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Abstract—Anomaly detection is a ubiquitous and challenging
task, relevant across many disciplines. With the vital role com-
munication networks play in our daily lives, the security of these
networks is imperative for the smooth functioning of society. To
this end, we propose a novel self-supervised deep learning frame-
work CAAD for anomaly detection in wireless communication
systems. Specifically, CAAD employs contrastive learning in an
adversarial setup to learn effective representations of normal and
anomalous behavior in wireless networks. We conduct rigorous
performance comparisons of CAAD with several state-of-the-
art anomaly detection techniques and verify that CAAD yields
a mean performance improvement of 92.84%. Additionally, to
adapt to the dynamic shifts in benign and anomalous data dis-
tributions, we also augment CAAD enabling it to systematically
incorporate expert feedback through a novel contrastive learning
feedback loop to improve the learned representations and thereby
reduce prediction uncertainty (CAAD-EF ). We view CAAD-
EF as a novel, holistic, and widely applicable solution to anomaly
detection. Our source code and data are available online1

Index Terms—Anomaly detection, Generative Adversarial Net-
works, Wireless, Self-supervised learning, Contrastive Learning

I. INTRODUCTION

Wireless communications systems form an essential compo-
nent of cyber-physical systems in urban environments. They
enable us to access the internet and connect with others
remotely, thereby serving as a vital means of human inter-
action. They also connect thousands of sensors, applications,
industrial networks, critical communications systems, and
other infrastructure. Hence, state monitoring and detection of
irregular activity in wireless networks are essential to ensuring
robust and resilient system operational capabilities.

The electromagnetic spectrum (simply referred to as ‘the
spectrum’) is the information highway through which most
forms of electronic communication occur. Parts of the spec-
trum are grouped into ‘bands’ (based on the wavelength)
which can be thought of as analogous to lanes on highways.
Specific regions (i.e., lanes) of the spectrum are reserved for
specific types of communication (e.g., radio, Wi-Fi). The entire
spectrum ranges from 3Hz-300EHz and the typical range used
for wireless communication today is 30Khz-28GHz.

Spectrum access activity in wireless systems carry rich
information which can indicate the presence and activity of

1https://github.com/rgopikrishna-vt/CAAD
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Fig. 1. Irregular Activity in Wireless Communication Systems [1]

physical devices, and behaviors corresponding to security
threats, intrusions, jamming attempts, device malfunctioning,
interference, illicit transmissions, and a host of other activities
(see Fig.1). Data corresponding to spectrum access activity has
been explored in wireless intrusion detection systems (WIDS)
in a very limited context. Most of the systems in use today for
detecting anomalous network activity, are highly application
specific and focus on specialized feature engineering, detector
engineering, and signal-specific digital signal processing. Such
systems are not generalizable, are highly sensitive to minor
variations in system characteristics, and are costly to maintain
due to the dependence on rich feature engineering.

Hence in this work, we have developed a generic and
powerful unsupervised anomaly detection framework and
demonstrated its prowess in the context of wireless net-
work anomalies. Specifically, we propose a novel solution
to anomaly detection (AD), Contrastive Adversarial Anomaly
Detection (CAAD ) which applies contrastive learning (CL) in
an adversarial setup. We also augment CAAD with the ability
to incorporate expert feedback (EF) to improve the quality
of its learned representations for AD. We call this model
CAAD-EF . To the best of our knowledge, we are the first
to propose such a powerful yet flexible AD framework that
applies CL paradigms in an adversarial setup with the ability
to incorporate expert feedback via CL to improve its learned
representations and reduce prediction uncertainty.
Our contributions are as follows:
• We propose CAAD , a novel method for AD which uti-
lizes CL and generative adversarial networks (GAN). We
demonstrate that our proposed model is able to significantly
outperform state-of-the-art (SOTA) models on AD in wireless
networks and standard datasets. To the best of our knowledge,



CAAD is the first model to use a combination of CL and
adversarial learning for AD.
• We propose CAAD-EF , which is another novel model sup-
plemental to CAAD , which further enables us to incorporate
expert feedback via CL and uncertainty quantification (using
Monte Carlo dropouts). To the best of our knowledge, our
framework is the first successful undertaking to utilize CL to
incorporate expert feedback.
• We highlight the importance of various facets of CAAD-
EF via rigorous qualitative, quantitative, and ablation analyses.

II. RELATED WORK

We now detail some related and recently proposed ap-
proaches to anomaly detection that employ deep learning
methods. Methods such as autoencoders and GANs [2] have
demonstrated state-of-the-art results across many AD tasks.
AE models like the Robust Autoencoder [3] (a semi-supervised
method requiring a limited set of anomaly labels) and unsu-
pervised AD models based on GANs like AnoGAN [4] and
more recently fAnoGAN [5] (employed as a baseline) have
shown effective AD performance. Another popular line of
AD research leverages contrastive learning. Recently, semi-
supervised approaches like Masked Contrastive Learning [6]
and unsupervised CL approaches like Contrasting Shifted
Instances (CSI) [7] (employed as a baseline) and Mean Shifted
Contrastive Loss [8] have also been proposed for AD.
Another line of research proposes AD models that incorporate
expert feedback. AAD [9] performs anomaly detection in an
interactive data exploration loop with the goal of maximizing
the number of anomalous instances presented to the expert
(which is different from our setup). Such a method (based on
a budget and requiring extensive interactive expert feedback)
is intractable for wireless AD where the volume of input data
is high. Methods like SAAD [10], DevNet [11], DPLAN [12]
and RAMODO [13] are semi-supervised methods, all requiring
labeled anomalies and unsuitable for our problem.
In our proposed CAAD-EF framework, we leverage the power
of self-supervised contrastive learning and adversarial learning
to develop a powerful AD model. We then augment the
model’s ability to adapt to changing distributional dynamics
in AD settings by enabling it to incorporate minimal expert
feedback. None of the related AD approaches use a combina-
tion of the aforementioned techniques to ensure powerful and
robust learned representations for AD.

III. BACKGROUND

CAAD and CAAD-EF employ techniques such as con-
trastive learning (CL), generative adversarial networks (GAN),
and uncertainty quantification (UQ). We shall now briefly
introduce these concepts before detailing the full CAAD-
EF framework in section IV.

A. Generative Adversarial Networks (GAN)
We employ the well-studied and stable Wasserstein GAN

with gradient penalty (WGAN) model as the backbone of our
learning framework. Eq. 1 depicts the WGAN loss function

where generator G is parameterized by θ and discriminator D
is parameterized by Ω ∈ B, where B is the set of 1-Lipschitz
functions.

Lgp = min
θ

max
Ω∈B

E
x∼Pr

[DΩ(x)]− E
x̃∼Pf

[DΩ(x̃)]

+ λ E
x̌∼Pi

(‖∇DΩ(x̌)‖2 − 1)
2 (1)

Here, Pr and Pf depicts real and fake distributions and each
sample x̌ ∼ Pi is generated as a convex combination of points
from Pr, Pf (i.e., sampled from the line connecting points
from Pr, Pf ). λ enforces the strictness of the gradient penalty.

B. Contrastive Learning (CL)
The paradigm of CL has recently demonstrated highly

effective results across a diverse set of disciplines, especially in
computer vision [14]–[16]. While most CL losses are set in a
self-supervised context, a supervised version of the contrastive
loss [17] has recently been proposed. A model trained with
supervised contrastive learning (SupCon) on a labeled dataset
learns latent representations grouped by class labels while
also forcing separation in representations between instances
of different classes.
Consider a dataset of instances D = {(x1, y1), .., (xm, ym)}
such that xi ∈ Rb×l and yi ∈ C is the label of xi and C is the
set of class labels. Then, the SupCon loss is defined by Eq. 2.

Lsup =
∑
xi∈D

−1
|Pos(i)|

∑
xk∈Pos(i)

log
exp (zi · zk/τ)∑

j∈Q(i) exp (zi · zj/τ)
(2)

Here, zi ∈ Rh×1 is the latent representation of xi generated by
model M. Pos(i) = {xk ∈ D|yk == yi ∧ k 6= i} is the set of
instances that form the ‘positive set’ for xi. Q(i) = {D\xi}.
τ ∈ R+ is a hyperparameter. We employ Eq. 2 for CL but
with labels generated in a self-supervised manner.

C. Uncertainty Quantification (UQ)
Quantifying decision uncertainty is critical to the success

of real-world machine learning (ML) frameworks. It is of
special relevance in the current setting of AD wherein the
confidence of a model in its decision additionally indicates
the urgency of a potential alert issued by the model. While
traditional ML models yield point predictions, Bayesian ML
provides a framework for capturing model uncertainty. One
such UQ approach termed Monte-carlo (MC) dropout [18],
entails running a monte-carlo sampling (during inference) of
a trained model by randomly masking a set of learned weights
of the model each time (i.e., dropout [19]). This is akin
to sampling from the approximate posterior which leads to
uncovering the model predictive distribution and hence model
decision uncertainty.

IV. PROBLEM FORMULATION

We now detail our novel methods CAAD and CAAD-EF .
Fig. 2 details the overall architecture of CAAD-EF .

A. Self Supervised AD with Negative Transformations
The core of the proposed framework is the Contrastive

Adversarial Anomaly Detection (CAAD ) model. The struc-
ture of the CAAD model resembles a WGAN as described



Fig. 2. Full architecture of the human-in-the-loop CAAD-EF AD framework.
(Training): The framework consists of a WGAN-GP with an uncertainty-aware
discriminator trained with SupCon to impose structure in the latent space.
Labeled data required for SupCon is obtained by applying ‘negative trans-
formations’ on a benign set of instances to generate corresponding anoma-
lous instances. (Inference): During inference, the model yields a prediction
(anomaly:red star or benign:blue star) for every instance, accompanied by the
prediction uncertainty. (Expert Feedback): Uncertain instances (yellow stars)
are isolated and passed to an expert to uncover their true labels. (Re-Training):
The pre-trained WGAN-GP model is then fine-tuned with this additional
expert feedback to further improve its representations learned thereby leading
to improved AD performance and decreased prediction uncertainty.

in section III comprising a generator Gθ and a discrim-
inator DΩ. In addition to GAN-based training, we also
train CAAD discriminator with CL to impose explicit structure
on the learned latent representations and improve represen-
tation learning. The CL technique employed is similar to
SupCon detailed in section III. However, SupCon requires
a labeled dataset. To generate a labeled dataset D, we as-
sume the existence of a training set without any anoma-
lies. Let this set be denoted Db = {(x1, y1), .., (xm, ym)},
such that yi = 0, ∀(xi, yi) ∈ Db. We apply a negative
transformation T (·) to violate the normalcy of every in-
stance xi ∈ Db to obtain a corresponding set of anoma-
lous instances Da = {(x1, y1), .., (xm, ym)} such that yi =
1, ∀(xi, yi) ∈ Da. Now let us consider D = {Da,Db} =
{(xa1 , ya1 ), .., (xam, y

a
m), (xb1, y

b
1), .., (xbm, y

b
m)|yai = 0 ∧ ybi =

1 ∀i}. Then we can leverage Eq. 2 to directly train
the CAAD discriminator with CL (specifically SupCon).

LCAAD = Lgp + αLsup (3)

Eq. 3 represents the objective employed to train
the CAAD model to learn effective representations of
benign and negatively transformed ‘anomalous’ instances via
CL. Here, α governs the effect of the supervised contrastive
loss on the discriminator representations.

B. Inferring Decision Uncertainty with CAAD-UQ
In order to maximize the effect of expert feedback on

model performance, we isolate an effective set of instances
for which we solicit feedback. We define this effective set
of instances as those for which the model is the most un-
certain in its prediction. We augment CAAD to quantify its

prediction uncertainty using the popular MC dropout technique
(see section III-C). This variant of CAAD augmented with
uncertainty quantification capability is termed CAAD-UQ .
Concretely, the model structure of CAAD discriminator is
augmented by including dropout in each layer of the model to
yield CAAD-UQ . Let DL

Ω∗ represent the first L layers of the
discriminator of a trained CAAD-UQ model where training
happens according to Eq. 3. Further, let di = DL

Ω∗(xi),
then, {dji}j=1...k represents the set of ‘k’ monte-carlo sampled
embeddings obtained from DL

Ω∗(xi). CAAD-UQ employs the
mean of the MC embeddings, denoted di as the representation
inferred for an instance xi ∈ D.

Every MC embedding dji generated by DL
Ω∗(xi) is subjected

to a scoring mechanism (section IV-D) whereby a prediction
ŷji ∈ {0, 1} is obtained. Here ŷji = 0 indicates a benign
classification and ŷji = 1 indicates an anomalous classification
of xi at MC sample j. Prediction uncertainty as quantified
by CAAD-UQ for di is outlined in Eq. 5

ui,c = |{ŷji |j ∈ {1, 2, ..k} ∧ ŷ
j
i = c}| where c ∈ {0, 1} (4)

µi = 1− max(ui,0, ui,1)

k
(5)

C. Leveraging Expert Feedback
Now, we have formulated a method to calculate an uncer-

tainty measure µi for any instance xi. For {xi} ∈ D for
which we want to make predictions, if µi ≈ 1∀xi, then we
can be sure that the model predictions are reliable. However,
if this is not true, we further retrain CAAD-UQ for a small
number of epochs using a set of effective instances determined
using µi and their corresponding feedback from an expert on
these instances, along with the original training set. We call
this model CAAD-EF since this is a contrastive adversarial
anomaly detection model trained from expert feedback.

For a particular class c, we define the supervised contrastive
loss in Eq. 6.

Lsupclass(D, c) = Lsup(D) ∀xi : yi = c (6)

Lsupclass is used to only bring instances of one class c
together and away from all other classes, in contrast with LSup

which brings each instance close to each other instance of the
same class and away from instances of all other classes.

Let X denote a set of benign instances. From the set of
inferences yielded by CAAD-UQ , we select the top ‘h’%
most uncertain instances XHIL, based on µi (Eq. 5) as the
effective set of instances and showcase them to an expert to
receive feedback. This feedback gives us {XHIL

anom, X
HIL
ben }

were XHIL
anom and XHIL

ben are the set of instances labeled by an
expert as anomalous and benign respectively. We then incor-
porate an additional loss term in the loss function of CAAD-
UQ and retrain the model for a small number of epochs. Let
Xaug = T (X) where T is a class of transformations, D1 =
{XHIL

anom, X}, D2 = {XHIL
ben , Xaug}, D3 = {XHIL

ben , XHIL
anom}.

We define the human-in-the-loop (HIL) loss LHIL in Eq 7.



LHIL = α1L
supclass(D1, c = 1) + α2L

supclass(D2, c = 0)

+ α3L
supclass(D3, c = 0)

(7)

where the first term in LHIL helps bring XHIL
anom together while

also pushing it far away from X , the second term helps bring
XHIL
ben together while pushing it far away from Xaug and the

third term helps bring XHIL
ben together and pushes it away from

XHIL
anom. Hence the overall loss term for the retraining model

CAAD-EF is given below.

LD = LCAAD + LHIL (8)

D. Anomaly Detection
Training our model gives us meaningful embeddings. Here

we define how we use these embeddings to identify anomalies.
Scoring function: We define a scoring function that can be
used to determine if an instance is an anomaly or not. We adopt
the scoring mechanism used in [7]. Consider a set of training
instances. We cluster them into m different clusters and obtain
their cluster centroids as {xm}. For every test instance xi, the
score is calculated as below.

sxi = max(cosine(DL
Ω∗(xi), D

L
Ω∗(xm))) ∀ xm (9)

Anomaly threshold: Consider a validation set xv and a
distribution P of anomaly scores sxv

.

θ = argθ{P (sxv < θ) = φ} (10)

where φ is the strictness parameter which can be tuned to
control the rate of false positives and false negatives. When
sxi

exceeds θ, then we call xi an anomaly.

V. EXPERIMENTAL SETUP

Dataset Description: We consider three wireless emission
activity datasets LTW1 , LTW2 , and STW1 as well as the well-
known MNIST dataset for evaluation. The wireless emission
activity datasets consist of metadata (Bandwidth and Center
Frequency values) describing detected radio emissions ob-
served over the air in a known radio frequency (RF) envi-
ronment. This metadata is aggregated periodically into 80x80
bins based on counts, which are then used as input data.
Anomalies consist primarily of new emitters coming online
or exhibiting new behavior (e.g. hopping) in a band with
otherwise orderly patterned behavior, or the disappearance
(e.g. failure) of emitters that are otherwise regularly present.
For more information, please refer [20].
Baselines: We evaluated SOTA AD models such as Isolation
Forest [21] and OC-SVM [22] as baselines. We also included
models which are closely related to CAAD as baselines namely
UnetGAN [23], fAnoGAN [5] and CSI [7].
Evaluation Metrics: We use F1score, AUROC, AUPRC, and
average weighted F1score as metrics to evaluate our results.
The reasoning behind using the metrics can be found in [20].
Model & Training Details: Our models are trained for 100
epochs with a batch size of 32, Adam optimizer, and a learning

rate of 1e−4 for both the generator and the discriminator. We
use the penultimate layer in discriminator for L in DL

Ω. For
more details, please refer [20].

VI. RESULTS AND DISCUSSION

We now investigate the performance of our models. Our
detailed analysis entails a rigorous quantitative and qualitative
evaluation. Our specific research questions are as follows:
• How does CAAD perform relative to existing SOTA for AD?
• Can we augment CAAD to incorporate expert feedback
(CAAD-EF ) to improve the quality of learned representations?
• How does each facet of our novel CAAD-EF framework
contribute towards the overall performance?

A. CAAD Anomaly Detection Performance
First, we investigate the AD capability of CAAD . Specifi-

cally, we evaluate AD performance across four datasets com-
prising diverse characteristics and anomalies (see [20]).

TABLE I
SUMMARY OF RESULTS.

Data Model Benign F1 Anomaly
F1 AUROC AUPRC Avg.Wt.

F1

LTW1

Isolation Forest 0.75 0.47 0.88 0.83 0.61
OC-SVM 0.41 0.7 0.86 0.81 0.55

CSI 0.75 0.2 0.61 0.53 0.48
fAnoGAN 0.69 0.18 0.8 0.8 0.44

fAnoGAN** 0.68 0.04 0.85 0.84 0.37
UnetGAN 0.74 0.41 0.86 0.89 0.58

CAAD 0.93 0.9 0.97 0.97 0.92

STW1

Isolation Forest 0.64 0 0.49 0.57 0.3
OC-SVM 0.59 0.79 0.97 0.98 0.7

CSI 0.03 0.81 0.37 0.58 0.44
fAnoGAN 0.85 0.72 0.95 0.93 0.78

fAnoGAN** 0.83 0.79 0.96 0.63 0.81
UnetGAN 0.85 0.9 1.0 1.0 0.88

CAAD 0.92 0.94 1.0 1.0 0.93

LTW2

Isolation Forest 0.75 0.02 0.63 0.71 0.46
OC-SVM 0.34 0.59 0.74 0.78 0.44

CSI 0.84 0.27 0.63 0.3 0.61
fAnoGAN 0.75 0.14 0.7 0.58 0.51

fAnoGAN** 0.76 0.6 0.73 0.63 0.7
UnetGAN 0.73 0.36 0.64 0.5 0.58

CAAD 0.77 0.73 0.86 0.83 0.75

MNIST

Isolation Forest 0.28 0.63 0.88 0.59 0.6
OC-SVM 0.56 0.96 0.91 0.62 0.92

CSI 0.55 0.9 0.9 0.81 0.87
fAnoGAN 0.51 0.88 0.98 1.0 0.84

fAnoGAN** 0.31 0.65 0.95 0.99 0.62
UnetGAN 0.5 0.89 0.93 0.99 0.85

CAAD 0.76 0.97 0.93 1.0 0.95

Table I details the AD performance comparison
of CAAD with several well-accepted SOTA AD models.
Across all the datasets and types of anomalies, CAAD achieves
a mean performance improvement of 92.84% as evidenced
by the anomaly F1 score metric. CAAD also achieves an
overall mean performance improvement of 59.39% across
three of the four datasets where CAAD is the best performing
model (i.e., combined performance on benign and AD) as
demonstrated by the weighted average F1 score metric.
False Positives: An important facet of a robust, practically
useful AD framework is its ability to minimize ‘false alarms’.
To investigate this behavior, we report AUROC, an explicit
function of the false positive rate (FPR). CAAD yields con-
sistently high AUROC values (indicative of its low FPR i.e.,
it produces very few false alarms). CAAD yields the highest
AUROC values in three out of the four datasets. We must
note that in the case of the MNIST dataset, the AUROC
of CAAD (i.e., 0.93) is competitive and amenable for use in



real-world AD applications.
Due to the variegated nature of data imbalance in our exper-
iments (see [20] for data support statistics) we also evaluate
the AUPRC metric (as a complement to AUROC under data
imbalance). We notice that CAAD is best performing2 across
all datasets (including MNIST) as per AUPRC metric.
Network Anomaly Detection: CAAD is able to detect ex-
tremely ‘weak’ anomalies associated with activity in irreg-
ular parts of the spectrum being monitored. This is specif-
ically evidenced by the superior performance of CAAD on
datasets LTW1 and LTW2 , both of which contain attack
signatures generated by devices that inappropriately access
unused regions of the band being monitored. The superior
performance of CAAD in AD on the STW1 dataset which
consists of the ‘signal drop’ anomaly (please refer [20]), also
demonstrates the versatility of CAAD to detect different types
of irregularities in different bands across the communication
spectrum. We notice that the CSI model has a higher benign F1
score but lower overall wt.Avg. F1 score (as it underperforms
on the corresponding AD task) for the LTW2 dataset. CAAD in
contrast yields more stable results for detecting both benign
and anomalous instances across all datasets.
MNIST Anomaly Detection: We notice that CAAD yields a
performance improvement of 1.04% and 3.26% on F1 score
and weighted average F1 score respectively over next best
model OC-SVM in the MNIST dataset. This is indicative of
generic, flexible nature of CAAD in addressing AD tasks.
SOTA Models: Standard AD models like Isolation Forest,
OC-SVM and fAnoGAN are unable to identify the subtle
anomalous patterns of interest. CSI which is a recent SOTA
AD model that also employs CL, significantly underperforms
relative to CAAD (avg. performance improvement by Wt. Avg.
F1 score 58.78%) across all the datasets.
Overall, Table I indicates the superior representation learning
and AD capability of CAAD on small and large, balanced and
imbalanced datasets with multiple types of anomalies.

TABLE II
IMPACT OF FINE TUNING WITH EXPERT FEEDBACK.

Data Model Benign
F1

Anomaly
F1 AUROC AUPRC Avg.Wt.

F1

LTW1

CAAD 0.93 0.9 0.97 0.97 0.92
CAAD-UQ 0.92 0.9 0.97 0.98 0.91
CAAD-EF 0.94 0.94 0.98 0.98 0.94

CAAD-EF 95% 0.95 0.94 0.98 0.98 0.95

STW1

CAAD 0.92 0.94 1 1 0.93
CAAD-UQ 0.93 0.94 1 1 0.94
CAAD-EF 0.98 0.98 1 1 0.98

CAAD-EF 95% 0.98 0.99 1 1 0.99

B. Anomaly Detection with Expert Feedback
In an effort to further improve the performance of CAAD ,

we augment it with the capacity to incorporate expert feedback
received in the form of instance labels for a limited set of
instances. The resulting framework CAAD-EF comprises of
an augmentation to the discriminator of the CAAD model
enabling it to characterize its prediction uncertainties (see
section IV). This uncertainty-aware model (CAAD-UQ ) is

2accompanied by fAnoGAN on MNIST, UNetGAN on STW1

trained in a similar fashion to CAAD . Once trained, CAAD-
UQ yields inferences on unseen instances accompanied by its
prediction uncertainty. We select ‘h%‘ of the most uncertain
instances as infered by CAAD-UQ to be labeled by an expert.
This labeled set of instances is leveraged in a feedback loop to
fine-tune representations learned by CAAD-UQ , thus yielding
a holistic HIL AD CAAD-EF framework.
Effect of Expert Feedback (Quantitative Evaluation): Ta-
ble II shows the results of incorporating expert feedback. In
this table, CAAD-EF 95% is CAAD-EF evaluated only on a
test set with expert feedback instances removed. Specifically,
we notice that incorporating expert feedback on a subset
of uncertain instances (we select instances corresponding to
5% of the most uncertain test predictions as candidates for
expert feedback) yields an average performance improvement
of 4.17% in Anomaly F1 score and 3.79% performance
improvement in Benign F1 score over the next best model in
the case of large (LTW1 ) and small (STW1 ) training datasets.
This indicates that the CAAD-EF benefits significantly from
expert feedback in the context of different anomalies and data
sizes. Figures 3a, and b show uncertainty values for 5% of
most uncertain instances before retraining (from CAAD-UQ )
and after retraining (from CAAD-EF ). We clearly notice an
improvement in uncertainty scores after retraining. This result
further shows improved performance of CAAD-EF .

Fig. 3. (a),(b) display uncertainty scores of HIL instances before and after
retraining. (a) shows results from LTW1 and (b) shows results from STW1. (b)
does not contain values for HIL anomalies as there were no HIL anomalies.

Effect of Expert Feedback (Qualitative Evaluation): To fur-
ther corroborate our claim of improved representation learning
of CAAD-EF due to expert feedback, we analyze the evolution
of the discriminator embeddings of CAAD-EF before and after
retraining with expert feedback. Fig 4 showcases t-SNE plots
of the discriminator embeddings. Fig. 4a shows the representa-
tions inferred by CAAD-UQ before expert feedback. We notice
clearly the effect of the CL employed to train the discriminator,
leading to a clear separation of anomalous and benign regions
in the plot. In Fig. 4b we notice CAAD-UQ is uncertain about
a significant number of points in the inference set. This region
of uncertainty is identified and 5% of most uncertain instances
(as indicated by CAAD-UQ ) are supplied to the expert for
feedback. These instances are highlighted as red (expert label:
anomaly) or blue (expert label: benign) points in Fig 4c. The
model is retrained with the full training set and the updated
sets of points to produce new uncertainty estimates (Fig. 4e)
wherein we see that the model is significantly less uncertain in
the ROU (which has shrunk significantly). Finally, we notice



Fig. 4. Fig. 4(a)-(f) qualitatively represent the effect of incorporating human
feedback in our proposed CAAD-EF framework. Each figure depics t-SNE
embeddings. Fig. 4(a) Depicts CAAD-UQ embeddings, colored by the ground
truth labels of anomalies (red) and benign points (blue). In Fig. 4 (b) the same
embeddings are colored by uncertainties obtained from CAAD-UQ (yellow:
low uncertainty +, purple: low uncertainty + benign, green regions show
uncertain instances;). We notice a highly focused but sizeable ‘Region of
Uncertainty’ (ROU) indicated by the dotted black circle. Fig. 4(c) Shows
ground truth labels of ROU points as specified by the expert (red: anomalous,
blue: benign). Fig. 4(d) Depicts (similar to Fig. 4a) updated t-SNE embeddings
yielded by the CAAD-UQ discriminator after fine-tuning with expert feedback
for 5% of most uncertain instances. Fig. 4(e) shows updated uncertainty esti-
mates of CAAD-UQ post fine-tuning, we see a significant reduction in ROU
compared to Fig. 4b. In Fig. 4(f) we see embeddings of CAAD-UQ model
fine-tuned with expert feedback results in greater separation between benign
(blue) and anomalous instances (red) in ROU. This consequently also leads
to the overall decrease in decision uncertainty as observed in Fig. 4e.

that the instances that were supplied by the expert as feedback
have achieved significant separation and gravitated towards
their respective cluster centroids (Fig. 4f) thereby leading to
improved model performance. We also performed ablation
analysis (please refer [20] for results) to assess the importance
of each component of our models. The analysis indicated that
the performance of CAAD is a function of the effect of CL and
adversarial training, and the performance is further improved
with the inclusion of expert feedback (CAAD-EF).

VII. CONCLUSION

In this paper we have introduced CAAD , a novel AD
framework employing contrastive learning in an adversarial
setup. We have demonstrated through rigorous experiments
that CAAD outperforms SOTA AD baselines and achieves
a 92.84% improvement for AD in wireless communication
networks as well as in more generic AD contexts. We further
propose CAAD-EF which is a variant of CAAD capable of
incorporating expert feedback and evaluated its effectiveness
via several qualitative and quantitative experiments. Incorpo-
rating expert feedback gives a performance boost of 4.19%
over CAAD . Finally, we also highlight the importance of each
facet of our proposed CAAD-EF framework through a detailed
ablation study. Moving forward, we shall augment CAAD-
EF with more sophisticated uncertainty quantification tech-
niques applied to real-time human-in-the-loop AD applica-
tions, especially those plagued by covariate shifts.
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