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In the past year, great strides have been made in our
understanding of the regulatory networks that control gene
expression in the model eukaryote Saccharomyces cerevisiae.
The development and use of a number of genomic tools,
including genome-wide location and expression analysis, has
fueled this progress. In addition, a variety of computational
algorithms have been devised to mine genomic sequence 
for conserved regulatory motifs in co-regulated genes. The
recent description of the genetic network controlling the cell
cycle illustrates the tremendous potential of these approaches
for deciphering gene expression regulatory networks in
eukaryotic cells.
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Introduction
Cells respond to environmental changes by reprogramming
expression of specific genes throughout the genome. The
transcription rate of a particular gene is determined by the
interaction of diverse regulatory proteins — transcriptional
activators and repressors — with specific DNA sequences
in the gene’s promoter. How a collection of regulatory 
proteins accomplishes the task of regulating a set of genes
can be described as a regulatory network (Figure 1). Some
investigators are beginning to map the regulatory networks
that govern gene expression throughout living cells. For
example, a mathematical model of the regulatory network
that controls the lysis/lysogeny decision in bacteriophage-λ
has been constructed [1,2]. Regulatory networks in 
eukaryotic cells are much more complex than networks in
bacteriophage: even the simple eukaryote Saccharomyces
cerevisiae has >200 proteins that regulate transcription of its
~6200 genes.

Our ability to map gene-regulatory networks in eukaryotic
cells has been enhanced greatly by the sequencing of
genomes and the development of new tools to study
genome expression. The yeast S. cerevisiae was the first
eukaryote to have its genome sequenced [3], and has
proven to be a workhorse for functional genomics. The
past few years have seen an explosion of genome-wide
expression data from yeast cells exposed to dozens of 
different environmental stimuli (e.g. see [4,5]) or deleted

for one of many hundred different genes (e.g. see [6]).
More recently, DNA microarrays have been used to profile
the genomic binding sites of transcription factors and 
other DNA-binding proteins [7••–9••,10]. Computational 
algorithms have been developed that identify potential
regulatory sequences in promoter regions throughout the
genome (reviewed in [11]). In this review, we discuss the
contributions of expression analysis, genome-location
studies, and computational analysis of promoter sequence
elements to our understanding of gene-expression regulatory
networks in S. cerevisiae.

Genome-wide expression analysis
Genome-wide expression analysis involves the use of
oligonucleotide or cDNA microarrays to measure, in a 
massively parallel fashion, the mRNA levels of many or all
genes in a genome [12–15] (see Figure 2a). Genome-wide
expression analysis has been used to investigate the 
regulatory networks controlling a variety of cellular processes 
in yeast, including the cell cycle [16–18], phosphate 
metabolism [19], galactose metabolism [20•], zinc metabolism
[21], copper ion homeostasis [22], amino acid biosynthesis
[23], sporulation [24,25], glucose repression [26], response
to pheromone [27], and the general stress response [4,5].
This trove of data has been analyzed with a variety of 
clustering and pattern-finding algorithms to group together
genes with similar patterns of expression [28–31].

As mRNA levels are the output of gene-expression regula-
tory networks, it is theoretically possible to use expression
data to reverse engineer the architecture of the controlling
regulatory networks. A number of groups have tackled this
problem using singular value decomposition (SVD) analysis
[32–35]. In these studies, SVD analysis was used to find
underlying patterns or ‘modes’ in expression data, with the
intention of linking these modes to the action of transcrip-
tional regulators. An alternative approach is to use prior
knowledge of the regulatory network’s architecture to
design competing models, and then use Bayesian belief 
networks to pick the model that best fits the expression data
[36]. Gifford and co-workers have used this approach to 
distinguish between two competing models for galactose
regulation [37]. Friedman and co-workers have used
Bayesian networks to analyze genome-wide expression data
in order to identify significant interactions between genes in
a variety of metabolic and regulatory pathways [38,39].

Genome-wide location analysis
The information provided by expression analysis is the
product of all the regulatory events that impinge on gene
expression. To understand how genes are controlled by
transcriptional regulatory proteins, an additional, more
direct measure is needed. To this end, a number of tech-
niques have been developed to identify the genomic
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binding sites of transcriptional regulators [7••,8••,40–42].
We believe that the most powerful of these methods is
genome-wide location analysis [7••,8••]. This approach
combines a chromatin immunoprecipitation protocol,
which has been previously used to study protein–DNA
interactions at a small number of specific DNA sites [43],
with DNA microarray analysis (Figure 2b). DNA is
enriched by immunoprecipitation with an antibody against
the transcription factor of interest. Enriched and un-
enriched (control) DNA is labeled with Cy5 and Cy3 dyes,
respectively, and then is hybridized to DNA microarrays
containing the complete set of yeast intergenic regions.
Intergenic regions enriched for Cy5 fluorescence relative
to Cy3 correspond to transcription factor binding sites. 

The binding of a transcriptional activator to the promoter
region of a gene suggests that the activator has a regulatory
effect on the gene, but it is also possible that the activator
does not fully or even partially control the gene.
Identifying the set of promoters where factor binding 
correlates with gene-expression increases the probability

that the factor binding site is associated with adjacent gene
expression [7••,9••]. This approach also helps resolve
potential ambiguities that result from the fact that some of
the intergenic regions contain the promoters for two 
divergently transcribed genes. Furthermore, the sets of
promoters/genes found within the intersection of binding
and expression datasets contains few false positives,
because the noise that is inherent in each of the microarray
datasets tends to be either reduced or eliminated within
this intersection.

Initial studies using genome-wide location analysis
focused on Gal4 [7••]. Gal4 is a well-characterized 
transcriptional activator that regulates genes required for
galactose metabolism. Genome-wide location analysis of
Gal4 identified a set of ten genes that were bound by Gal4
and whose expression was induced in galactose media. All
seven of the known Gal4 target genes were identified, in
addition to three novel target genes (PCL10, MTH1 and
FUR4), which are functionally linked to galactose metabolism.
The fact that a single genome-wide location experiment

Figure 1

A model gene expression regulatory network.
The colored circles represent distinct
transcriptional activators. The rectangular
ovals represent potential target genes in the
genome. The color of the rectangular oval
indicates which transcriptional activator is
regulating its expression in response to the
environmental stimulus; in addition, arrows
point from each transcriptional activator to its
regulated genes. Note that this model can be
thought of as an individual regulatory network
or as a collection of regulatory networks.
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correctly identified each of the Gal4 targets determined from
much previous study attests to the power of the method.

Several interesting themes have emerged from the location
analysis experiments that have been reported to date. One
striking observation is that the sequence which is bound by
a specific factor occurs at many more sites in genomic DNA
than are actually bound by the factor. For example, the Gal4
consensus binding motif (CGGN11CCG), determined 
from structural studies [44], is found in the promoters of
>200 genes (Saccharomyces cerevisiae Promoter Database:
http://cgsigma.cshl.org/jian/; [45]), but Gal4 binds to and
regulates only 10 of these promoters in vivo [7••]. Similar
observations have been made for other transcriptional acti-
vators [8••,46•], suggesting that selective binding to a subset
of potential target sequences in vivo is a general feature of
transcriptional activators. Lieb et al. [46•] have investigated
this issue using the transcriptional activator Rap1 as a model.

They surveyed the yeast genome for motifs that fit the Rap1
consensus binding sequence ACACCCRYACAYM. Although
many of these matches were identified in intergenic
sequences, a substantial number were located in open-
reading frames (ORFs). However, genome-wide location
analysis of Rap1 revealed that few of these ORFs (14%)
were bound in vivo. Among intergenic regions, Rap1
showed a preference for binding to motifs found in 
promoters (46%) relative to motifs found in non-promoter
intergenic regions (17%). This binding preference could not
be accounted for by either the sequence or frequency of the
motifs in promoter regions, indicating that the specificity of
Rap1 binding is determined, in part, by some unknown
genome-wide mechanism. 

How do cells modify the binding specificity of transcrip-
tional activators? Two general mechanisms [47] have been
proposed: first, through cooperative binding of multiple

Figure 2
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Genome-wide expression and location analyses (a) Schematic
summary of the technical steps involved in genome-wide expression
analysis using cDNA microarrays. (b) Schematic summary of the

technical steps involved in genome-wide location analysis. The purple
arrow points to a spot where the red intensity is over-represented,
identifying a region bound in vivo by the protein under investigation.
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transcriptional activators with different binding specificities,
or second by inhibiting binding at selective sites through
the formation of repressive chromatin structure. The first
mechanism parallels studies in mammalian systems in
which multiple transcription factors bind cooperatively to a
promoter as an enhanceosome [48]. The second mechanism
is particularly attractive in light of the recently described
histone code, in which it has been proposed that covalent
modifications of histone amino-terminal tails serve as a
fundamental mechanism regulating protein binding [49].
Whether either (or both) of these mechanisms is used in
yeast cells to modify transcription factor binding remains
an open question.

A second theme emerging from genome-wide location 
studies is that transcriptional activators bind to a subset of
their target promoters even in non-inducing conditions. This
has been demonstrated most clearly for the transcriptional 
activator Ste12, which regulates pheromone-responsive
genes. Genome-wide location analysis of Ste12 following
pheromone treatment identified 29 Ste12 target genes,
which function in a variety of cellular processes involved in
mating [7••]. Ste12 binds to the promoters of a subset of its
target genes (e.g. STE12, PCL2, FIG2 and FUS1) prior to
pheromone treatment, and the expression of these genes is
induced immediately following pheromone treatment
[7••,27]. Gal4 [7••] and Rap1 [46•] are also pre-bound to a
subset of their target promoters, indicating that this may 
be a general feature of transcriptional activators. The pre-
bound target genes are not activated in non-inducing
conditions because the negative regulators Dig1/Dig2 and
Gal80 act to inhibit the function of Ste12 and Gal4, respec-
tively, prior to induction. Interestingly, Ste12 binds to its
own promoter and induces its transcription immediately 
following pheromone treatment. This may explain the
increase in the number of sites bound by Ste12 following
pheromone treatment, and is an interesting example of a
positive feedback loop in gene-expression networks.

DNA motif-finding algorithms
A gene’s expression pattern is largely determined by short
promoter sequences (or motifs) that serve as transcription-
factor binding sites. Hence, identifying and characterizing
regulatory motifs is an important step in deciphering gene-
expression regulatory networks. Two general approaches
have been used to identify conserved regulatory motifs:
first, comparing promoter DNA sequences of closely 
related species, and second, comparing promoter DNA
sequences of co-regulated genes in the same species. The
first of these methods takes advantage of the continuing
flood of genomic sequence information to identify evolu-
tionarily conserved promoter sequences, with the assumption
that these sequences define potential transcription-factor
binding sites. A study by Johnston and co-workers [50•]
compared small segments of genomic sequence from 
several closely related Saccharomyces species. From this
analysis, they identified a number of conserved DNA
motifs, many of which had been previously identified as

transcription factor binding sites. These encouraging
results will hopefully spur efforts toward obtaining 
complete genome sequences for this family of Saccharomyces
species, so this analysis can be extended genome-wide.

The second method takes advantage of a variety of com-
putational algorithms that have been devised to identify
conserved sequence motifs in the promoters of co-regulated
genes (reviewed in [11]). In many of these studies, groups
of co-regulated genes are defined by clustering analysis of
genome-wide expression data sets, and then the promoter
sequences of these gene clusters are analyzed for 
statistically over-represented DNA motifs [16,51–53].
Alternatively, potential DNA motifs can be classified by
their genome-mean expression profile (GMEP), which is
calculated by averaging the expression profiles of all genes
that contain the motif in their promoters [54]. DNA motifs
with coherent, non-random GMEPs are likely to represent
functional regulatory motifs.

These motif-finding algorithms focus on detecting 
individual regulatory elements. Many eukaryotic genes,
however, are bound by multiple transcription factors that
act synergistically to regulate transcription. Two recent
papers [55••,56•] describe computational algorithms
designed to identify combinations of regulatory motifs.
Bussemaker et al. [56•] used a linear model, in which 
regulatory motifs contribute additively to the expression
level of a gene, to analyze the cell cycle and sporulation
expression data sets. Pilpel et al. [55••] searched a database
of putative regulatory motifs for motif pairs that had 
synergistic GMEPs. The identified motif pairs were used
to build motif synergy maps and to analyze the causal 
relationship between individual motifs and expression 
patterns. Interestingly, they found that combinations of a
small number of regulatory motifs could account for a 
complex set of expression patterns.

Deciphering the cell cycle regulatory network
A recent study of the yeast cell cycle illustrates the great
potential of using genomic tools to decipher gene-expres-
sion regulatory networks [9••]. In this study, a combination
of genome-wide location and expression analysis was used
to investigate how the nine known cell cycle transcriptional
activators (Mbp1, Swi4, Swi6, Mcm1, Fkh1, Fkh2, Ndd1,
Swi5, and Ace2) regulate the expression of ~800 cell-cycle
genes. The data reveal that distinct sets of these nine 
transcriptional activators regulate genes expressed in 
different stages of the cell cycle. Mbp1, Swi4, and Swi6
bind predominately to the promoters of late G1 genes,
Mcm1, Fkh2, and Ndd1 to G2/M genes, and Swi5 and
Ace2 to M/G1 genes. Fkh1, on the other hand, binds to
genes expressed in the G1, S, and G2/M phases of the cell
cycle. Strikingly, the data also revealed that each of these
sets of stage-specific transcriptional activators also 
regulates the expression of one or more activators involved
in the next stage of the cell cycle, forming a fully connected
regulatory network (see Figure 3a). In addition, the
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expression of a variety of protein regulators (e.g. cyclins) of
the cell cycle is also regulated by these sets of stage-
specific transcriptional activators (see Figure 3b). For
example, the Mcm1/Fkh2/Ndd1 complex regulates the
M/G1 transcriptional activators SWI5 and ACE2, and the
cyclins CLB1 and CLB2, which promote entry into mitosis
[57]. Hence, a key insight from this study is that the cell
cycle is regulated by a connected circular network of 
transcriptional activators.

An interesting feature of the yeast cell cycle transcriptional
regulatory network is that pairs of activators exhibit par-
tially redundant functions. These transcriptional activator
pairs (e.g. Swi4 and Mbp1, Fkh1 and Fkh2, Ace2 and
Swi5) have similar DNA-binding domains, similar binding
sequences, but only partially overlapping target genes
in vivo [9••]. Previous models of cell-cycle regulation 
suggested that each of these transcriptional activator pairs
shares its function with its partner (i.e. they are functionally
redundant), as each of these six transcriptional activator
genes are not essential for cell-cycle progression. A striking
example of this is seen for the FKH1 and FKH2 genes.
Deletion of either gene individually has little effect, but
deletion of both results in striking changes in the expression
of a number of cell cycle regulated genes [18], suggesting
that Fkh1 and Fkh2 regulate the same sets of target genes
in vivo. However, genome-wide location data reveal that in
wild-type cells, Fkh1 and Fkh2 share only 22% of their 
target genes, and hence are only partially redundant.
Presumably, this partial redundancy allows Fkh1 and Fkh2
to substitute for each other when one has been deleted, yet
be responsible for distinct functions in wild-type cells. An
interesting possibility is that cells evolved pairs of regulators
with overlapping target genes to ensure smooth transitions
during the cell cycle. If a single activator regulated each

stage of the cell cycle, there would be greater potential for
disruptive changes in the gene-expression program.

Conclusions
It seems likely that, given the recent flurry of genome-
wide location and expression papers this past year, the
functional target genes of all yeast transcriptional activators
might be identified in the very near future. Such data
would provide a foundation for a complete map of the 
regulatory networks controlling gene expression in a
eukaryotic cell. Analyzing these data, however, will be 
a considerable challenge, and new and more powerful
computational tools are needed to build a gene-expression
network using these data. Hence, the interface between
mathematical modeling and DNA microarray experiments
should prove to be fertile ground in the years ahead.
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