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Abstract
The decision tree model has gained great popularity both
in academia and industry due to its capability of learning
highly non-linear decision boundaries, and at the same time,
still preserving interpretability that usually translates into
transparency of decision-making. However, it has been
a longstanding challenge for learning robust decision tree
models since the learning process is usually sensitive to data
and many existing tree learning algorithms lead to overfitted
tree structures due to the heuristic and greedy nature of
these algorithms. Pruning is usually needed as an ad-hoc
procedure to prune the tree structure, which is, however,
not guided by a rigorous optimization formulation but by
some intuitive statistical justification. Motivated by recent
developments in sparse learning, in this paper, we propose a
novel formulation that recognizes an interesting connection
between decision tree post-pruning and sparse learning,
where the tree structure can be embedded as constraints
in the sparse learning framework via the use of a max-
heap constraint as well as a sparsity constraint. This novel
formulation leads to a non-convex optimization problem
which can be solved by an iterative shrinkage algorithm in
which the proximal operator can be solved by an efficient
max-heap projection algorithm. A stability selection method
is further proposed for enabling robust model selection in
practice and guarantees the selected nodes preserve tree
structure. Extensive experimental results demonstrate that
our proposed method achieves better predictive performance
than many existing benchmark methods across a wide range
of real-world datasets.

1 Introduction
Recently there has been a renewed interest in tree
based methods among researchers in the field of data
mining and machine learning [2, 28, 12, 4]. This is
probably due to the fact that the tree based methods
have demonstrated impressive prediction performance
in a great variety of recent applications like ranking
[3], recognition [18, 7], recommendation [1]. On the
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other hand, unlike some nonlinear models such as
kernel methods that generate predictions in a black-
box fashion, the tree-based methods produce rules that
can be easily interpreted and validated by domain
knowledge or expert judgment, and can be flexibly
revised based on new data or any other form of human
knowledge intervention. The ease of interpretability
usually leads to a higher likelihood of adaptability in
real-world applications as critical decision-making tools.
Furthermore, due to the unique hierarchical structure
[14], tree-based models support sequential prediction,
which is more cost-effective since only a few variables are
needed to produce a prediction, while in other predictive
models such as regression models, all the variables are
needed to make a prediction.

Despite the aforementioned advantages, the tree
models have been suffering from some longstanding lim-
itations. Overfitting is one of the well known notorious
problems. For example, off-the-shelf decision tree learn-
ing algorithms such as C5.0 and Classification And Re-
gression Trees (CART, [6]) tend to create over-complex
trees that may not generalize to unseen data very well.
These methods also have several hard-to-tune parame-
ters which result in barriers for their usage in real-world
applications. Furthermore, due to the lack of an explicit
optimization formulation which could oversee the tree
learning process and gear the learned tree toward the
defined optimality (i.e., that ensures better generaliz-
ability), many of the existing methods rely on heuris-
tics that heavily depend on the training data, leading
to unstable or unreliable tree models.

To mitigate the overfitting problem, one school of
thought is to employ an ad hoc pruning procedure to
prune the tree structure in the hope to preserve the
major skeleton that can generalize well on new data.
Over the past decades, there have been a number of
benchmark pruning methods being developed, such as
reduced error pruning [25], pessimistic error pruning
[24], etc. Many of these methods date back to 1980s
and are based more or less on heuristics with statistical
justification rather than an integrated optimization
formulation [21]. This is a common limitation for other
pruning methods such as the ones that attempt to
exploit some information theoretic measure to prune a
decision tree [19].
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More recently the RuleFit [10] algorithm has been
developed that extracts rules from trees since rules can
provide powerful basis functions to approximate highly
nonlinear functions. For instance, RuleFit aims to build
a prediction model as a weighted combination of the
nodes in the decision trees learned by an ensemble learn-
ing method, where each node in a tree is regarded as a
rule function. This rule function takes the form as an
indicator function indicating whether or not the con-
junction of conditions associated with edges on the path
from the root node of the tree to the node concerned is
satisfied. By viewing that each decision tree is a col-
lection of rule functions, RuleFit primarily focuses on
how to select a small subset of rules derived from mul-
tiple decision trees to best predict the response variable
without giving consideration to the tree structure in-
herently existing among the rules. Without imposing
the tree structure in learning the best rule combination,
RuleFit leads to non-exclusive rules where other predic-
tion mechanisms such as regression models need to be
used to combine the learned rules to generate a predic-
tion. Another work along this line of research is the
Regularized Greedy Forest [12] which does take into ac-
count the structure of the trees. However, it does so by
merely introducing into the objective function a regular-
ization term which specifically concern with preventing
the trees in the forest from growing too deep. Appel
et al. [2] made another attempt to mitigate the prob-
lem from another perspective. In their effort to speed
up tree training, they prune those underachieving fea-
tures through training on progressively larger subsets of
samples. Therefore, there is still a lack of methodology,
particularly, a lack of explicit optimization formulation,
that can achieve optimal balance between the control of
the tree complexity and the integrity of the tree struc-
ture, motivating the proposed research in this paper.

Recent developments in sparse learning and opti-
mization enable us to address the tree pruning prob-
lem by formulating it as a sparse optimization problem.
In this paper, we concern ourselves with post-pruning
of a single decision tree. We follow the same practice
adopted by the RuleFit by treating each node in the
decision tree as a rule function, but take into consid-
eration the tree structure that exists among the rules.
Specifically, we propose a novel non-convex formulation
for post-pruning of a decision tree that induces sparsity
of weights of the nodes by appending a l1 regulariza-
tion term and requires the weights of nodes to satisfy
the max-heap constraint. That is, as the tree struc-
ture implies, for each edge connecting a parent node
and child node, the absolute value of the weight of the
parent node should be no less than the absolute value
of the weight of the child node. It can be shown that

the feasible set of this problem actually consists of a
union of subspaces, leading to a non-convex optimiza-
tion problem. In spite of the non-convex nature of this
problem, we show that by the use of the concept known
as proximal map, we can convert the non-convex opti-
mization problem into a series of optimization problems
that are not only convex but also smooth and can be
efficiently solved by the method proposed in [17]. In
this way, we could easily extend this sparse optimiza-
tion model to study a broad class of general tree prun-
ing problems by incorporating the prior information as
a regularizer or constraint. Moreover, in order to over-
come the model selection problem and enable robust
performance of the proposed method, we propose a sta-
bility selection approach to select a robust weight vector
among different subsampling and regularization param-
eters. We also prove that the selected weight vector will
satisfy the tree constraint. Finally, through extensive
experiments, we demonstrate that our proposed method
achieves better predictive performance than many exist-
ing benchmark pruning methods across a wide range of
real-world datasets.

The main contributions of this paper are as follows:
(1) We propose a novel non-convex formulation for post-
pruning of a decision tree based on the `1 regularization
and the max-heap constraint; (2) We develop an effi-
cient algorithm to solve the proposed formulation based
on the proximal method; (3) We propose a stability se-
lection approach to improve the robustness of the re-
sulting decision tree model; (4) We conduct extensive
experiments using 19 data sets to evaluate the effective-
ness of the proposed approach.

2 Background
In this section, we will review the basic concept about
the rule function and show how it can be applied to
represent a tree, which actually lays the first step to
connect the tree models with sparse learning as adopted
in RuleFit.

2.1 Rule function Let T = (V,E) be a deci-
sion tree obtained through some decision tree train-
ing procedure such as CART. It consists of a node
set V = {v0, v1, v2, · · · , vp} and an edge set E =
{(vi, vj)|vj is a child node of vi}. Each node vi repre-
sents a "rule function" defined by the conjunction of all
conditions associated with the edges on the path from
the root of the tree to that node. As illustrated in Fig-
ure 1, the rule functions at nodes 1, 4, 10 are

v1(d) = I (d[20] ≤ 0.5) ;

v4(d) = I (d[20] ≤ 0.5) · I (d[5] > 1) ;

v10(d) = I (d[20] > 0.5) · I (d[6] > 0) · I (d[20] > 1.5) .
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Figure 1: A decision tree. The rule function correspond-
ing to each node can be represented as the product of
indicator functions associated with edges on the path
connecting the node to the root.

where d is a row vector representing a sample and I is
the indicator function. For simplicity, we only show the
cases where the nodes are associated with continuous
features. The rule function can be defined with respect
to categorical features, e.g., instead of specifying ranges
for continuous features, non-trivial subset of domain of
the corresponding categorical features can be used in
defining the rule functions.

With the use of the rule function, a tree can be
represented by a collection of rule functions (each node
vi contributes a rule function except the root node).
This collection of rule functions can be viewed as a
new basis so any sample can be represented using this
basis. Specifically, suppose that we have a dataset
D = [d1;d2; · · · ;dn] with their response denoted as y =
[y1; y2; · · · ; yn] where n is the number of samples in the
dataset (here we use the MATLAB syntax “;” to denote
vertical concatenation). Then, denote xi = vi(D) which
is actually the projection of the dataset onto the basis vi.
vi maps each row of D into 0 or 1 depending on whether
the corresponding sample satisfies all the conditions
included in vi. Thus, with p + 1 nodes in the tree T
and their corresponding the rule functions, we can get a
new representation of the original dataset D which we
write as X = [x0,x1, · · · ,xp] while the response is still
y (the MATLAB syntax “,” is used to denote horizontal
concatenation). By using this new representation of
the original dataset D, we can formulate rule selection
problem as a feature selection problem as adopted in
RuleFit. Note that since there is no rule associated
with the root, we define v0(d) = 1 and x0 as a column
vector of 1s.

2.2 RuleFit RuleFit seeks to learn an ensemble of
rule functions derived from a set of trees learned by an
ensemble learning method such as random forest. It
further uses linear combination of the rules to generate
predictions, so each rule function vi is associated with
a weight wi whose magnitude reflects the significance
of the corresponding rule. With a collection of K
rules {v1, v2, · · · , vK} derived from a set of M trees,
{T1, T2, · · · , TM}, we can formulate RuleFit as the
following optimization problem:
(2.1)

min
{w}K

k=1,b

n∑
i=1

L

(
yi, b+

K∑
k=1

wkvk(di)

)
+ λ

K∑
k=1

|wk|

where L is a general loss function. As the formulation of
RuleFit implies, in its course of seeking a small subset
of rules to explain the observed response, it completely
ignores the inherent tree structure existing among the
rules. Using the package provided by its authors,
we thoroughly studied the RuleFit on some real-world
datasets and found that the best prediction performance
is usually attained when the collection of trees mainly
consists of tree stumps and the selected set of rules is
large. This is probably due to the fact that the decision
tree tends to overfit the training samples when it is built
to a great depth. The l1-norm regularization term used
in RuleFit does not effectively control the structural risk
since nodes deep down the tree tend to be selected in
order to have a sparse solution with small loss instead
of those nodes that are closer to the root which are less
complex and are less prone to overfitting. Furthermore,
without imposing the tree structure in learning the best
rule combination, RuleFit leads to non-exclusive rules
where other prediction mechanisms such as regression
models need to be used to combine the learned rules to
generate a prediction.

3 The Proposed Decision Tree Pruning
Algorithm

In this paper, we focus on post-pruning a single decision
tree. The unique aspect of our idea of pruning a
decision tree is to parameterize the pruning process
by using the rule functions to represent a tree and
further translating the hierarchical structure of the tree
into max-heap constraints. By parameterizing the tree
learning process, it paves the way for developing sparse
learning formulations. Specifically, recall that each node
(except the root node) corresponds to a rule while
each rule is associated with a weight, the max-heap
constraint requires that the magnitude of the weight of
an ancestor node to be greater than or equal to that
of an descendant node. In other words, for any i, j
(1 ≤ i, j ≤ p), if (vi, vj) is an edge in T , then the
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weight vector w = (w0, w1, · · · , wp)
T satisfies max-heap

constraint if |wi| ≥ |wj |. For notational convenience,
let us denote the set of weights that satisfy the max-
heap constraint as P = {w | |wi| ≥ |wj |, if (vi, vj) ∈ E}.
Pruning the tree could be achieved by imposing both the
sparsity constraint and max-heap constraint on w since
once the weight of a node becomes zero, the weight of
all its descendants node will be zero.

3.1 Proposed Formulation Following the afore-
mentioned idea, we can formulate the problem of tree
pruning via max-heap projection as the optimization
problem below:

min
w,b

L(y, F (x0,x1, · · · ,xp;w, b)) + λ‖w‖1 s.t.w ∈ P,
(3.2)

where λ is the regularization parameter controlling the
sparsity of w, L is a general loss function with respect
to xi, w and b, and prediction function F takes the
following form:

F (x0,x1, · · · ,xp;w, b) = b1n +

p∑
i=0

wixi.

Once a decision tree has been learned, the features
and the threshold associated with each node is fixed.
In other words, all x1,x2, · · · ,xp are fixed during the
decision tree post-pruning stage. For simplicity of
notation, we denote X = [x0,x1, · · · ,xp] and write
L(y, F (x1,x2, · · · ,xp;w, b)) asH(X,y)(w, b). With this,
we can rewrite (3.2) as

min
w,b

H(X,y)(w, b) + λ‖w‖1

s.t.w ∈ P.(3.3)

Note that to preserve integrity of the tree structure,
we keep the constant x0 and its coefficient w0 in our
model. However, their effects can be compensated by
the intercept term on which no constraint has been
imposed. In our experiments, we use least square loss
for H(X,y)(w, b).

3.2 Proposed Algorithm Due to the fact that the
feasible set of the resulting optimization problem for-
mulated above can be represented as a union of mul-
tiple non-overlapping convex cones, it is essentially a
non-convex problem. One effective approach to solving
this problem is to employ the General Iterative Shrink-
age Threshold (GIST) [11] framework. At the heart of
GIST framework lies in solving the proximal map for
the problem through which a sequence of points will be
generated towards a local optimal solution under certain

conditions. We found that by decomposing the proximal
map into an element-wise product of signs and magni-
tudes, finding proximal map can be converted into a
smooth convex problem which can be efficiently solved
by some existing tools [16].

Let

(3.4) σ(w) =

{
λ‖w‖1, if w ∈ P
+∞, if w 6∈ P.

At the point
(
wk, bk

)
, the proximal map is(

wk+1, bk+1
)

= argmin
w,b

〈
∇wH(X,y)

(
wk, bk

)
,w −wk

〉
+
〈
∇bH(X,y)

(
wk, bk

)
, b− bk

〉
+
tk

2
‖w −wk‖22

+
tk

2
‖b− bk‖22 + σ(w)(3.5)

where tk > 0 can be found through line search. After
rearranging the terms and removing some constant
terms, we have(
wk+1, bk+1

)
= argmin

w,b

tk

2

∥∥∥∥∥w −
(
wk −

∇wH(X,y)

(
wk, bk

)
tk

)∥∥∥∥∥
2

2

+ σ(w)

+
tk

2

∥∥∥∥∥b−
(
bk −

∇bH(X,y)

(
wk, bk

)
tk

)∥∥∥∥∥
2

2

(3.6)

Obviously, bk+1 = bk − ∇bH(X,y)(wk,bk)
tk

. Let uk =

wk−∇wH(X,y)(wk,bk)
tk

. Findingwk+1 amounts to solving
the following problem:

wk+1 =argmin
w

1

2

∥∥w − uk
∥∥2
2
+
λ

tk
‖w‖1

s.t. w ∈ P(3.7)

Next, we show that the optimal solution wk+1 yielded
by (3.7) shares the same sign as uk in an element-wise
way. To simplify notation, let us define sign(·) as the
sign function of a vector that returns the element-wise
sign of the vector.

Lemma 1. Let wk+1 be the optimal solution yielded by
(3.7), then we have sign

(
wk+1

)
= sign

(
uk
)
.

Proof. This can be easily verified by contradiction.
Suppose that the j-th element of the wk+1, wk+1

j does
not have the same sign as the j-th element of uk, ukj . Let
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Algorithm 1 Max-heap Based Decision tree Pruning
Algorithm
Require:

X = {x0, x1, . . . , xp}, λ ∈ R , η > 1,initial weight
and intercept w(0), b(0), tmin, tmax with 0 < tmin <
tmax.

1: k ← 0
2: repeat
3: t(k) ∈ [tmin, tmax]
4: repeat

5: uk = w(k) − ∇wH(X,y)(w(k),b(k))
t(k)

6: u(k)+ = abs
(
u(k)

)
7: w(k+1)+ ← solution to the problem (3.7)
8: w(k+1) ← sign(u(k)) ◦w(k+1)+

9: b(k+1) = b(k) − ∇bH(X,y)(w(k),b(k))
t(k)

10: t(k) ← ηt(k)

11: until some line search criterion is satisfied.
12: k ← k + 1
13: until some stop criterion is satisfied

Output: w(k), b(k).

ŵk+1 be a column vector with the i-th element denoted
as ŵk+1

i . Let ŵk
i = ŵk+1

i ,∀i 6= j, ŵk+1
j = −ŵk+1

j .
Since the magnitude of each element of ŵk+1 is the
same as that of corresponding entry in wk+1, ŵk+1 is a
feasible solution and has the same 1-norm as wk+1, but∥∥wk+1 − uk

∥∥2
2
≥
∥∥ŵk+1 − uk

∥∥2
2
. Thus wk+1 is a less

optimal solution than ŵk+1, which is in contradiction
with our assumption.

Denote the vector obtained from taking element-
wise absolute value of uk as uk+, we have uk =

sign(uk) ◦ uk+, where ”◦” represents element-wise mul-
tiplication. Knowing that the optimal solution wk+1

shares the same sign as uk, we can further convert the
problem (3.7) to

wk+1+ =argmin
w

1

2

∥∥w − uk
∥∥2
2
+
λ

tk
wT1p+1

s.t. w � 0(3.8)
wi ≥ wj , ∀(vi, vj) ∈ E, 0 ≤ i, j ≤ p.

The optimal solution wk+1 = sign(uk) ◦ wk+1+.
The problem (3.8) can be efficiently solved by the
method proposed in [17]. The framework of the algo-
rithm is described in Algorithm 1.

As described in [17], the key step in solving the
problem of finding proximal map is to recursively iden-
tify the maximal root-tree and remove it from the orig-
inal tree. It can be shown that such a process can lead

to unique optimal solution. As mentioned in the paper,
this process has an expected linear complexity. We refer
interested readers to [17] for more details.

4 Stability Selection
In order to optimize the decision tree structure, we have
proposed a max-heap projection method to solve the
sparse optimization problem with the tree constraint in
the previous section. The sparsity of the weight vector,
which determines the tree structure, is controlled by the
regularization parameter. In practice, the selection of
the regularization parameter is usually data-dependent
and sometimes sensitive to the noise of the data. To
obtain a more robust tree model, we propose to apply
stability selection for model selection. Stability selection
is a technique for feature selection. But here, since
each feature represents a tree node, we adapt it to be a
method for tree structure selection that guarantees the
selected nodes constitute a tree.

Specifically, given a data set X and a response
variable vector y, we split Z = {X,y} to three parts,
training data set Ztr, pruning data set Zpr and testing
data set Zte. Since the tree pruning process is equivalent
to the learning of the weight vectorw, to account for the
uncertainty of w induced by noise in training data set
Ztr and different choices of λ, the basic idea of stability
selection is to resample the training data set Ztr many
times and learn the weight vector w on these resampled
datasets across a range of λ. Then, the uncertainty of
the elements in w can be evaluated (i.e., via the support
vector of w that will be defined below) and only the
elements that tend to be selected most frequently should
be kept in the final tree structure.

4.1 Select the Tree Structure for a Fixed λ
Given any subsampled training set Z(i) = {X(i),y(i)}
from Ztr, the weight vector can be obtained as follows:

w(Z(i), λ) = argmin
w∈P

HZ(i)(w, b) + λ‖w‖1

We assume there are s subsampled training data
sets, denoted by Z(1), . . . ,Z(s) ⊂ Ztr. The number of
data points in each Z(i) is about half of the number of
data points Ztr. Given a fixed λ, for each Z(t) there is
a weight vector w(λ,Z(t)). The support of the weight
vector, which means the locations of nonzero entries in
the weight vector, determines the tree structure. Let
s(λ,Z(t)) denote a binary vector such that s(λ,Z(t)) = 1
if w(λ,Z(t)) 6= 0, s(λ,Z(t)) = 0 otherwise. Examples
of the support vectors are shown in Figure 2. Clearly
s(λ,Z(t)) belongs to P and s(λ,Z(t)) induces the same
tree structure as w(λ,Z(t)) does.

Given a fixed λ, we aim to learn a support vec-
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Figure 2: Stability selection. Given subsampled data sets Z(1),Z(2),Z(3) and regularization parameters
{λ1, λ2, λ3}, we first calculate {s(λ1), s(λ2), s(λ3)} by adding from s(Z(1), λi) to s(Z(3), λi). Then we apply the
max operator on {s(λ1), s(λ2), s(λ3)} to obtain s. By truncating different values on s, we get several candidates
of the tree structure. The tree structure will be selected by evaluating the performance on the pruning data set.

tor s(λ) from {s(λ,Z(1)), . . . , s(λ,Z(s))}. Since the fre-
quency of the components of the weight vector reflects
its importance and probability, we simply define the new
support vector as a summation of these support vectors,

(4.9) s(λ) :=

s∑
t=1

s(λ,Z(t)).

We can show that the new support vector s(λ) still has
a tree structure.

Proposition 4.1. The new support vector s(λ) ∈ P.

Proofs of Proposition 4.1 and Proposition 4.2 are
included in the supplement.

4.2 Select the Tree Structure for Multiple λ’s
Next we would like to select a robust tree struc-
ture among multiple support vectors learned from
different λ. Given a set of regularization pa-
rameters {λ1, . . . , λk}, there are k support vectors
s(λ1), . . . , s(λk), which can be computed by (4.9). In
this case, the max selection rule is widely used and has a
strong theoretical guarantee [20]. Therefore, we propose
to select the maximum value among {s(λ1), . . . , s(λk}
for each node of the tree. Specifically, we define the
new support vector as follows:

si := max{si(λ1), . . . , si(λk)}, ∀i.

Interestingly, the new support vector still has a tree
structure.

Proposition 4.2. Let s be formed by taking maximum
at each entry over the support vectors computed from
multiple λ’s. Then s ∈ P.

By truncating different values on the support vec-
tor, we obtain several candidates of the tree structure.
The final tree structure will be selected by evaluating
the performance on the pruning data set. The whole
procedure is illustrated in Figure 2.

5 Experiments
In this section, we evaluate the proposed method for
pruning decision trees on a variety of real-world datasets
of different sizes and levels of difficulty from UCI ma-
chine learning repository [15] and some other sources.
We compare the predictive performance of our proposed
method with that of the baseline methods on both task
of classification and regression. For classification, we fo-
cused on binary classification. Multi-class classification
problems can be simply converted to multiple binary
ones by conducting pair-wise binary classification or one
versus rest binary classification.

5.1 Datasets and Experimental Setup In our ex-
periments, all the datasets that are used in the task of
classification are from the UCI machine learning repos-
itory. All missing values were imputed with column
mean. In the training stage, we use the scikit-learn
package [23] to build the decision tree. It implements
an optimized version of CART. For classification, sam-
ples from each of the two classes are equally divided into
three folds. One is used for building the basic decision
tree, one for pruning and one for testing. For a fair eval-
uation of different pruning methods, we carry out this
random split ten times and report the average perfor-
mance over these ten random splits. For our method,
we learn the weights of the nodes in decision trees on the
training set. Table 1 shows the data sets, their statis-
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tics, respective task types and the average number of
nodes in the decision trees built on training sets.

For regression, we simply divide all the samples
equally into three folds, one for training the initial
decision tree, one used as the independent pruning
set, and the last fold used for testing. This random
split is also carried out for ten times and the average
performance is reported. In building the initial decision
tree for pruning, we set the maximum depth of the tree
to 15. We use the squared root of mean squared error
(RMSE) as the metric for evaluation of performance of
different pruning methods for regression. To reduce the
effect of the scale of response, we center the response
vector to zero and then divide it by its infinity norm
such that the range of the response for all the samples
is [−1, 1].

In making predictions, we use weighted sum of rule
functions of the tree nodes as the discriminant function.
Note that this discriminant function can be written into
an equivalent form of weighted sum of rule functions
corresponding only to the leaf nodes. As is pointed out
in [12], the rule function of an internal node can be
decomposed into the sum of the rule functions of its
two child nodes, i.e. vi(x) = vj(x)+ vk(x) where node i
is an internal node and j and k are its two child nodes.
By applying this rule recursively over all the internal
nodes of the pruned tree, the weights associated with
all the internal nodes will eventually pass down onto
leaf nodes. When it comes to making a prediction for
a specific test sample, only one leaf node will actively
participate in determining its label since the values of
rule functions of all other leaf nodes at this sample are
zero.

For comparison in terms of prediction performance
of post-pruned decision trees, we use several well-known
methods including Reduced Error Pruning (REP) [25],
Pessimistic Error Pruning (PEP) [24], Cost Complexity
Pruning (CCP)[6], and Minimum Error Pruning (MEP)
as the baseline methods. We refer interested readers to
[8, 21] for a comprehensive analysis of these methods.

In the task of regression, we replace the classifica-
tion error in REP, PEP and CCP by squared difference
between the predicted response and the ground-truth
response. As for MEP, we omit it from our experiments
on regression since the definition of expected error rate
explicitly involves the number of classes.

5.2 Results The prediction performance in the task
of classification is shown in Table 1. We can see from
the table the prediction performance of our proposed
method is better than the best performance of the
baseline methods on most of the datasets. The average
number of nodes in the decision tree before and after

pruning by different methods are shown in Table 3 in
the supplement. We can also see that REP generally
performs worse than other methods and usually results
in an over-pruned decision tree, which is consistent with
the observation made in [8].

The prediction performance in the task of regression
is shown in Table 2. We can see from the table that our
proposed method also achieves the best performance on
most of the datasets. In most cases, unlike the classifi-
cation, REP did not yield an over-pruned tree in task of
regression. Our method generally produce smaller de-
cision trees with better prediction performance. From
Table 3 in the supplement, it is not difficult to observe
that PEP prunes the entire tree in most cases. This is
not surprising since in this method, the decision regard-
ing whether a sub-tree should be pruned or not depends
on a standard error term, while the magnitude of this
standard error term relies on the scale of the response,
making this method inappropriate for the task of regres-
sion.

5.3 Stability Selection In our experiments, we
found that the model that gives the best prediction per-
formance on the independent pruning set does not usu-
ally yield the best performance on the testing set, even
though the pruning set consists of 1/3 of samples in ev-
ery dataset. This problem becomes even more evident
when the number of samples in the dataset is small.
This motivates us to look for a method that produces a
more stable performance on the testing set when using
an independent pruning set to determine the structure
of the tree. We proposed to use stability selection to
solve this problem of model selection. Furthermore, we
have proved that the model returned by this stability
selection procedure still preserves the tree structure.

To demonstrate the effectiveness of stability selec-
tion, we use the dataset “housing” as an example on
which our method did not achieve the best performance.
Figure 3 shows that how RMSE changes on the pruning
set and testing set, respectively, by using the different
models produced by different λ values in our experi-
ments and models given by stability selection based on
two different random splits of data. We can see from this
figure that the best model selected by the independent
pruning set using cross validation does not perform well
on the testing set. In contrast, the best model selected
by the independent pruning set using stability selection
is very close to the best model on the testing set.

6 Conclusion
In this paper, we proposed a novel optimization formu-
lation for the decision tree post-pruning problem. With
the use of the indicator functions to represent a tree
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Table 1: Statistics of datasets used in the task of classification and performance of various methods. The
classification performance is measured in terms of the Area Under Curve (AUC)

datasets # features # samples REP(AUC) PEP(AUC) CCP(AUC) MEP(AUC) Maxheap(AUC)
sonar 60 208 0.7031 0.7167 0.7021 0.7124 0.7233
biodeg 41 1055 0.5212 0.7948 0.7616 0.7842 0.8034

bank note 4 1372 0.9109 0.9764 0.9769 0.9784 0.9796
Musk1 166 476 0.6663 0.7486 0.7378 0.7374 0.7576
Musk2 200 200 0.5 0.9389 0.9266 0.9364 0.9468

EEGEyeState 14 14980 0.6628 0.8491 0.8445 0.8488 0.8513
LSVT 313 126 0.6703 0.7071 0.7037 0.7050 0.7154
masses 5 961 0.8171 0.8390 0.8431 0.8699 0.8843
arcene 10000 200 0.6386 0.6484 0.6404 0.6517 0.6502
madelon 500 2600 0.7136 0.7693 0.767 0.7725 0.7762

Table 2: Statistics of datasets used in the task of regression and performance of various methods. The
classification performance is measured in terms of the Root Mean Squared Error (RMSE)

datasets # features # samples REP(RMSE) PEP(RMSE) CCP(RMSE) Maxheap(RMSE)
housing 13 506 0.1686 0.3424 0.1699 0.1691

parkinsonupds 16 5875 0.4163 0.4437 0.4165 0.4054
CMB 16 11934 0.1196 0.3445 0.1208 0.1061

skillcraft 18 3395 0.2814 0.4003 0.2830 0.2754
redwine quality 11 1599 0.2701 0.3052 0.2658 0.2586
whitewine quality 11 4898 0.2463 0.2829 0.2448 0.2388

bank data 32 8192 0.1667 0.2403 0.1680 0.1647
family data 32 8192 0.1673 0.2408 0.1690 0.1655
cpusmall 12 8192 0.0445 0.2194 0.0455 0.0430

that was adopted in RuleFit, we are the first one to
develop a systematic optimization formulation that can
encapsulate the tree structure existing among the rules
into a sparse learning framework by using the max-heap
constraint as well as the sparsity constraint. This novel
formulation leads to a non-convex optimization problem
which can be addressed by an efficient max-heap projec-
tion algorithm that solves convex and smooth problems
in each iteration. Since the selection of the regulariza-
tion parameters has been a practical barrier for many
sparse learning methods, an efficient stability selection
method is further proposed for enabling robust model
selection in practice. We conducted extensive experi-
ments using a wide range of real-world datasets which
demonstrated that the proposed method outperforms
many existing benchmark pruning methods, leading to
better prediction accuracy.
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Figure 3: (a) and (c) show the Root Mean Square Error (RMSE) curve when r = λ/λmax varies on two data sets
respectively. (b) and (d) show the RMSE error curves of stability selection when the number of selected features varies
on two data sets respectively. (a) and (c) are generated using one random split of the dataset “housing”. (c) and (d) are
generated using another random split of the same dataset. It can be seen that 1) the performance of stability selection
is quite stable; (2) the models selected by stability selection perform well on the testing set, which is comparable or even
better than the performance of the models selected by cross validation.
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