and Rabani present sub-quadratic algorithms for
approximate versions of the agglomerative clustering problem [BOR04].

Displaying a hierarchical clustering is problematic since the order in which the leaves of
the underlying tree should be laid out is unclear. This issue is important since practitioners
still use visualizations of the clustering to detect important or interesting patterns in the
data. Bar-Joseph et al. [BJDGe03] compute an ordering of the leaves that minimizes the
sum of the similarity between adjacent leaves in the ordering in O(4tn3) time. They also
present a method that allows up to t (a user-specified number) clusters to be merged at any
step; the method runs in O(n3) time.

Given a hierarchical clustering of the genes, for every k > 1, it is possible to obtain an
induced k-clustering of the genes, i.e., a partition of the genes into k clusters, by stopping
the clustering algorithm when only k clusters remain. Dasgupta and Long [DL05] consider
whether there is a hierarchical clustering such that for every k > 1, there is an induced
k-clustering that is close to the optimal k-clustering of the genes. Defining the cost of a
clustering to be the largest radius of one of its clusters, they modify Gonzalez’s approx-
imation algorithm for the k-center problem [Gon85] to produce a hierarchical clustering
such that for every k, the induced k-clustering has cost at most eight times the optimal
k-clustering. They also present a randomized algorithm that achieves an approximation
factor of 2e ≈ 5.44.

1.4.2 Gene expression biclustering

The clustering algorithms discussed in the previous section suffer from two primary draw-
backs. First, they operate in the space spanned by all the samples; thus, they may not
detect patterns of clustering that are apparent only in a sub-space of Rd. Second, since many
algorithms partition the set of genes into clusters, they are unable to correctly deal with
genes that perform multiple functions; such genes should participate in multiple clusters
but will be placed in at most one cluster.

Biclustering (also known as projective or subspace clustering) has emerged as a pow-
erful algorithmic tool for tackling these problems. A typical definition of a bicluster is a
pair (U, T ), where U ⊂ V and T ⊂ S such that the genes in U are clustered well in the sam-
ples in T but are not clustered well in the samples in S−T . In this formulation, a bicluster
includes only a subset of genes and samples. Hence, algorithms that compute biclusters
capture condition-specific patterns of co-expression. Biclustering algorithms allow a gene
or a sample to participate in multiple biclusters, each of which may correspond to a different
pathway or biological process. Different biclusters may contain different numbers of genes
and/or samples. A number of different methods have emerged for computing biclusters in
gene expression data; two papers provide excellent surveys [MO04, TSS06].

A powerful approach to computing biclusters rests on representing gene expression data
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as a bipartite graph connecting genes to samples. Algorithms use different criteria to decide
which gene-sample pairs to connect in such a graph. A bicluster is usually modeled as a
bipartite clique (biclique) (U, T ), where U ⊂ V and T ⊂ S. The goal is to compute one
or more bicliques of large size in the graph, where size of a biclique is usually defined as
|U ||T |. Finding the biclique with the largest number of edges in an unweighted bipartite
graph is known to be NP-hard [Pee03]. Ambühl, Mastrolili and Svensson [AMS07] extend
results by Khot [Kho06] to prove that this problem is hard to approximate, i.e., it does not
have a PTAS, under the assumption that NP does not have randomized algorithms that
run in sub-exponential time. Lonardi, Szpankowski and Yang [LSY06] propose a random-
sampling algorithm to compute the largest bicluster (formalized as a biclique in a bipartite
graph). We describe a related approach by Mishra, Ron, and Swaminathan [MRS04] in
more detail. These authors consider ε-bicliques: each gene in such a biclique is connected
to at least a (1 − ε) fraction of the samples in the biclique. They pose the problem of
computing an ε-biclique that has at least a (1− 2b) fraction of the number of edges in the
maximum biclique, for a small constant b ≥ 0. They present a random-sampling algorithm
that is efficient if the largest biclique has at least some fraction ρG of the genes and some
fraction ρS of the samples. Under this assumption, their algorithm runs in time linear in d,
logarithmic in n, quasi-polynomial in ρG and ρS , and exponential in poly(1/ε).

Mishra, Ron, and Swaminathan also propose a strategy for computing multiple bicliques.
Simply computing the k largest bicliques for some value of k may be unsatisfactory: these
bicliques may have considerable overlap in their edge sets, and highly overlapping bicliques
may not capture the diversity of biclusters present in the data. To preclude this possibility,
the authors introduce the notion of δ-domination: one biclique δ-dominates another if the
number of edges in the second biclique that do not belong to the first is at most a δ fraction
of the size of the union of the two edge sets. Next, they introduce the notion of when a
collection C of k ε-bicliques is diverse: when for every pair (U ′, T ′) and (U ′′, T ′′) of bicliques
in C, neither δ-dominates the other. Finally, they introduce the notion of when a collection
C of k ε-bicliques swamps a biclique (U ′, T ′): either one of the k bicliques in C δ-dominates
(U ′, T ′), or (U ′, T ′) does not contain many more edges than any biclique in C. Armed with
these definitions, they pose the problem of computing a collection C of k ε-bicliques that are
diverse and swamp every large biclique in the graph (a biclique is large if it contains at least
some fraction ρG of the genes and some fraction ρS of the samples). Their algorithm runs
in time linear in d, logarithmic in n, quasi-polynomial in k, ρG and ρS , and exponential in
poly(1/ε).

Tanay, Sharan, and Shamir [TSS02] construct a bipartite graph between genes and sam-
ples that represents a discretized version of the data. They assess edge weights in this graph
based on a statistical model. They define a bicluster to be a bipartite clique (biclique) of
large total edge weight. Under the assumption that each gene is connected to at most a con-
stant number of samples, they simply enumerate all bipartite cliques in this graph. In prac-
tice, they supplement this approach with local searches to improve the weight of bipartite
cliques and with hashing techniques to speed up the search. In a follow-up paper, they ex-
tend their formulation to integrate analysis of different types of genome-wide data [TSKS04].
In this work, the bipartite graph connects genes to properties. Properties include expres-
sion of a gene in a sample, regulation of a gene by a transcription factor, and response of
a gene to a chemical treatment. In another follow-up study, Tanay et al. [TSKS05] extend
these techniques to analyze gene expression data from a new study in the context of a large
compendium of data from prior studies; they recast the new dataset in terms of biclusters
computed from the other datasets and new biclusters discovered only upon the addition of
the new data.

Motivated by the approach proposed by Tanay, Sharan, and Shamir, Tan [Tan08] con-
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siders the problem of finding the biclique of largest total weight in a weighted bipartite
graph where edge weights are positive or negative integers. Under the assumption that the
absolute value of the ratio of the smallest edge weight to the largest edge weight is in the
range Ω(nδ−1/2)∩O(n1/2−δ),2 where δ > 0 is an arbitrarily-small constant, Tan shows that
this problem is hard to approximate within a factor of ε for some ε > 0 unless RP = NP.
Tan et al. [TCZZ07] prove that other formulations of biclustering [LO02, BDCKY02] are
also hard to approximate.

The approaches discussed above are applicable when real-valued gene expression data
is discretized. When such a discretization is not preferred, a geometric viewpoint may be
more appropriate. From this perspective, the approaches discussed above compute orthogo-
nal biclusters, i.e., each bicluster is a projection of a subset of the genes into an orthogonal
subspace of Rd spanned by a subset of samples. See Figure 1.3 for examples of such biclus-
ters. This image is based on the approach proposed by Procopiuc et al. [PJAM02]. In this

Sample 2

Bicluster 3

Bicluster 1

Bicluster 2
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3

Sample 1

FIGURE 1.3: Example of orthogonal biclusters. Samples 2 and 3 belong to bicluster 1,
samples 1 and 2 are elements of bicluster 2, and all three samples are in bicluster 3. A
dashed face of a box indicates the dimension along which the box is unbounded.

model, a gene is an element of a bicluster if and only if the gene’s expression levels in the
samples in the bicluster span an interval of width at most w, where w > 0 is a parameter.
They consider dense projective clusters, i.e., those that contain at least an α-fraction of the
samples, 0 ≤ α ≤ 1. In addition, they introduce a condition that specifies the trade-off be-
tween the number of genes and number of samples in a bicluster; this condition depends on
a parameter β. Under this formulation, they present a Monte Carlo algorithm to compute
a bicluster with the largest number of genes, and with width at most 2w with probability
at least 1/2, in O(ndlog(2/α)/ log(1/(2β))) time. Melkman and Shaham [MS04] describe a
closely-related algorithm for the following model: for every pair of genes participating in a
bicluster, the ratio of the expression levels of this pair of genes in each of the samples in
the bicluster is a constant depending only on the two genes. They introduce the notion of
sleeve-width to allow noise in this model.

Attention has also been paid to the problem of non-orthogonal projective clustering. The

2We have rewritten Tan’s condition assuming n ≥ d.
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typical formulation of this problem seeks to approximate a set V of n points in Rd by a col-
lection F of k shapes in Rd. The shapes in F may be points, lines, j-dimensional subspaces
(j < d), or non-linear shapes. By assigning each point in V to the closest subspace in F ,
we obtain a projective clustering of V . Algorithms attempt to minimize a value such as the
sum of the distances from each point to the closest shape, the sum of the squares of these
distances, or the largest of these, yielding the k-median, k-mean, or k-centre projective clus-
tering problems respectively. When k or d are part of the input, Megiddo and Tamir [MT83]
have shown that many versions of these problems are NP-Hard. Feldman et al. [FFSS07]
summarize known results for approximating the quality of the best clustering. They point
out that all such approximations must be super-polynomial in k, unless P = NP . Motivated
by this observation, they consider (α, β) bi-criteria approximation algorithms that compute
α j-dimensional flats whose quality is within a β factor of the best approximation by k such
flats. Their algorithm achieves performance guarantees of α(k, j, n) = log n(jk log log n)O(j)

and β(j) = 2O(j) in time dn(jk)O(j) with probability at least 1/2. Their algorithm applies
simultaneously to the median, mean, and centre versions of the problem.

We note that orthogonal projective clustering algorithms are more likely to be useful in
practice, since they are easier to interpret: each bicluster is simply a set of genes and a set
of samples. Moreover, existing orthogonal biclustering algorithms allow different computed
biclusters to have differing numbers of genes and samples, a property essential to capturing
the diversity of different biological processes.

1.5 Structure of the Wiring Diagram

In Section 1.2, we defined a wiring diagram as the network composed of the known molecu-
lar interactions for an organism. Specifically, the wiring diagram is a graph where each node
is a molecule and each edge is a directed or undirected interaction between two molecules.
A pair of molecules may be connected by multiple edges; each edge is usually annotated
with information on the type of the interaction, e.g., physical interaction, phosphorylation,
or regulation. As mentioned earlier, wiring diagrams are now available for a number of
organisms. Some types of networks (e.g., PPI networks) have been experimentally studied
on a much larger scale and for many more organisms than others (e.g., transcriptional reg-
ulatory networks [HGLR04]). Limitations in experimental techniques lead to considerable
noise in available networks; they contain erroneous interactions (false positives) and miss
many interactions (false negatives). Assessing error rates at the level of experiment types
and individual interactions is an area of active research [SSR+06]. There are other types
of uncertainty inherent in these data. For example, we may know that a set of proteins
interact to form a protein complex, but we may not know precisely which pairs of proteins
interact within the complex [BVH07].

Nevertheless, computational studies of wiring diagrams (especially, PPI network and
transcriptional regulatory networks) have yielded numerous insights into their structure
and evolution. Preliminary studies of the PPI networks and metabolic networks suggested
that their degree distributions follow the power law [AJB00, JTA+00]. More specifically,
the fraction of nodes with degree d ≥ 1 is proportional to d−γ , with typical values of γ
ranging between 2 and 3. More recent studies have cast doubts on these results, arguing
that power law distributions may arise from experimental biases and artifacts caused by
sampling [HDBe05, SWM05].

What “systems-level” insights into cellular function can wiring diagrams reveal? One of
the guiding principles of systems biology is that molecules within the cell organize themselves
into “modules” [HHLM99]. A module may be loosely defined as a group of interacting
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molecules that act coherently in the cell. Modules can share both nodes and edges, especially
since many genes and proteins are multi-functional. Modules can be hierarchical in the sense
that one module may contain another. In a sense, such modules constitute “building blocks”
of wiring diagrams. Examples of modules are densely interacting proteins (perhaps forming
complexes), protein sub-networks that may be evolutionarily conserved in many organisms,
biochemical pathways that synthesize a particular compound, and sets of genes that have
co-evolved and are found in multiple genomes.

1.5.1 Network decomposition

Graph clustering, or automatic decomposition of a network into modules or communities,
has a rich history, with many problem formulations and techniques [CF06]. In the context
of systems biology, a number of papers have studied the problem of decomposing the wiring
diagram, mainly PPI networks, into modules [SI06]. These methods use various ad hoc
heuristics, e.g., repeatedly removing the edge with largest betweenness centrality [DDS05],
local searches around multiple seeds [BH03, Bad03], and approaches akin to simulated an-
nealing [SM03]. We describe a few approaches that find a partition or cover of an undirected
graph into multiple modules using principled ideas.

Given an undirected graph G = (V,E), Hartuv and Shamir [HS00] define an induced
subgraph H of G to be highly connected if the minimum number of edges that must be
removed in order to disconnect H is at least half the number of nodes in H. They present
an output-sensitive recursive algorithm to compute all highly-connected subgraphs of G.
For each subgraph returned, the algorithm runs in time taken to compute the minimum cut
in G.

Newman [New06] measures the quality of a partitioning of G into two subgraphs G1

and G2 using the notion of modularity, defined as

1
4|E|

∑
(u,v)

(
wuv −

dudv
|E|

)
susv, (1.3)

where the summation is over all pairs of nodes in V , wuv = 1 if (u, v) ∈ E and 0 other-
wise, du is the degree of node u ∈ V , and su = 1 (respectively, −1) if u ∈ G1 (respectively,
G2). He optimizes this quantity by computing the leading eigenvector of a symmetric ma-
trix whose values are the elements within the summation. To find multiple modules, he
recursively applies this algorithm, stopping when the largest eigenvalue for a subgraph is 0.
Brandes et al. [BDGe06] prove that maximizing modularity is strongly NP-complete.

The −dudv/|E| term in (1.3) arises from the fact that if the edges in G are rewired
randomly while maintaining the degree of the nodes, then the probability that u and v are
connected is dudv

|E| . Intuitively, subtracting this quantity accounts for any modularity that a
random graph with the same degree sequence as G may have. This notion arises repeatedly
in CSB: what is the probability that an observed network module may arise in “random”
data? A typical approach to answering this question empirically is to sample multiple
times from the distribution of random networks with the same degree sequence as G, run
the network decomposition algorithm on each sample, and use the distribution of module
sizes thus obtained to estimate the desired probability. The Markov Chain Monte Carlo
method is useful in this situation, but current algorithms have large run-times, making them
unsuitable for graphs with tens of thousands of nodes [GMZ03]. Given a degree sequence
where the maximum degree dmax = O(|E|1/4−τ ), where τ is any positive constant, Bayati,
Kim, and Saberi [BKS07] develop an algorithm that runs in O(|E|dmax) time and generates
any graph with the given degree sequence with probability within 1±o(1) factor of uniform.
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They also use an approach called sequential importance sampling to convert this algorithm
into a fully polynomial randomized approximation scheme. Specifically, for any ε, δ > 0,
with probability at least 1−δ, the output of their algorithm is a graph with the given degree
sequence; this graph is drawn from the set of all such graphs with uniform probability upto
a multiplicative error of 1± ε. Their algorithm runs in time O(|E|dmaxε

−2 log(1/δ)).

1.5.2 Evolutionarily-conserved modules

It has been observed that many protein-protein interactions (PPIs) are evolutionarily con-
served between different species [YLLe04], i.e., if proteins a and b in one organism interact
and if a (respectively, b) is orthologous to protein a′ (respectively, b′) in another organism,
then a′ and b′ interact. It is natural to ask whether larger sets of interactions may be
conserved and how such sets could be automatically computed from PPI networks for two
different organisms. In the CSB community, a number of approaches have been developed
that use evolutionary constraints to compute such Conserved Protein Interaction Modules
(CPIMs) [SI06]. See Figure 1.4 for an illustration.

FIGURE 1.4: An illustration of a Conserved Protein Interaction Module (CPIM). Circles
represent proteins. Solid lines connect interacting proteins. Dashed lines connect ortholo-
gous proteins. The figure contains two PPI networks, one on the left and the other on the
right. The darker sub-networks and the pairs of orthologous proteins in those sub-networks
(the nodes and edges within the shaded oval) constitute a CPIM.

A number of these approaches [KYLe04, SIKe04, KKTS06, SSI05] share many common
features. They combine the PPI networks of two species into a single “alignment graph”.
A node in the alignment graph represents two orthologous proteins, one from each PPI
network. An edge in the alignment graph represents an interaction that is conserved in
both PPI networks. These methods add an edge to the alignment graph only if the pro-
teins contributing to the nodes are connected through at most one intermediate protein
in the respective PPI networks. The weight of an edge represents the likelihood that the
corresponding interactions are conserved; this weight depends on the degree of orthology
between the proteins and on assessed confidence estimates that the individual PPIs in-
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deed take place in the cell. After constructing the alignment network, these authors find
CPIMs by using various approaches to compute paths, complexes, and subgraphs of high
weight in the alignment network and then expanding each such subgraph into the con-
stituent PPIs. Sharan et al. [SSKe05] generalize this idea to more than two PPI networks.
Liang et al. [LXTN06] propose a method where each node in the alignment graph is a pair
of conserved PPIs. They develop criteria to connect two such nodes and reduce the problem
of computing CPIMs to the problem of finding all maximal cliques in the alignment graph.

Narayanan and Karp have recently presented the Match-and-Split algorithm [NK07]. Like
other methods, they define a pair of proteins to be similar if their sequence similarity is
at least some threshold. They use combinatorial criteria to decide when the local neigh-
borhoods of a pair of orthologs match. Under their model, they prove that a given pair of
proteins can belong to at most one CPIM. This observation leads to a top-down partitioning
algorithm that finds all maximal CPIMs in polynomial time.

1.5.3 Network motifs

Milo et al. [MSOIe02] pioneered the study of “network motifs” and the bottom-up assembly
of complex networks from such motifs. Informally, given two graphs G and H (where H
is connected), we say that H occurs in G if H is isomorphic to a subgraph of G. We say
that H is a network motif of G if the number of times that H occurs in G is surprisingly
large (we make this notion precise below). Network motifs may play a key role in processing
information in regulatory networks [SOMMA02].

A typical approach to computing network motifs (i) identifies the number of subgraphs
of G that are isomorphic to a candidate network motif H, (ii) determines the probability
that H occurs at least this many times in random graphs with the same degree sequence
as G. and (iii) declares H to be a network motif if this probability is smaller than a user-
specified threshold. These methods usually enumerate isomorphic subgraphs explicitly,
which can be computationally expensive. Wernicke [Wer06] defines the concentration of
a k-node subgraph H to be the ratio of the number of occurrences of H in G to the total
number of occurrences in G of all connected k-node subgraphs. He presents a randomized
algorithm that computes an unbiased estimator of the concentration of every connected k-
node subgraph that occurs in G. He also shows how to adapt theorems by Bender and
Canfield [Ben74, BC78] to estimate the expected concentration of a given k-node subgraph
in random graphs with the same degree sequence as G without explicitly generating such
random graphs.

Wiring diagrams contain interactions of multiple types. Yeger-Lotem et al. [YLSKe04]
and Zhang et al. [ZKWe05] consider the question of finding “multi-colored” network mo-
tifs. Researchers have also considered whether motifs might assemble into larger struc-
tures [GK07, ZKWe05] and how such relationships between consolidated subgraphs may
reveal insights into the structure of the wiring diagram.

1.6 Condition-Specific Analysis of Wiring Diagrams

As described in the previous section, existing wiring diagrams are tremendous resources for
systems biology, since they integrate information on multiple types of molecular interactions
obtained from a variety of different experimental sources. However, such an experiment of-
ten does not yield information on when an interaction is activated within the cell. Therefore,
the potential impact of wiring diagrams is diluted since they typically represent the universe
of interactions that take place across diverse contexts in the cell. Another deficiency of ex-
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isting wiring diagrams is that they are highly incomplete, in spite of decades of small-scale
experimentation and recent advances in high-throughput screening. For instance, a recent
estimate [STdSe08] suggests that the human PPI network may contain 650,000 edges, about
an order of magnitude greater than the number obtained by combining multiple existing
databases [DMS08]. Note that this estimate is solely for PPIs. Our knowledge of other
types of interactions (e.g., between transcription factors and their target genes, between
small molecules and metabolites, or between recently-discovered regulatory molecules such
as microRNAs and their targets) is even more scarce than for PPIs. In this section, we
focus on two classes of methods developed to address the two issues raised above.

1.6.1 Response networks

Many algorithms have been developed to integrate the wiring diagram with gene expression
measurements for a single condition (e.g., the time-course of response of a cell to a stress or
data from patients diagnosed with a particular disease) in order to compute the sub-network
of interactions that is perturbed in that condition. These approaches take a wiring diagram
G = (V,E) and a gene expression dataset VS = {gS | g ∈ V } as input, where S is the set of
samples. Their goal is to compute the subgraph GS of G such that the genes in GS show
the most similar expression patterns over all subgraphs of G.

A common experimental design is to divide the set S of samples into two classes, a set
corresponding to a treatment and a set corresponding to a control. In this situation, gene
expression measurements are better represented by estimates of differential expression for
each gene. It is possible to use a hypothesis testing framework to assess how different the
expression levels of a gene in the treatment samples are from its expression levels in the
control samples, e.g., by using the t-test. For each gene g, this computation yields a p-
value 0 ≤ pg ≤ 1 representing the statistical significance of the difference between the two
sets of expression levels of the gene. Given such a data set, Ideker et al. [IOSS02] apply an
assumption that pg arises from a normal distribution, and compute a z-score zg = N−1(pg),
where N−1 is the inverse of the normal distribution function. They define the z-score z(G′)
of a subgraph G′ of G to be the sum of the z-scores of the nodes in G′ divided by the square
root of the number of nodes in G′. Their goal is to compute the subgraph of G with the
largest z-score. After showing that a version of this problem is NP-complete, they proceed
to use simulated annealing to solve the problem.

Murali and Rivera [MR08] propose a method that is applicable when S contains enough
samples to estimate the co-expression of any pair of genes. For every edge e = (g, h) in E,
they compute a weight we that is the absolute value of Pearson’s correlation coefficient
between gS and hS . They define the density of a subgraph G′ of G as the total weight
of the edges in G′ divided by the number of nodes in G. Their goal is to compute the
subgraph of G with largest density. This problem can be solved in polynomial time using
parametric network flows [GGT89]. In practice, they use the greedy algorithm suggested by
Charikar [Cha00], which computes a subgraph at least half as dense as the densest subgraph.

These two approaches have the drawback that they consider co-expression relationships
only between pairs of genes that are adjacent in G. We have discussed earlier that G is
incomplete for many organisms. In such situations, these approaches may ignore many
co-expressed pairs of genes. Ulitsky and Shamir [US07] propose an innovative approach
to mitigate this problem. They compute an undirected graph XS where two genes are
connected if they are highly co-expressed. In this graph, their goal is to find dense subgraphs
under the constraint that each dense subgraph must induce a connected network in G. Thus,
two genes may belong to a dense subgraph in XS even if they are not directly connected in
G. Ulitsky and Shamir develop a statistical model for this problem and propose a number
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of heuristics to compute multiple dense modules [US07].
In principle, these problems are related to the question of computing the largest clique in

a graph, a problem well-known to be NP-complete [GJ79], and hard to approximate [H̊as99].
Apart from the two papers mentioned above [Cha00, GGT89], theoretical studies of similar
problems have usually dealt with unweighted graphs. Feige, Peleg, and Kortsarz [FKP01]
compute the densest k-vertex subgraph of a given graph, namely, the subgraph with k
vertices that contains the most edges among all k-vertex subgraphs. They develop an
approximation algorithm for the problem, with approximation ratio O(nδ), for some δ <
1/3. Khot proves that this problem does not admit a PTAS [Kho06].

Holzapfel et al. [HKMT06] pose the γ-CLUSTER problem, where given an undirected
graph G and a natural number k, they ask if G has a subgraph on k vertices whose average
degree is at least γ(k); they allow γ : N→ Q+ to be any function that can be computed in
polynomial time and satisfies γ(k) ≤ k − 1, for all k ∈ N. For γ(k) = k − 1, this problem
is the clique problem. In contrast, for γ(k) = 2, the problem can be solved in polynomial
time. They show that the problem remains NP-complete if γ = 2 + Ω(1/k1−ε) for some
ε > 0 and has a polynomial-time algorithm for γ = 2 +O(1/k).

The spectral radius of an undirected graph G is the largest eigenvalue of the adjacency
matrix of the graph. It is well-known that the spectral radius of a graph is at least as large
as its average degree. Andersen and Cioaba [AC07] pose the (k, λ)-spectral radius problem:
does G have a subgraph on at most k vertices whose spectral radius is at least λ? When
such a subgraph exists, they present an approximation algorithm that runs in O(n∆k2)
time, where ∆ is the maximum degree of the graph, that outputs a subgraph with spectral
radius at least λ/4 and with at most ∆k2 vertices.

1.6.2 Reverse-engineering gene networks

The algorithms described in the previous section assume that a wiring diagram is avail-
able. However, as mentioned at the beginning of Section 1.6, existing wiring diagrams are
incomplete. To surmount this difficulty, methods have been developed to reverse engineer
interactions between genes from gene expression data. The primary assumption underlying
these techniques is that if two genes are highly co-expressed, i.e., if their expression levels
under one or more conditions have high correlations, then the genes may have a functional
interaction. Based on this hypothesis, numerous methods have been developed to infer inter-
actions between pairs of genes [BBAIB07, MS07]. Approaches investigated for gene network
construction include gene relevance networks [BK99, DWFS98], Gaussian graphical mod-
els [dlFBHM04, SS05], mutual information based networks [BMSe05, BK00, ZAA08], and
Bayesian networks [FLN00, Y+02].

In spite of the excitement surrounding these approaches, there is considerable debate
about a number of issues. How should the co-expression between two genes be measured
and what are the relative advantages of each measure? For example, Pearson’s correlation
coefficient can be computed in time linear in the number of samples and estimated with
confidence even for relatively few samples, but it can only capture linear dependencies.
More complex methods typically come with greater computational cost and/or the need
for a large number of samples. Does the co-expression of two genes imply stable binding
between the proteins that the genes code for, or a cause-and-effect relationship between the
genes? These issues have been discussed in a number of papers in the last few years [MS07,
BBAIB07, ZSA08, SBA07].

An important problem that arises in gene network construction is to find a sufficient
number of samples relative to the network size to be inferred. One could limit the network
size if the goal is to infer a subnetwork focused around a biological process that involves a
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subset of genes, but this requires knowing the genes in advance. In many cases, one would
want to infer a gene network to precisely identify such subnetworks and discover unknown
genes that may be part of such networks. There are tens of thousands of genes in any
complex organism, and in many cases it is impossible to find a reliable way to limit analysis
to only a subset of them. The number of samples can be significantly increased by tapping
into public repositories of gene expression profiles, resulting from microarray experiments
carried out by many laboratories worldwide. Even so, the number of available samples falls
short of what is ideally required by the underlying computational methods, with even the
number of genes in an organism significantly outnumbering the number of available samples
at present. In addition, the use of such large number of samples raises computational and
statistical challenges. Gene expression data is inherently noisy and significantly influenced
by many experiment-specific attributes. As a result, it is not meaningful to directly compare
expression levels across multiple samples. Finally, little is known about general regulatory
mechanisms (e.g., post-transcriptional effects) and thus no satisfactory models of genetic
regulation are available.

To provide more insight into the construction of gene networks, we present mutual in-
formation based methods in greater detail. Mutual information (MI) can capture non-
linear dependencies, the underlying algorithms have polynomial complexity, and recent
work demonstrates that these methods generate networks with good quality. Let n denote
the number of genes and m denote the number of samples. In MI based methods, the
expression level of gene gi is taken to be random variable Xi, for which we have m recorded
observations. The MI between a pair of genes gi and gj , denoted I(Xi;Xj), is given by

I(Xi;Xj) = H(Xi) +H(Xj)−H(Xi, Xj),

where the entropy H(X) of a continuous variable X is given by:

H(X) = −
∫
pX(ξ) log pX(ξ)dξ,

and pX is a probability density function for X. In this case pXi , pXj , and the joint prob-
ability density function pXi,Xj

are unknown and have to be estimated based on available
gene expression samples.

To reverse engineer gene networks using this approach, a method for computing the MI
between a pair of genes and a criterion for assessing when the MI value is significant are
needed. Several different techniques to estimate MI have been proposed [K+07], differing
in precision and complexity. Simple histogram methods [BK00] are very fast but inac-
curate, especially when the number of observations is small. Gaussian kernel estimators
utilized by Margolin et al. [MNBe06] provide good precision but take O(m2) run-time.
Daub et al. [DSSK04] propose a linear time method that is competitive with the Gaussian
kernel estimator. Their method is based on binning, which in its simplest form estimates
the probability density of a random variable by dividing samples into fixed number of bins
and counting samples per bin. Such a method is imprecise and sensitive to the selection of
boundaries of bins [MRL95]. Daub et al. overcome this by using B-splines as a smoothing
criterion: each observation belongs to k bins simultaneously with weights given by B-spline
functions up to order k.

A standard way to assess the significance of MI value between gi and gj is to randomly
permute the expression values of one of the genes, say gi, and computing the MI again
based on the permuted expression values of gi and unaltered expression values of gj . A
large number of such permutation tests are conducted, and I(Xi;Xj) is deemed significant
if it is greater than the MI value of at least a fraction 1− ε of the permutations tested. Such
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(a) (b)

FIGURE 1.5: (a) Yeast regulatory network on 4000 genes inferred by TINGe software. The
size of a node is proportional to its degree in the graph. (b) A closer look at the connectivity
between some of the genes involved in response to oxidative stress.

testing is expensive, particularly when repeated for the
(
n
2

)
gene pairs. Zola et al. [ZAA08]

propose a method to make a permutation test applicable to all gene pairs, thereby reducing
the complexity of permutation testing by a factor of Θ(n2).

A particularly vexing issue in network inference is the difficulty of distinguishing indirect
interactions from direct interactions. Consider three genes gi, gj , and gk, where gi directly
interacts with gj and gj directly interacts with gk, but gi and gk have no direct interaction.
If all three genes are up-regulated in a condition, all three pairs of expression profiles
will be correlated. Disentangling direct interactions from indirect ones is difficult, and
becomes more complex with larger sets of genes that interact in more intricate ways. Mutual
information methods address this using Data Processing Inequality (DPI) [CT91], which
states that in case of the example mentioned above, I(Xi, Xk) ≤ I(Xi, Xj) and I(Xi, Xk) ≤
I(Xj , Xk). After computing the MI between all pairs of genes, the DPI is run in reverse
by identifying such triplets of gene pairs and removing the one with the smallest MI value
in each triplet [MNBe06, ZAA08]. Margolin et al. [MNBe06] prove that this algorithm
correctly recovers the interaction network if the mutual information values can be estimated
without errors, the network contains only pairwise interactions, and the network is a tree.
They show that their algorithm can reconstruct networks with loops under certain other
assumptions. ARACNe, the software implementation of their algorithm, runs in O(n3 +
n2m2) time. Zola et al. [ZAA08] developed a parallel method for MI based inference that
combines Daub et al.’s O(m) time B-spline MI estimator with a new method for reducing
permutation testing complexity by Θ(n2). Their software implementation TINGe scales to
whole genome networks and much larger number of samples than previous approaches.

An illustration of a gene network inferred using the MI approach is shown in Figure 1.5.
The network in Figure 1.5(a) shows interactions among 4,000 Yeast genes, with node size
reflecting the degree of the node. A closer look at the connectivity among some of the genes
involved in response to oxidative stress is shown in Figure 1.5(b). Given the complexity
of networks, visualization and navigation of these networks is of considerable importance
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to biologists. Shannon et al. developed a widely used software environment, termed Cy-
toscape, for this purpose [SMe03], which allows third party plugins for further enhancing
the functionality of the environment as necessary. Another problem is that of comparing
across multiple network inference methods, all the more important due to the diversity of
approaches being applied. While a few biologically validated networks exist, it is useful to
have a wide array of benchmark data sets with different numbers of genes, samples, qual-
ity of samples etc. It is common practice to validate network inference algorithms using
synthetically generated networks by programs such as SynTReN [dBLNe06] and COPASI
[HSe06]. SynTReN takes a gene network as input (such as a biologically validated network
of Yeast), and creates a synthetic benchmark network of a specified size with similar or
desired topological properties, and the desired number of samples with user-specified noise.
COPASI is capable of generating time series data – such data is particularly valuable in
inferring directionality of interactions. For example one may infer that gene gi regulates
gene gj , if a time delay is observed between the rise in expression value of gj when compared
to the rise in expression value of gi. Time series data can be especially valuable for gene
network construction, but requires access to carefully timed experiments. Thus, undirected
network inference using large public data repositories continues to be of value to gather
sufficient number of samples to build robust gene networks.

1.7 Outlook and Resources for Further Study

Although the field is young, research in computational systems biology is taking place at
an intense level commensurate with the importance and potential applications of this field.
This is hardly surprising given the potential for broad impact in such critical areas as
health and human disease, and management of agricultural and animal resources. In this
interdisciplinary field, apart from computer science and molecular biology, many other dis-
ciplines contribute to knowledge discovery including chemical engineering, physics, control
theory, and statistics. In keeping with the scope and expected audience of this handbook,
our coverage of topics is heavily influenced by areas with substantial contributions from
computer science, and the role of algorithms and theory even within that. Not covered in
detail here are many topics related to contributions with techniques from other areas of
computer science such as text mining for annotation and network extraction, heterogeneous
data integration, models of network evolution, and data and graph mining. A number of
techniques normally considered outside the realm of algorithms and theory have also been
utilized in making substantial contributions to systems biology. Examples include metabolic
flux analysis, physics driven models, and modeling of biological processes as complex con-
trol systems, although algorithmic questions naturally arise when these models eventually
result in the need for computational solutions.

The field of systems biology is expected to grow quite rapidly, aided by both increasing
availability of experimental data and continued discovery and refinement of computational
models and techniques. On the experimental side, high throughput experimental techniques
are continually being improved and increasing amounts of such data are being generated,
e.g., comprehensive gene expression profile measurements for various organisms. The pre-
dominant culture in the community of open data sharing through web portals is a significant
driver of innovation, drawing in scientists from many fields with no interest in conducting
the experiments per se, or in developing such expertise. New experimental techniques to
measure various aspects of cellular activity are expected to come on line, along with re-
fined measurement capability for existing instrumentation. To match these experimental
advances on the computational end, we need better graph theoretic models of biological
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processes, approaches to reason about networks, and techniques for modeling experiments
and their results. In the future, we envision the routine use of computational models as
a mechanism for suggesting useful experiments for biologists and the incorporation of the
results of these experiments into more refined models of the cell.

For the reader interested in further forays into the field or keeping abreast of this rapidly
growing field, a number of resources are available, some of which we mention here. The open
access PLoS Computational Biology journal publishes a series on “Getting started in . . . ”,
which is a valuable resource for understanding many topics relevant to systems biology.
The Nature Insights series provides an editorial and a compendium of commentaries on
specific focus topics. Nature also launched a series of “Connections essays” to explore how
large number of interacting components result in systems level behavior. Finally, Nature
Cell Biology and Nature Reviews Molecular Cell Biology have partnered together to publish
several review articles in various subfields of systems biology. We encourage readers of
the chapter to tap into these and other resources for further study of this fascinating and
emerging area of scientific discovery. Finally, computational biology is a vast research
area and to permit a reasonable exposition within this chapter, we limited ourselves to
the emerging important area of systems biology. Readers interested in a comprehensive
introduction to the field of computational biology are referred to the handbook edited by
one of the authors [Alu06].
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1.8 Glossary

Molecules

Gene a DNA sequence (a substring of a chromosome) that is involved in encoding one
or more functional products such as an RNA or a protein. The sequence includes
coding regions that code for the functional product(s), and non-coding regions
such as introns.

Protein a chain of amino acids synthesized in a specific order from the transcription
and translation of a gene via the genetic code.

Transcription factor a protein that binds to a specific DNA sequence (cis-element)
in the promoter region of a gene to control its transcription.

Cis-element a short DNA sequence found in the upstream non-coding region of the
gene that controls the transcriptional activity of a gene via transcription factors
or other DNA-binding elements.

Promotor a regulatory sequence of DNA located in the upstream 5’ non-coding region
of the gene that controls transcription of the gene.

Enzyme a protein that catalyzes a biochemical reaction.
Kinase a protein that adds a phosphate group to a protein, the substrate.
Phosphatase a protein that removes a phosphate group from a protein.
Homolog a gene whose nucleotide sequence exhibits similarity to another gene or a

set of genes.
Ortholog a gene in one organism is orthologous to a gene in another organism if
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both genes have evolved from the same gene in a common ancestral organism.
Orthology is usually established by comparing genetic sequences.

Interactions

Protein-protein interactions An association between a set of protein molecules to
form long-term protein complexes.

Transcriptional regulatory interaction an interaction between a transcription fac-
tor and promotor of a gene to regulate gene expression.

Genetic interaction interaction between a set of genes where the action of one gene
is modified by another gene or a set of genes.

Biochemical reaction a process where an enzyme interacts with one or more molecules
(substrate) to produce a product.

Phosphorylation addition of a phosphate group to organic molecules by enzymes
called kinases.

Processes

Gene expression the conversion of a gene (DNA sequence) into a functional gene
product such as RNA or a protein.

Protein translation the process of converting messenger RNA, the product of gene
expression, into a chain of amino acids using the genetic code.

Post-translational modification changes made to a protein after translation such
as addition of a chemical group, or formation of a protein complex, or making
structural changes to the protein.

Signal transduction a process by which signals are transmitted by proteins and
other molecules from the outside of a cell to its interior or within a cell.

Gene Functions

Gene Ontology a standard nomenclature that is used to describe genes and gene
product attributes across organisms.

Cellular component a component of the cell.
Molecular function an activity, such as catalytic or binding activity, that occurs at

the molecular level.
Biological process a series of events accomplished by one or more ordered assemblies

of molecular functions.
Protein localization positioning of a protein in an appropriate cellular area (e.g., an

organelle, an interior membrane, etc.) where its activity is needed.
Phenotype an observable characteristic or trait of an organism.

Organisms

Eukaryote an organism whose cells contain nuclei. Genomic DNA is contained within
the nucleus of each cell.

Prokaryote an organism whose cells do not have nuclei.
Model organism an organism that is extensively studied with the expectation that

knowledge gained here provides valuable insights into other related organisms.
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