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Abstract

Multivariate time series forecasting is an impor-
tant task in state forecasting for cyber-physical sys-
tems (CPS). State forecasting in CPS is impera-
tive for optimal planning of system energy utility
and understanding normal operational characteris-
tics of the system thus enabling anomaly detec-
tion. Forecasting models can also be used to iden-
tify sub-optimal or worn out components and are
thereby useful for overall system monitoring. Most
existing work only performs single step forecast-
ing but in CPS it is imperative to forecast the next
sequence of system states (i.e curve forecasting).
In this paper, we propose DyAt (Dynamic Atten-
tion) networks, a novel deep learning sequence to
sequence (Seq2Seq) model with a novel hierarchi-
cal attention mechanism for long-term time series
state forecasting. We evaluate our method on sev-
eral CPS state forecasting and electric load fore-
casting tasks and find that our proposed DyAt mod-
els yield a performance improvement of at least
13.69% for the CPS state forecasting task and a
performance improvement of at least 18.83% for
the electric load forecasting task over other state-
of-the-art forecasting baselines. We perform rig-
orous experimentation with several variants of the
DyAt model and demonstrate that the DyAt mod-
els indeed learn better representations over the en-
tire course of the long term forecast as compared
to their counterparts with or without traditional at-
tention mechanisms. All data and source code has
been made available online1

1 Introduction
Cyber physical systems like the electric grid and indus-
trial and chemical plants often have a complex set of inter-
dependent process that are operating simultaneously. In or-
der to ensure uninterrupted and smooth function of the CPS
system, it is important for system maintainers to quantify the
system state well into the future so as to gain enough lead

1 https://github.com/nmuralid1/DynamicAttentionNetworks
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Figure 1: Time series forecasting systems are at the center of crit-
ical applications like system health monitoring, anomaly detection
and component wear identification, in the context of various CPS
systems like the electric grid, chemical and industrial plants.

time to plan for contingencies. For example, electric utili-
ties perform weekly forecasts to estimate the expected power
demand over the coming week. Such a week long forecast
affords the utility enough time to increase (or decrease) the
power production to meet the expected future power demand,
ensuring optimal grid operation [Carvallo et al., 2017].

CPS state forecasting for chemical and industrial plants
allows system maintainers to estimate the operational load
the plant will undergo over the course of the forecast and
hence serve as an important tool in system efficiency and
health monitoring. Critical infrastructure CPS also run the
risk of cyber attacks from malicious entities whose goal is
to disrupt optimal system operation. CPS state forecasting
forms the core of early warning systems which alert system
maintainers if the system has veered from its expected state
of normal operation [Filonov et al., 2016; Malhotra et al.,
2016]. Traditional forecasting models predict system state
at the next time step given system measurements at the cur-
rent time step. However, as mentioned previously, CPS state
forecasting contexts require that the forecasting models yield
predictions multiple steps into the future; CPS traditionally
have components which share highly non-linear relationships
evolving continuously and the underlying process might not
be stationary or easy to define mechanistically. Hence, tra-
ditional auto-regressive models or dynamical systems like
Kalman filters might be ineffective in capturing the data rep-
resentation. However, deep learning models have proven ef-

https://github.com/nmuralid1/DynamicAttentionNetworks


fective in learning highly non-linear function spaces and re-
quire no stationarity assumptions to be satisfied or mecha-
nistic representations of system operation to be provided. A
popular deep learning architecture for sequence prediction
(employed extensively for neural machine translation and ab-
stractive text summarization) is the Sequence to Sequence
(Seq2Seq) architecture a.k.a encoder-decoder architecture.

Seq2Seq models can also be adopted for time series
sequence forecasting applications. Most existing work
on deep learning for time series [Filonov et al., 2016;
Malhotra et al., 2016] makes use of a traditional Seq2Seq
architecture for forecasting future values of the time series
without any modifications. Such traditional Seq2Seq archi-
tectures usually also employ recurrent units for each encoder
and decoder step and an attention mechanism wherein the
hidden state for each decoder unit is constructed as some
combination of a set of hidden states from preceding units.
Thus far, Seq2Seq models used for time series forecasting
have employed standard attention mechanisms where each
decoder unit only considers the hidden states from the
encoder phase. Such an attention mechanism is effective
for neural machine translation or abstractive text summa-
rization because, in these applications, all the information
required for sequence generation, is encapsulated in the
encoding phase. However, such an encoder-focused attention
mechanism is not optimal for time series forecasting where
each decoder unit models one time step of a sequence in an
ever-evolving temporal process, all of whose information
is not captured by the encoder phase. Time series models
are known to benefit significantly from knowledge of the
recent past. Thus, traditional encoder-focused attention
mechanisms in Seq2Seq forecasting models lose valuable
information as states from previous decoders are not consid-
ered by an attention mechanism that only considers encoder
hidden states. In this paper, we introduce two variants of
novel hierarchical dynamic attention models for multivariate
time series forecasting which addresses this issue. Our
contributions are as follows:

• We introduce a novel dynamic attention (DyAt) mech-
anism for effective multivariate time series forecasting
with Seq2Seq models.
• We develop two novel hierarchical dynamic atten-

tion models, Hierarchical Dynamic Attention Networks
(DyAt-H) and Hierarchical Dynamic Attention Net-
works with Max Pooling (DyAt-MaxPool-H).
• We also characterize the performance of our hierarchical

DyAt models relative to other state of the art time series
forecasting models and discuss the properties responsi-
ble for our models yielding superior performance.

In section 2, we formally introduce the multivariate time
series forecasting task in the context of Seq2Seq models and
develop our DyAt models. The experimental setup is de-
scribed in section 3, followed by discussion of experimental
results in section 4. We then present a brief survey of re-
lated literature in section 5 followed by concluding remarks
in section 6.

2 Problem Formulation
Let us consider a set D = {X1, X2, .., Xm} where each
Xi ∈ Rl×k represents a multivariate sequence of length lwith
k time series at each step of the sequence. Sequence fore-
casting applications in time series employ encoder-decoder
(Seq2Seq) models wherein the encoder is supplied with a se-
quence Xi and the learning task is for the decoder to forecast
the next k-variate sequence Xi+1 of length l.

2.1 Seq2Seq Attention Models
Formally, in traditional Seq2Seq architectures with attention,
the prediction at each decoder step is calculated as defined
by [Luong et al., 2015].

Let E = {he1, he2, .., hen} represent hidden states of the
n encoder units and D = {hd1, hd2, .., hdq} represent hidden
states of the q decoder units of a Seq2Seq model, where each
h∗i ∈ Rh×1 comes from a recurrent unit like LSTM, GRU,
basic RNN etc. The prediction at each decoder is calculated
as defined in Eq. 1.

hdi = f(hdi−1, ŷi−1)

αi∗ = score(hdi , E)

αi∗ = Softmax(αi∗)

ci =

l∑
j=1

αijh
e
j

h̃di = tanh(Wh ∗ [ci;hdi ])

ŷi = g(h̃di )

(1)

In Eq. 1, f may be a recurrent unit like an RNN, LSTM
or a GRU. hdi−1 represents the hidden state from the previous
decoder unit and ŷi−1 ∈ Rk×1 the k-variate prediction of the
previous decoder unit passed as input to the current decoder
unit. αi∗ ∈ Rl×1 is the attention weight vector for decoder i
over the encoder hidden states (i.e l = |E|) and ci ∈ Rh×1 is
the attentional context vector calculated as a linear combina-
tion over all E, and corresponding attention weights αi∗.
Attention Calculation: The attention energy vector αi∗ for
the ith decoder unit can be calculated in multiple ways. The
attention energies can be calculated purely based on the cur-
rent hidden vector or as a function of the alignment between
the current hidden vector and encoder states. In Eq. 2, we
define two such variants of the scoring mechanism for calcu-
lating attention energies.

score(hi, E) =

h
T
i Wαh

e
j ∀hej ∈ E (Bilinear)

Wαhi (Location-Based)
(2)

The attention energies are then normalized using a softmax
transformation, to obtain the attention weights αi∗ ∈ Rl×1

used to obtain the attentional context vector ci.
Next, the attentional hidden state h̃di of the ith decoder

is obtained by imposing a non-linear transfer function (hy-
perbolic tangent) over an affine transformation (with Wh ∈
Rh×2h) of the concatenation of ci and hdi . Finally, g is some
function that calculates the ith prediction ŷi from the corre-
sponding decoder attentional hidden state h̃di . In our experi-
ments we consider g to be a simple linear layer.
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Figure 2: DyAt-H Model Representation.

2.2 Dynamic Attention Networks
In time series applications, we hypothesize that calculating
attention just over the encoder hidden states is insufficient.
This is because, unlike in the case of NMT where all the in-
formation required by the decoder sequence is contained in
the encoder steps, the time series forecasting task models an
evolving process and each step in the decoder phase also car-
ries with it important information about function evolution.
Hence, incorporating these signals into the attention mech-
anism is paramount to learning better time series forecasting
models. To improve the learned representation of Seq2Seq ar-
chitectures in the context of multivariate time series forecast-
ing, we introduce the Dynamic Attention network (DyAt). A
DyAt employs a Seq2Seq architecture with a novel dynamic
attention mechanism.
Let us consider a set of hidden states Hi = {h(i−1):(i−l)}
where each hidden state can either be an encoder or decoder
hidden state from a previous time step, i.e., (hk ∈ E ∨ hk ∈
D) ∀hk ∈ Hi. The calculation of the context vector ci and
the corresponding attentional hidden state h̃di is modified as
defined in Eq. 3.

c̃i =

l∑
j=1

αijhj

h̃di = tanh(Wh ∗ [c̃i;hdi ])

(3)

Dynamic Attentional Context Vector: In Eq. 3, each can-
didate hidden state hj in the linear combination to produce
the dynamic attentional context vector c̃i, no longer origi-
nates from the set of encoder hidden states E as is the case
for the static attentional context vector ci in Eq. 1. Rather,
c̃i is derived from set Hi which consists of the past l hidden
states irrespective of whether they are from the encoder or
the decoder. Maintaining a dynamic candidate set of hidden
states Hi for each decoder unit i, allows the model to more
effectively attend to the model properties learned in the recent
past as opposed to only being restricted to focus on the model
properties learned during the encoder phase.

2.3 Hierarchical Dynamic Attention Networks
In the aforementioned DyAt model, as we move deeper into
the decoder forecasting sequence, we can observe that the set
Hi becomes dominated by a majority of hidden states from

previous decoders and hence information from the encoder
phase (which receives ground-truth input) considered in the
decoder phase is continually reduced. Due to the lack of
ground truth inputs in the decoder phase, the effect of erro-
neous predictions or bad hidden representations increases as
we traverse deeper into the decoder sequence.

To alleviate this effect and encourage the DyAt models to
learn a more holistic representation, we introduce Hierarchi-
cal Dynamic Attention Networks (DyAt-H) which also con-
siders a concise representation of the encoder referred to as
the encoder context vector ce in addition to the dynamic at-
tentional context vector c̃i at each decoder unit. A schematic
representation of the DyAt-H model is presented in Fig. 2.

ce = contextGen(E)

hdi = f(hdi−1, ŷi−1)

αi∗ = score(hdi , Hi)

αi∗ = Softmax(αi∗)

c̃i =
l∑

j=1

αijhj ∀hj ∈ Hi

h̃di = tanh(Wh ∗ [c̃i;hdi ])

h̃hieri = blend(ce, h̃di )

ŷi = g(h̃hieri )

(4)

In DyAt-H models, at the outset of the decoder phase, we
generate ce ∈ Rh×1 using the contextGen(·) function as de-
fined in Eq. 4. Context vector ce is calculated using all en-
coder hidden statesE and is calculated only once per decoder
phase. We experimented with two variants for generating ce,
detailed in Eq. 5.

contextGen(E) =

MaxPool1D(WT
c E) (Learn)

mean(E) (Mean)
(5)

The attention energies (αi∗), attention weights (αi∗), dynamic
attentional context vector (c̃i) and dynamic attentional hidden
state (h̃di ) for the ith decoder unit are all calculated as detailed
in section 2.1 and section 2.2. Finally, the blend function
is used to produce the hierarchical attentional hidden state
h̃hieri by combining the encoder context vector ce with the
dynamic attentional hidden state h̃di which is then supplied
to the g(·) function to obtain the k-variate prediction at time
step i. The blend function can take multiple forms, it can be
an affine transform over the concatenation of the two vectors
or the result of a pooling operation over the two. For our
experiments, we use mean-pooling as the form of the blend
function.

It can be argued that attention mechanisms (static or dy-
namic) are redundant as standard recurrent units are designed
to propagate model properties effectively to subsequent recur-
rent units. However, as we showcase in our results, in long-
term forecasting tasks, hierarchical dynamic attention mecha-
nisms do indeed provide forecasting models the added ability
to focus on relevant parts across the entire sequence, both in
the immediate and the distant past.



3 Experimental Setup
3.1 Dataset Description
We demonstrate the forecasting performance of DyAt and
DyAt-H on several state of the art datasets given below:
Electricity2: This dataset contains electricity consumption in
kilo-watt hour (kWh) measured in 15 minute intervals from
2011-14 for n=370 clients. For our purposes, we randomly
choose 20 clients to train and test our models.
Tennessee Eastman Challenge Process (TEP)3, represents
a cyber-pyhsical system performing a chemical process. It is
a popular benchmark dataset in process control studies and
for system identification, forecasting and anomaly detection
applications [Filonov et al., 2017; Juricek et al., 2001].
Gasoil Heating Loop (GHL)4 released by [Filonov et al.,
2016], is another benchmark dataset for multivariate system
state forecasting and anomaly detection in CPS. It represents
a chemical process of a fluid (gasoil), being heated to a par-
ticular temperature and transported over to a collection tank
once the fluid is at the specified temperature.

Dataset Name Time Steps Time Series

Electricity 105,216 20
TEP 320,000 41
GHL 200,000 5

Both GHL and TEP were created via process based simula-
tions. Different time series within them show different peri-
odicity, trends and inter-dependencies. For example, in GHL
the receiving tank temperature and the heating tank tempera-
ture are correlated. In the Electricity dataset, given that each
time series corresponds to the electricity consumption of one
client, they typically have a periodicity of 24 hours. Thus,
evaluating our model on these datasets corresponding to di-
verse and complex scenarios showcases the effectiveness and
generalization capacity of our model architecture.

3.2 Methods for Comparison
Traditional Regression Models

1. GPR stands for Gaussian process regression for time se-
ries modeling [Roberts et al., 2013].

2. LSVR represents the vector-autoregression model
with linear support vector regression objective func-
tion. [Vapnik et al., 1997].

Deep Learning Models
3. We also compare our models against the model proposed

by [Filonov et al., 2016]. The model is a two layer
LSTM Seq2Seq model with static attention.

4. LSTNet, proposed by [Lai et al., 2018], is a state-of-
the-art multivariate forecasting model consisting of re-
current, convolutional and auto-regressive components.

5. S2S represents a traditional Seq2Seq model.
6. S2S + Attn. represents a Seq2Seq model with the tradi-

tional static attention mechanism.
2 https://tinyurl.com/yyr4lo9j 3 https://tinyurl.com/y2ej46hr
4 https://tinyurl.com/yy8vtla5

Proposed Dynamic Attention Models
7. DyAt: A Seq2Seq model with a dynamic attention

mechanism without the hierarchical component, as out-
lined in section 2.1 and section 2.2. Attention weights
are calculated using the location-based score(·) function
(Eq. 2) .

8. DyAt-H: A Seq2Seq model with a hierarchical dynamic
attention mechanism as outlined in Eq. 4. The mean
based contextGen(·) function is employed with the lo-
cation based score(·) function.

9. DyAt-MaxPool-H: Another Seq2Seq model with a hier-
archical dynamic attention mechanism similar to DyAt-
H, except in this case, the learn based contextGen(·)
function is employed to generate the encoder context
vector ce and the bilinear score(·) function is employed
instead of the location-based variant.

Evaluation Metrics: We evaluate our models using two met-
rics: (1)Mean-Squared Error (MSE) and (2) Weighted MSE,
wherein the later decoder steps are weighted higher. The two
metrics are formally defined as

MSE =
1

kml

m∑
i=1

l∑
j=1

k∑
q=1

(ŷijq − yijq)2

WMSE =

l∑
j=1

j∑l
p=1 p

(
1

km

m∑
i=1

k∑
q=1

(ŷijq − yijq)2
) (6)

3.3 Experimental Setting & Model Architecture
We arbitrarily choose 4 different forecasting sequence lengths
90, 110, 130 to test model performance on long-term fore-
casting and length 10 for short-term forecasting. We don’t
consider sequence length to be dataset specific, in an effort to
maintain uniform experimental settings across datasets but,
in practice, experts can provide optimal values of sequence
lengths for forecasting tasks.

We employ Seq2Seq models with a single hidden layer and
use GRU as the recurrent unit and set the encoder and decoder
phases to have the same sequence length (l) for simplicity.
However, our proposed approach is applicable even if this
constraint is relaxed. All Seq2Seq models are trained with
early stopping for a maximum of 200 epochs. Finally, each
experiment has a 80/20 training/validation split and a separate
holdout test set.

4 Results &Discussion
We evaluate the forecasting performance of our DyAt mod-
els in four experimental settings by varying the length of the
prediction sequence between 10 and 130 time steps for all the
models. For each setting, we evaluate the models on three dif-
ferent datasets. We also compare our DyAt models to several
state of the art forecasting models as outlined in section 3.2.

The forecasting performance results have been detailed in
Tab. 1. The best performing hierarchical DyAt model (either
DyAt-H or DyAt-MaxPool-H) was able to achieve at least
a 17.82% improvement over the state of the art [Filonov et
al., 2016] Seq2Seq forecasting model and 21.88% improve-
ment over the LSTNET model proposed by [Lai et al., 2018]

https://tinyurl.com/yyr4lo9j
https://tinyurl.com/y2ej46hr
https://tinyurl.com/yy8vtla5
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Figure 3: Per Decoder MSE. for different sequence lengths. Both hierarhical models – DyAt-H and DyAt-MaxPool-H show superior per-
formance than other methods for long-term forecasts. We only show results for seq. len. 110, 130 due to space constraints. For the short
sequence length (10), the proposed models perform better than the others but the difference is minimal.
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Figure 4: Characterization of the evolution of h̃hieri (hierarchical at-
tentional hidden state) in DyAt-MaxPool-H for different sequence
lengths for the TEP dataset.The y-axis shows the alignment of h̃hieri

with dynamic attentional vector h̃di in terms of cosine similarity and
x-axis its alignment with encoder context vector ce. The colors in-
dicate the decoder step number, with purple pointing to the first de-
coder unit and yellow the last. We see that the model starts to rely
more (is more similar to) on ce as we move towards later decoder
states showing the holistic representative capacity of hierarchical dy-
namic attention models, leading to better forecasting performance.

across all the datasets and sequence lengths. The DyAt-
MaxPool-H model outperforms all other models in the CPS
state forecasting tasks on the GHL, TEP datasets (minimum
performance improvement 13.69%). However, in the case of
the electric load forecasting, DyAt-H is the best performing
model (minimum performance improvement 18.83%). We
believe this can be attributed to the well known property of
the maxpool operation (used to calculate the encoder context
vector ce in the DyAt-MaxPool-H model) leading to order in-
variance [Scherer et al., 2010]. Due to this, the short-term
cyclical changes in the electricity dataset are not captured
as effectively by the context vector ce in the case of DyAt-
MaxPool-H leading to the drop in performance relative to
DyAt-H which employs a mean operation to generate ce in-
stead. In the case of CPS state forecasting, the transitions of
state are much more gradual and the data is devoid of signif-
icant short-term cyclical components. In order to showcase
the effectiveness of the DyAt mechanisms, we also compare
their performance to standard Seq2Seq architectures with and
without the traditional attention mechanisms. Our DyAt-H
and DyAt-MaxPool-H models achieve a minimum improve-
ment of 31.33% over the Seq2Seq(S2S) model without atten-
tion and a minimum performance improvement of 13.69%
over traditional Seq2Seq attention (S2S + Attn.) models.

4.1 Sequence Forecasting Performance Inspection
In order to further showcase the sequence forecasting perfor-
mance of DyAt models, we also calculate the MSE at each
decoder time step and plot the average MSE per decoder unit

for each Seq2Seq model in Table 1. We showcase results on
the GHL dataset and notice that DyAt-H and DyAt-MaxPool-
H, comfortably outperform the other models as depicted in
Fig. 3. We notice that although in the short-term forecast-
ing tasks (sequence length = 10) there doesn’t seem to be too
much disparity in forecasting performance over the entire se-
quence length, the disparity in performance increases in the
case of longer sequences and the performance gap between
DyAt-H, DyAt-MaxPool-H models and others increases as
we move deeper into the prediction sequence. This show-
cases the ability of the proposed hierarchical models to re-
duce the effect of error-propagation to subsequent steps. The
hierarchical nature of DyAt-H and DyAt-MaxPool-H models
helps them consider the rich information from the encoder
phase in addition to the dynamic attention mechanism which
allows them to consider representations from the immediate
past. Hence the hierarchical attentional hidden state h̃hieri at
each decoder is able to capture this rich representation from
both the encoder phase as well as the recent past leading to
better long-term forecasts.

4.2 Evolution of Hierarchical Attentional Vector
As outlined in section 2.3, the hierarchical attentional hidden
state h̃hieri is calculated as a function of the encoder context
vector ce and the dynamic attentional hidden state h̃di at each
decoder. In order to further understand the effect of the hier-
archical model, we inspected the evolution of h̃hieri over the
course of a prediction sequence with respect to the encoder
context vector ce and the dynamic attentional hidden state at
each decoder h̃di . We calculate the cosine similarity of h̃hieri
and ce, let’s call this Simce and similarly Simh̃d

i
for each

prediction sequence. We then average the cosine similarity
over all batches for each decoder step and plot the Simh̃d

i
vs.

Simce values in Fig. 4. We only show results for sequence
length 90 and 130 due to space limitations. We notice a con-
sistent pattern for all long-term forecasting tasks (90, 110,
130) wherein as the forecasting depth increases further into
the decoder phase, the h̃hieri starts to rely more heavily on
the encoder context vector ce in addition to the dynamic at-
tentional hidden state h̃di . Throughout the decoding sequence
for each long-term forecasting task, we notice that h̃hieri is in-
fluenced significantly by both h̃di and ce, and it is this ability
of the hierarchical DyAt models to utilize both encoder and
dynamic attentional representations that leads to their supe-
rior performance.



Sequence Length 10 90 110 130

Metric MSE WMSE MSE WMSE MSE WMSE MSE WMSE

Dataset Name Model

GHL

GPR [Roberts et al., 2013] 0.01736 0.01806 0.08829 0.08866 0.09126 0.09139 0.09291 0.09289
LSVR [Vapnik et al., 1997] 0.08156 0.08758 0.09475 0.09631 0.09507 0.09635 0.09528 0.09635
LSTNET [Lai et al., 2018] 0.00356 0.00430 0.01769 0.01947 0.02146 0.02399 0.02451 0.02595
Filonov et. al. [2016] 0.00335 0.00404 0.01931 0.02001 0.02736 0.03207 0.02675 0.02914
S2S 0.00341 0.00425 0.03391 0.03894 0.04890 0.05659 0.04196 0.04905
S2S+Attn. 0.00324 0.00406 0.02106 0.02615 0.02412 0.02946 0.02660 0.03179

DyAt 0.00343 0.00425 0.02171 0.02578 0.03971 0.04352 0.02753 0.03079
DyAt-H 0.00327 0.00406 0.01722 0.01964 0.02223 0.02492 0.01927 0.02172
DyAt-MaxPool-H 0.00322 0.00402 0.01043 0.01238 0.01071 0.01229 0.01091 0.01215

Electricity

GPR [Roberts et al., 2013] 0.01474 0.01511 0.01716 0.01723 0.01717 0.01728 0.01718 0.01714
LSVR [Vapnik et al., 1997] 0.01029 0.01149 0.02254 0.02412 0.02176 0.02194 0.02128 0.02167
LSTNET [Lai et al., 2018] 0.00795 0.00899 0.01670 0.01638 0.01642 0.01705 0.01686 0.01622
Filonov et. al. [2016] 0.01030 0.01111 0.01671 0.01678 0.01667 0.01675 0.01681 0.01680
S2S 0.01001 0.01083 0.01756 0.01765 0.04014 0.03841 0.01852 0.01812
S2S+Attn. 0.00829 0.00918 0.01569 0.01583 0.01519 0.01551 0.01543 0.01555

DyAt 0.00856 0.00939 0.01304 0.01299 0.01083 0.01115 0.01312 0.01363
DyAt-H 0.00823 0.00914 0.01271 0.01256 0.01071 0.01103 0.01140 0.01201
DyAt-MaxPool-H 0.00852 0.00950 0.01336 0.01284 0.01282 0.01268 0.01459 0.01448

TEP

GPR [Roberts et al., 2013] 0.00600 0.00620 0.01060 0.01100 0.01120 0.01130 0.01140 0.01140
LSVR [Vapnik et al., 1997] 0.00770 0.00800 0.00820 0.00830 0.00823 0.00827 0.00810 0.00810
LSTNET [Lai et al., 2018] 0.01612 0.01613 0.02239 0.02237 0.02126 0.02126 0.02550 0.02489
Filonov et. al. [2016] 0.00365 0.00369 0.00734 0.00790 0.00811 0.00852 0.00878 0.00904
S2S 0.00357 0.00361 0.01033 0.01060 0.01023 0.01052 0.01054 0.01072
S2S+Attn. 0.00312 0.00313 0.00732 0.00799 0.00813 0.00869 0.00844 0.00887

DyAt 0.00315 0.00319 0.00685 0.00766 0.00782 0.00841 0.00840 0.00878
DyAt-H 0.00303 0.00306 0.00679 0.00764 0.00778 0.00841 0.00841 0.00884
DyAt-MaxPool-H 0.00283 0.00286 0.00627 0.00726 0.00683 0.00784 0.00716 0.00814

Table 1: Forecasting performance comparison in terms of mean squared error (MSE) and weighted mean squared error (WMSE), of our
methods (DyAt, DyAt-H, DyAt-MaxPool-H) with several state of the art baselines. We notice that the DyAt-MaxPool-H model produces the
best forecasts for the GHL , TEP datasets (i.e CPS state forecasting), while DyAt-H yields the best long-term electric load forecasts.

5 Related Work

Time Series Forecasting Methods: Time series forecast-
ing is a well researched topic and there have been a variety
of models proposed, like the popular auto-regressive mod-
els (AR, MA, ARIMA) as well as state-space models like
Kalman and particle filters, detailed by [De Gooijer and Hyn-
dman, 2006]. Such traditional models however, require cer-
tain domain rules governing process state transition (as in the
case of Kalman filters) to be known or others like the auto-
regressive set of models require certain assumptions made re-
garding the properties of the time series themselves to hold.
Deep Learning for Time series Forecasting: Traditional
models fail in highly non-linear time series spaces and re-
cently deep learning models have proven effective in learning
complex function representations. Hence, we employ deep
neural network models for the task of time series forecast-
ing. Recently, [Lai et al., 2018] proposed a deep learn-
ing model (LSTNET) employing convolutional, recurrent and
auto-regressive methods for multivariate time series fore-
casting in the context of solar and electric load forecasting.
They showcased the performance of LSTNET for both short
and long-term forecasting tasks. [Romeu et al., 2013] used
stacked de-noising autoencoders for indoor temperature fore-
casting. [Qiu et al., 2014] propose an ensemble of deep belief
networks used in conjunction with a support vector regressor
(SVR) for time series forecasting and other regression tasks.
Deep Learning for Sequence Modeling: Seq2Seq models
are popular in the natural language processing domain. They

were initially proposed for the sequential data modeling task
of neural machine translation (NMT) [Cho et al., 2014b;
Sutskever et al., 2014; ?; Vaswani et al., 2017]. Since
then, variants of Seq2Seq models have been used for ma-
chine translation and text summarization [Cho et al., 2014a;
Lin et al., 2018; Nallapati et al., 2016; Gehring et al., 2017].
To the best of our knowledge, all the Seq2Seq models used
for time series forecasting in CPS, employ traditional atten-
tion mechanisms.We are the first to introduce the dynamic
attention mechanism for multivariate time series forecasting,
through our novel DyAt models.

6 Conclusion
In this paper, we developed a novel dynamic attention mech-
anism and two novel hierarchical dynamic attention models
for long-term multivariate time series forecasting and evalu-
ated them on many CPS state forecasting and load forecast-
ing datasets. We demonstrated that our hierarchical dynamic
attention models achieved significant improvement in fore-
casting performance over state of the art time series fore-
casting baselines. Moving forward, we wish to incorporate
more sophisticated attention mechanisms into the DyAt-H
and DyAt-MaxPool-H models and inspect their performance
in spatiotemporal forecasting applications.
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