Basic Clustering Algorithms for Gene Expression Analysis

T. M. Murali

August 18, 2008

T. M. Murali

August 18, 2008

Basic Clustering Algorithms for Gene Expression Analysis

Gene Expression Analysis

How do we automatically extract meaning from so much microarray data?

Gene Expression Analysis

How do we automatically extract meaning from so much microarray data?

Gene Expression Analysis

How do we automatically extract meaning from so much microarray data?

Describe data in terms of clusters of samples and genes that have strong internal similarities.

Example: lyer et al. (Science 1999)

- Measure temporal expression profiles of 8600 human genes in fibroblasts in response to serum addition.
- Over 200 previously unknown genes with specific temporal expression profiles.
- Based on known genes in cluster, authors assign putative functions to these genes.

Viewing DNA Microarray Data as Multi-Dimensional Points

- *m* genes and *n* samples.
- Figure (b)
 - Gene \equiv point: *m* points
 - Condition ≡ dimension: n-dimensional space
 - Expression level \equiv coordinate.
- Figure (c)
 - Sample \equiv point: *n* points.
 - Condition ≡ dimension: *m*-dimensional space.
 - Expression level \equiv coordinate.
- ▶ For a point *p*, *p_i* is its *i*th coordinate.

Given a set of m genes whose expression levels are measured across n conditions, find the best partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

Given a set of m genes whose expression levels are measured across n conditions, find the best partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

How many subsets?

Given a set of m genes whose expression levels are measured across n conditions, find the best partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

- How many subsets?
- How do we measure how similar the expression profiles of two genes are?

Given a set of m genes whose expression levels are measured across n conditions, find the **best** partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

- ► How many subsets?
- How do we measure how similar the expression profiles of two genes are?
- How do we compare two different partitions?

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{d} \sum_{i} \left(\frac{p_i}{\dots} \right) \left(\frac{q_i}{\dots} \right)$$

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{d}\sum_{i}\left(\frac{p_{i}-\mu(p)}{d}\right)\left(\frac{q_{i}}{d}\right)$$

•
$$\mu(p)$$
: average of p's coordinates,

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{d} \sum_{i} \left(\frac{p_i - \mu(p)}{\sigma(p)} \right) \left(\frac{q_i}{\dots} \right)$$

μ(p): average of p's coordinates, σ(p): standard deviation of p's coordinates.

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{d}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}-\mu(q)}{\sigma(p)}\right)$$

μ(p): average of p's coordinates, σ(p): standard deviation of p's coordinates.

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{d}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}-\mu(q)}{\sigma(q)}\right)$$

μ(p): average of p's coordinates, σ(p): standard deviation of p's coordinates.

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{d}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}-\mu(q)}{\sigma(q)}\right)$$

- μ(p): average of p's coordinates, σ(p): standard deviation of p's coordinates.
- Other distances: normalised dot product, K-L divergence, relative entropy.

- Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{d}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}-\mu(q)}{\sigma(q)}\right)$$

- μ(p): average of p's coordinates, σ(p): standard deviation of p's coordinates.
- Other distances: normalised dot product, K-L divergence, relative entropy.
- Metrics obey triangle inequality: $d(p,q) + d(q,r) \ge d(p,r)$.
 - Euclidean, Manhattan distances are metrics.
 - Correlation, dot product are not metrics.

Introduction

Quality of a Partition

- Partition points into k clusters $C = \{C_1, C_2, \ldots, C_k\}.$
- ▶ Define quality q_i of a cluster C_i and define quality q(C) in terms of q_is.

Quality of a Partition

- Partition points into k clusters $C = \{C_1, C_2, \ldots, C_k\}.$
- ▶ Define quality q_i of a cluster C_i and define quality q(C) in terms of q_is.

- Sum of squared errors.
 - μ_i = average of points in C_i .

Quality of a Partition

- Partition points into k clusters $C = \{C_1, C_2, \ldots, C_k\}.$
- ▶ Define quality q_i of a cluster C_i and define quality q(C) in terms of q_is.

- Sum of squared errors.
 - μ_i = average of points in C_i .
 - $q_i = \frac{1}{n_i} \sum_{p \in C_i} d(p, \mu_i)^2$ = average of squared distance from every point in C_i to q_i .

•
$$q(\mathcal{C}) = \sum_i q_i$$

Algorithms

- ► *k*-means algorithm.
- Hierarchical clustering.

Algorithms

k-means: find k cluster "centres" and form clusters by assigning a point to the closest cluster centre.

k-means algorithm

Partition S into k clusters that minimise the sum of squared errors $q(C) = \sum_{i} \sum_{p \in C_i} ||p - \mu_i||^2$ over all possible partitions of S into k clusters.

k-means algorithm

Partition S into k clusters that minimise the sum of squared errors $q(C) = \sum_{i} \sum_{p \in C_i} ||p - \mu_i||^2$ over all possible partitions of S into k clusters.

- 1. Initialise centres $\mu_1, \mu_2, \ldots, \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.

- 1. Initialise centres $\mu_1, \mu_2, \ldots, \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.

- 1. Initialise centres $\mu_1, \mu_2, \ldots, \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- Initialisation:

- 1. Initialise centres $\mu_1, \mu_2, \ldots, \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Initialisation: random μ_i 's or "well-separated" μ_i 's.

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- lnitialisation: random μ_i 's or "well-separated" μ_i 's.
- Checking for termination :

- 1. Initialise centres $\mu_1, \mu_2, \ldots, \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- lnitialisation: random μ_i 's or "well-separated" μ_i 's.
- Checking for termination :
 - use thresholds to avoid numerical errors.
 - check if sets in the partition do not change.

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- Each iteration takes time.

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.

▶ q(C)

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.
- q(C) does not increase.

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- Each iteration takes O(kmn) time.
- q(C) does not increase.
- Algorithm can get stuck in a local minimum.

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- Each iteration takes O(kmn) time.
- q(C) does not increase.
- Algorithm can get stuck in a local minimum.

- 1. Initialise centres $\mu_1, \mu_2, \ldots \mu_k$.
- 2. Repeat
 - For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes *O*(*kmn*) time.
- q(C) does not increase.
- Algorithm can get stuck in a local minimum.
- Does not work particularly well in very high (\geq 40) dimensions.

Algorithms

- ► *k*-means algorithm.
- ► Hierarchical clustering.

Hierarchical Clustering

- > Attempt to recursively find sub-clusters within clusters.
- Natural way to "zoom into" areas of interest.
- Represent using a tree or dendrogram.

Bottom-up clustering algorithm.

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

Basic Clustering Algorithms for Gene Expression Analysis

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .

Basic Clustering Algorithms for Gene Expression Analysis

- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - Merge C_i and C_j .
- 3. until all the samples (genes) are in one cluster.

Hierarchical Clustering Result

• $d_{min}(D_i, D_j)$ = distance between closest pair of points.

- $d_{min}(D_i, D_j)$ = distance between closest pair of points.
- $d_{max}(D_i, D_j)$ = distance between farthest pair of points.

- $d_{min}(D_i, D_j)$ = distance between closest pair of points.
- $d_{max}(D_i, D_j)$ = distance between farthest pair of points.
- ▶ $d_{avg}(D_i, D_j)$ = average of distances between all pairs of points.

- $d_{min}(D_i, D_j)$ = distance between closest pair of points.
- $d_{max}(D_i, D_j)$ = distance between farthest pair of points.
- ▶ $d_{avg}(D_i, D_j)$ = average of distances between all pairs of points.
- $d_{mean}(D_i, D_j) = d(\mu_i, \mu_j).$

- $d_{min}(D_i, D_j)$ = distance between closest pair of points.
- $d_{max}(D_i, D_j)$ = distance between farthest pair of points.
- $d_{avg}(D_i, D_j)$ = average of distances between all pairs of points.

•
$$d_{mean}(D_i, D_j) = d(\mu_i, \mu_j).$$

- Computing $d_{min}, d_{max}, d_{avg}$ takes $O(n_i n_j)$ time.
- Computing d_{mean} takes $O(n_i + n_j)$ time.

Running Time of Hierarchical Clustering

- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let D_i and D_j be the clusters "nearest" each other.
 - Merge D_i and D_j .
- 3. until all the samples (genes) are in one cluster.

Running Time of Hierarchical Clustering

- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let D_i and D_j be the clusters "nearest" each other.
 - Merge D_i and D_j .
- 3. until all the samples (genes) are in one cluster.
- Store all $O(m^2)$ inter-point distances.
- At each iteration, compute distance between every pair of clusters: takes O(nm²) time in total.
- There are *n* iterations, so overall running time is $O(nmm^2) = O(nm^3)$.

Properties of Hierarchical Clustering

- Using d_{min} , tree tends to look like an elongated chain.
- Using d_{max} , clusters may not be well separated.
- Other measures try to alleviate this problem.

Properties of Hierarchical Clustering

- Using d_{min} , tree tends to look like an elongated chain.
- Using d_{max} , clusters may not be well separated.
- Other measures try to alleviate this problem.
- ▶ In case of d_{min} , tree produced is the minimum spanning tree. Exercise.
- In other cases, it is difficult to state what properties the partition satisfies.

Evaluating Cluster Quality

How can measure the "useful" biological knowledge that a cluster contains? Exercise.