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Data-Driven

Models in Molecular Systems Biology

(From Building with a scaffold: emerging strategies for high- to low-level cellular

modeling, Ideker and Lauffenburger, Trends in Biotechnology, 2003.)

I Emphasise a data-driven approach to molecular systems biology.
I Focus on large-scale properties of molecular wiring diagrams.
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Molecular Interactomes
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Molecular Ridiculomes
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Goals of Data-Driven Molecular Systems Biology

I Identify the building blocks of wiring diagrams.

I Interconnect the building blocks to build high level models of the cell.

I Understand the interaction of the building blocks over time and under
different conditions.

How do we automatically construct these building blocks?
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Molecular Interactomes → Modules

I Number of existing techniques decompose interactomes into modules
(reviewed by Sharan and Ideker, Nat. Biotech., 2006).

I Map computed modules to known protein complexes, pathways,
biological processes, functions, etc.

But cell state is dynamic!

I Active molecular interactions change with time, external signals, and
perturbations.

I Decompositions of static and universal interactomes may miss many
important aspects of cellular activity.

I We must integrate interactomes with dynamic measurements of cell
state to compute the cell’s response to different conditions.
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Molecular Interactomes → Active Networks

I Gene expression data provide dynamic snapshots of cellular activity.

I Active network: Molecular interactions activated by the cell in
response to a stimulus.

I Methods to integrate interactomes with transcriptional measurements
to compute active networks:

I Ideker et al., Bioinformatics 2002, Mol. Sys. Bio 2007.
I Bar-Joseph et al., Nat. Biotech., 2003.
I Luscombe et al., Nature 2004.
I Ulitsky and Shamir, BMC Sys Bio 2007.
I This work: Dense subgraphs (Charikar, Proc. APPROX 2000).

I These methods usually compute active networks one condition at a
time or simultaneously across multiple conditions.
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Goals of the Network Lego Approach

I Combine active network computation with module detection to
compute network legos: context-sensitive building blocks of wiring
diagrams.

I Potential applications:

1. Identify pathways uniquely activated in one or more conditions.
2. Compare and contrast responses of different cell types to the same

stress.
3. Develop a formalism for expressing any active network as a

combination of network legos.
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Step 1: Molecular Interactome to Active Networks
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Step 2: Active Networks to Network Legos
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Caveats

I Interactomes are incomplete and noisy.

I Gene expression measurements miss many aspects of cellular state.

I We will consider only presence or absence of an interaction in an
active network.

I Network legos are only a mental model of how the cell may operate.
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Network Blocks

I Suppose we have gene expression datasets for a number of conditions.
I Compute the active network for each condition.

I Consider each active network to be a set of interactions.
I Any set operation on these active networks will yield another network

of interactions.

I Let A be the set of all active networks.
I A network block is a triple (G , I, E) where

I I ⊆ A, I is non-empty.
I E ⊆ A, disjoint from I.
I I and E are inclusion-maximal
I G is a network where each interaction

I is present in every active network in I.
I is absent in every active network in E .

G =

( ⋂
P∈I

P

)⋂( ⋂
N∈E

!N

)
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ALL, AML, and MLL

I Acute Lymphoblastic Leukaemia (ALL) and Acute Myeloid Leukaemia
(AML) are two types of leukaemia.

I Armstrong et al., Nature Genetics 2003 argued that translocations in the
Mixed Lineage Leukaemia (MLL) gene identify a disease distinct from
ALL and AML.

Can we compare active networks to identify subsets of interactions
differentially activated in each leukaemia?
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Comparing ALL, AML, and MLL

Gene expression data
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Computing 17 Comparisons

I Each node represents

1. a boolean conjunction of (possibly negated) conditions and
2. a network of interactions

I Can compute enrichment of known processes or pathways (Gene
Ontology, Netpath, REACTOME, etc.) in each network.

T. M. Murali CS@VT March 7, 2008 Network Legos



Introduction ALL, AML, and MLL Algorithms Results Other Projects

Computing 17 Comparisons

I Each node represents

1. a boolean conjunction of (possibly negated) conditions and
2. a network of interactions

I Can compute enrichment of known processes or pathways (Gene
Ontology, Netpath, REACTOME, etc.) in each network.

T. M. Murali CS@VT March 7, 2008 Network Legos



Introduction ALL, AML, and MLL Algorithms Results Other Projects

Computing 17 Comparisons

I Each node represents

1. a boolean conjunction of (possibly negated) conditions and
2. a network of interactions

I Can compute enrichment of known processes or pathways (Gene
Ontology, Netpath, REACTOME, etc.) in each network.

T. M. Murali CS@VT March 7, 2008 Network Legos



Introduction ALL, AML, and MLL Algorithms Results Other Projects

Computing 17 Comparisons

I Each node represents

1. a boolean conjunction of (possibly negated) conditions and
2. a network of interactions

I Can compute enrichment of known processes or pathways (Gene
Ontology, Netpath, REACTOME, etc.) in each network.

T. M. Murali CS@VT March 7, 2008 Network Legos



Introduction ALL, AML, and MLL Algorithms Results Other Projects

Computing 17 Comparisons

I Each node represents

1. a boolean conjunction of (possibly negated) conditions and
2. a network of interactions

I Can compute enrichment of known processes or pathways (Gene
Ontology, Netpath, REACTOME, etc.) in each network.

T. M. Murali CS@VT March 7, 2008 Network Legos



Introduction ALL, AML, and MLL Algorithms Results Other Projects

Computing 17 Comparisons

I Each node represents

1. a boolean conjunction of (possibly negated) conditions and
2. a network of interactions

I Can compute enrichment of known processes or pathways (Gene
Ontology, Netpath, REACTOME, etc.) in each network.

T. M. Murali CS@VT March 7, 2008 Network Legos



Introduction ALL, AML, and MLL Algorithms Results Other Projects

Differential Activation of the Kit Receptor Pathway
in AML

I AML: p-value 2× 10−4

I AML∩ !ALL: p-value 1× 10−3

I AML∩ !MLL: p-value 6.7× 10−5

I AML∩ !ALL∩ !MLL: p-value 3.5× 10−7

I c-KIT receptor is activated in almost all subtypes of AML but not in
ALL (Reuss-Borst et al., Leukemia, 1994, Bene et al., Blood, 1998,
Schwartz et al., Leuk Lymphoma., 1999).
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Challenges in Comparing Arbitrary Numbers of
Active Networks

I How can we efficiently compute all combinations?

I Construct binary matrix of interactions vs. active networks and use
closed itemset mining algorithms.

I How do we identify which combinations are the network legos?

I Compute statistical significance of each combination and exploit DAG
structure.

I How do we demonstrate that the network legos we have found are
building blocks?

I Define and measure stability and recoverability.
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Network Blocks

I Let A be the set of all active networks.
I A network block is a triple (G , I, E) where

I I ⊆ A, I is non-empty.
I E ⊆ A, disjoint from I.
I I and E are inclusion-maximal such that

G =

( ⋂
P∈I

P

)⋂( ⋂
N∈E

!N

)

I Partial order exists between network blocks, e.g.,
I ALL < ALL ∩ AML.
I ALL ∩MLL < ALL ∩MLL ∩ !AML.
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Efficiently Compute Network Blocks

Interactions Interactions
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I Construct a binary matrix M whose columns are interactions.

I Represent each active network and its complement in M’s rows.
I A bicluster is a subset of rows and subset of columns such that M

only has 1s in this submatrix.
I Rows of bicluster ≡ formula.
I Columns of bicluster ≡ network.

I Compute all closed biclusters in M.

I Connect biclusters in the DAG induced by the partial order.
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Identify Network Blocks that are Network Legos

L
e
v
e
ls

 o
f 

th
e
 D

A
G

I Assess the statistical significance of each bicluster by simulation.

I B is a network lego if it is more significant than any of its ancestors
or descendants in the DAG.
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Show that Network Legos are Building Blocks

I Stability
I Remove each active network and recompute network legos.
I For each original network lego, compute the fraction of leave one out

datasets for which the network lego occurs with at least t% fidelity.

I Recoverability
I Compute the union of network legos.
I Measure the size of the intersection of each active network with union.
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Analysis of Human Stress Data

I Human protein-protein interaction network with 9243 proteins and
31000 interactions.

I PPIs from (Ramani et al., Genome Biology, 2005; Rual et al., Nature,
2005; Stelzl et al., Cell, 2005).

I 13 distinct stresses applied to human cells (Murray et al., Mol. Bio.
Cell, 2004).

I Stress conditions include heat shock, oxidative stress, cell cycle arrest,
and crowding.

I Two cell types: WI38 Fibroblasts and HeLa.

I Murray et al. note that each stress elucidated a unique response.
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Human Stress Results

I 13 stresses and their active networks yielded 444201 closed biclusters.

I 143 biclusters are network legos.

I The network legos contained between 165 and 1148 proteins.

I Each network lego has 95% stability.

I The network legos provide better than 86% recoverability for all
active networks.

I We recovered 11 active networks at 100%.

#conditions 5 6 7 8 9 10 11 12

#legos 1 6 10 36 34 20 28 8
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Human Stress Results without Cell Cycle Arrest
Treatment

I The active networks for cell cycle arrest treatments contain
interactions that are distinct compared to those in active networks for
other treatments.

I Remaining 11 stresses yielded only 15 network legos.

I The network legos provide better than 71% recoverability for all
active networks.

I We recovered five active networks at 100%.

I Each formula contained at least 7 active networks.
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WI38 Response to Menadione and DTT

I One network lego contained endoplasmic reticulum stress and
oxidative stress to fibroblasts in included set.

I Other stresses in network lego appeared in excluded set.
I This network lego is the only one enriched in

I KEGG “cell cycle” pathway (p-value 3× 10−30),
I REACTOME “G1 to S transition” (p-value 2.3× 10−24), and
I targets of the E2F1 transcription factor (p-value 8× 10−13).

I In response to these two stresses, fibroblasts shut down the cell cycle
far more aggressively than HeLa cells do.
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Software

I All our software is available under the GNU GPL.

I Developed on Linux systems.

I Command-line interface.

I Visit http://bioinformatics.cs.vt.edu/˜murali/software

T. M. Murali CS@VT March 7, 2008 Network Legos
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Our Contributions

I Combined representation of biological processes using formulae and
network legos.

I A formula relates different cellular states or perturbations by explicitly
denoting their participation via intersections and complements.

I Each network lego corresponds to a functional module of coherently
interacting genes in the wiring diagram.

I Network legos serve as building blocks of active networks.
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Future Work

I Explore network legos in the context of a larger compendium of
cellular stresses.

I Develop an algorithm to directly compute network legos without
searching the space of all active network combinations.

I Determine rules and grammar for combining network legos into active
networks.
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Compendium Approach
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GraphHopper
• Protein-protein interactions (PPIs) for a number of organisms are available.

• A Conserved Protein Interaction Module (CPIM) is a group of interacting
proteins whose interactions are conserved in more than one species.

• Our GraphHopper algorithm detects numerous, biologically-significant, and
topologically diverse CPIMs in comparisons between human, fruitfly, and
worm interaction networks.
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Active Networks and Network Legos
• A cell’s response to external stimuli or stress is often tuned exquisitely to the stress.

• However, fundamental response networks are common to multiple stresses and are conserved across organisms.

• Our system computes active networks for different stresses and combines them to find network legos.

• An active network is a network of interactions activated in the cell in response to a stress.

• A network lego is a group of coherently-interacting genes that are completely contained in the active networks of some stresses but are completely disjoint
from the active networks for other stresses.

• The network legos we compute are statistically significant, stable, and recoverable.

Precise and Robust Prediction
of Gene Functions

• Sequenced genomes contains 100,000s of genes.

• Functional roles of 40% of the genes are unknown!

• Another 20% have poorly-known functional roles.

• GAIN predicts gene functions using Functional Linkage Networks.

• VIRGO webserver enables biologist to use GAIN to obtain gene function
predictions for system of interest.

• GAIN provides informative propagation diagrams.

• GAIN is the only algorithm mathematically guaranteed to make hierarchi-
cally consistent predictions.

•Time validation of GAIN’s predictions for baker’s yeast and human reveals
that GAIN’s predictions are experimentally verified for at least 50% of genes.

• Validated predictions involve several biological processes implicated in can-
cers and other human diseases.

Research Programme
Rationale

•The genome sequences of 100s of organisms are available.

•High-throughput biological assays provide a dazzling variety of information about the cell.

• Such experiments yield massive quantities of information.

•We can begin considering the cell as an assemblage of interconnected modules of interacting molecules.

Approach

•Develop methods to automatically compute modules of coherently interacting molecules.

• Integrate different types of biological data using principles of graph theory, discrete algorithms, data mining, and machine
learning.

•Compare cellular states and responses across different organisms, diseases, stresses, and stimuli.

Applications

•Find networks activated in the cell in cancer and related diseases.

•Predict protein interactions that enable a pathogen to invade a host.

•Develop biologically-interpretable disease classifiers.

•Detect cryptic components of pathways dis-regulated in human and plant diseases.

Biologically-Interpretable
Disease Classification

•Detect cancer-specific gene expression signatures.

•Use these signatures to classify distinct cancers.

•An xMotif is a subset of conditions and a subset

of genes such that each gene is co-expressed in the

selected samples.

•Develop a novel nearest-neighbour classifier.

•Classifier is biologically interpretable: xMotifs are en-

riched in functions relevant to cancers.

•Classifier achieves performance comparable to a sup-

port vector machine.
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Combinatorial Control of Gene
Expression

• Multiple transcription factors often regulate the expression of a group of
genes.

• Combinatorial regulation can change dramatically with external stimula-
tions or perturbations.

• We have modified our methods for disease classification to provide insights
into combinatorial control.

Computational Systems Biology
T. M. Murali, murali@cs.vt.edu, http://bioinformatics.cs.vt.edu/˜murali
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Precise and Robust Prediction of Gene Functions

I Functions of 40% of the genes in sequenced genomes are unknown.
I GAIN predicts gene functions using Functional Linkage Networks.
I VIRGO webserver enables biologist to use GAIN to obtain predictions

for system of interest.
I Time validation for baker’s yeast and human reveals that GAIN’s

predictions are experimentally verified for at least 50% of genes.

Karaoz, Murali et al., PNAS 2004; Massjouni, Rivera, and Murali, NAR Web server issue, 2006;

Murali, Wu, and Kasif, Nature Biotechnology, 2006.
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Biologically-Interpretable Disease Classification

I Detect cancer-specific gene
expression signatures.

I Use these signatures to classify
distinct cancers.

I Novel nearest-neighbour
classifier based on biclusters.

I Interpretability: our biclusters
are enriched in functions
relevant to diseases.

I Classifier achieves performance
comparable to a support vector
machine.
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Host-Pathogen Protein Interaction Networks

I Use domain-pair occurrences to predict interactions between host and
pathogen proteins Dyer, Murali, and Sobral, ISMB 2007.

I Results predict links between P. falciparum membrane and dense
granule proteins and subtilases and human blood coagulation proteins.
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Host-Pathogen Protein Interaction Networks

I Study landscape of human proteins interacting with viruses and other
and pathogens Dyer, Murali, and Sobral, PLoS Pathogens, 2008.

I Pathogens have evolved to interact with hubs and bottlenecks in the
human PPI network.

I Many viruses share common pathways to infection.
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Algorithmic Ingredients: Active Networks
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(ii) Compute dense subgraphsas the interaction weight
(i) Assign Pearson’s correlation

I Compute the Pearson’s correlation coefficient of the expression
profiles of the interacting genes.

I Search for pockets of concerted activity using an algorithm for finding
dense subgraphs.
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Assessing Statistical Significance of a Bicluster

I Suppose a bicluster B has n included and c excluded active networks.

1. Pick n active networks and the complements of c active networks
repeatedly at random, compute the number of interactions induced by
this combination, and build a distribution of the number of interactions.

2. Set the p-value of B to be the fraction of random biclusters with more
interactions than B.
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