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We present a new approach to segmenting multiple time series by analyzing the
dynamics of cluster formation and rearrangement around putative segment boundaries.

This approach finds application in distilling large numbers of gene expression profiles
into temporal relationships underlying biological processes. By directly minimizing
information-theoretic measures of segmentation quality derived from Kullback-Leibler
(KL) divergences, our formulation reveals clusters of genes along with a segmenta-
tion such that clusters show concerted behavior within segments but exhibit significant
regrouping across segmentation boundaries. The results of the segmentation algorithm
can be summarized as Gantt charts revealing temporal dependencies in the ordering of
key biological processes. Applications to the yeast metabolic cycle and the yeast cell
cycle are described.
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1. Introduction

Time course analysis has become an important tool for the study of develop-
mental, disease progression, and cyclical biological processes, e.g. the cell cycle,1

metabolic cycle,2 and even entire life cycles.3 When the number of time points
is large, researchers have studied using continuous representations to smooth out
noise,4 using the application of hidden Markov models to guide clustering,5 and
using static measurements to “fill in the gaps” in the time series data.6 When the
number of time points is small, researchers have studied the role played by sam-
pling rates7 and proposed the use of model profiles8 to guide clustering. Recently,
researchers are quantifying timing differences in gene expression,9 and also recon-
structing regulatory relationships.10

One of the attractions of time series analysis is its promise to reveal tempo-
ral relationships underlying biological processes: which process occurs before what,
what are the “checkpoints” that must be satisfied (and when), and whether there
can be alternative pathways of time series progression. Although such analysis can
be conducted by tracking individual genes whose function is known, we desire to
automatically mine, in an unsupervised manner, temporal relationships involving
groups of genes, which are not a priori defined. In particular, we desire to iden-
tify both segments of the time course where groups show concerted behavior and
boundaries between segments where there is significant “regrouping” of genes. We
cast this problem as a form of time series segmentation where the segmentation
criterion is driven by measures over cluster dynamics.

2. Preview of Results

It is important to contrast our goals with prior work. Typical works on time series
segmentation are focused on segmenting a single time series and their goal is to
partition the dataset into internally homogeneous segments. Variations of dynamic
programming11 and Bayesian approaches12 have been used to solve this problem.
When multiple time series are involved, it is assumed that all the series have a
similar pattern in a given segment. Algorithms based on fuzzy clustering13 and
graphical models14 have been applied in this context. Essentially, all these works
are based on homogeneity assumptions within segments and model the segmenta-
tion problem as clustering time points with the constraint that data samples in
a cluster must belong to successive time points. Algorithms to mine the temporal
order of events occurring in multiple time series have also been under investiga-
tion. Moerchen et al.15 devised a temporal grammar for this purpose. However,
their approach requires manual partitioning of the time series, and the events are
derived by naive discretization of the multiple time series. We describe an approach
to segment multiple time series without making any homogeneity assumptions and
automatically mine the temporal sequence of events occurring in the data. We
explicitly model each segment as a heterogeneous mix of multiple clusters which
can themselves be redefined across segments. Our work is hence directly targeted
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to mining datasets involving thousands of genes where there are complex inter-
relationships and re-organizations underlying the dataset.

As an example, consider the Yeast metabolic cycle (YMC), using the dataset
of Tu et al.2 The YMC is a carefully coordinated mechanism between a reductive
charging (R/C) phase involving non-respiratory metabolism (glycolysis, fatty acid
oxidation) and protein degradation, followed by oxidative metabolism (Ox), where
respiratory processes are used to generate adenosine triphosphate (ATP), culminat-
ing in reductive metabolism (R/B), characterized by a decrease in oxygen uptake
and emphasis on DNA replication, mitochondrial biogenesis, and cell division. Dif-
ferent genes are central to each of these phases. Tu et al.2 analyzed this 36-pt time
course — spanning approximately three cycles (R/B phase is not sampled in the
last cycle) — by tracking “sentinel” genes showing periodic behavior across the
time course.

We analyzed this dataset of 3602 gene expression profiles over a 15 h period using
our segmentation algorithm and arrived at a segmentation corresponding to three
cycles. For lack of space, we present only one of these cycles, as shown in Fig. 1.
Figure 1 (top) displays what we found, Fig. 1 (second and third row) display how we
found it, and Fig. 1 (bottom row) displays why what we found is meaningful. It is
important to note that the only information supplied to the segmentation algorithm
is the set of time course profiles of all genes, without any supervised information
about their membership in different categories.

First, the segmentation we determined using our algorithm is a breakdown of
the timepoints into [1–6], [7–10], and [11–14]. To understand this segmentation, we
plot the mean profile of genes in each category a posteriori in Fig. 1 (top) indicating
that each group of genes characteristically peaks in one segment. Thus, although
our algorithm was not given the functional membership of genes, the segmentation
brings out the aspect that different groups are active in different segments.

To see how our algorithm identifies the segmentation, consider the second and
third rows of Fig. 1. We assume a setting of three clusters so that in every segment
identified by the algorithm, the genes within the segment are partitioned into three
clusters. The second row displays contingency tables where the clusters identified by
our algorithm are the rows, pre-defined functional categories are the columns, and
the cells show the overlap between the clusters and categories. We see that, indeed,
there is one cluster in each segment that brings together the relevant functional set
of genes automatically. Specifically, the cluster W1-C1 (i.e. cluster 1 of window 1)
has high overlap with the functional category R/C whereas the other clusters and
categories do not show any significant overlap. Similarly, cluster W2-C2 shows high
overlap with the Ox functional category, as does W3-C3 with R/B.

The actual criterion used by our segmentation algorithm is shown in Fig. 1 (third
row) that indicates that the overlap between clusterings across segment bound-
aries is highly dissimilar. This validates our hypothesis that there are characteristic
groups of genes within each segment and they re-organize around the segment
boundaries.
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Fig. 1. Preview of results from segmenting the Yeast metabolic cycle (YMC) time series dataset.
Only one cycle is shown here. The YMC involves the staged coordination of a reductive, charging
phase (R/C, time points [1–6]), followed by oxidative metabolism (Ox, time points [7–10]), followed
by reductive metabolism (R/B, time points [11–14]). (top row) Mean expression profiles of certain
groups of genes peak during each phase and these genes are assigned to those phases. (second
row) Genes assigned to the particular phase are heavily clustered together during each segment as
indicated by the highlighted row and column; e.g. majority of R/C genes are clustered together
in cluster 1 of segment 1 (denoted by W1-C1) as shown in the left most contingency table (third
row). Contingency tables with rows representing clusters in the segment to the left and columns
representing the clusters in the segment to the right capture the dispersion in the clusters across
the segments. The first row in the left most table which represents how the genes clustered together
in cluster 1 of segment 1 (W1-C1) are now spread into the clusters in segment 2 (W2-C1, W2-C2,
and W3-C3) (fourth row). Key biological processes enriched in each segment (only a few are shown
due to lack of space).

A final view of the segmentation is given in Fig. 1 (bottom row) where we con-
duct a functional enrichment analysis and display the categories most significantly
enriched in each segment (in some cluster). Only a few enriched categories are
shown here, for ease of illustration. Thus, the time-bounded enrichments lead to a
Gantt chart view of the YMC which identifies biological processes with modulated
activities in different segments.

We reiterate that the time point boundaries, the groups of genes important
in each segment, and the functions enriched in them, are inferred automatically.
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No explicit modeling of periodicity or other prior biological knowledge has been
imparted to the segmentation algorithm.

3. Problem Formulation

Our working hypothesis is that genes function in groups and that such groupings
are dynamically redefined at important stages of time series progression. Hence
identifying the groups as well as the points at which the regroupings happen is
critical. We refer to this as a cluster dynamics approach since we are modeling
movement of genes into and out of clusters and studying relationships between
clusters from neighboring segments.

We are given multiple vectors of measurements G = {g1,g2, . . . ,gN}, where
each gi is a time series over T = {t1, t2, . . . , tl}. The problem of segmentation is to
express T as a sequence of segments or windows: (wta

t1 , wtb
ta+1

, . . . , wtl
tk

) where each
window wte

ts
, ts ≤ te, is a set of consecutive time points beginning at (and inclusive

of) time point ts and ending at (and inclusive of) time point te.
We first describe a way to evaluate a given segmentation before presenting an

algorithm for identifying segmentations. We begin by studying the case of just two
adjacent windows: wtb

ta
and wtc

tb+1
. Given two clusterings of genes, one for each of the

windows, our evaluation criterion requires that these two sets of clusters are highly
dissimilar, i.e. genes clustered together in some cluster of wtb

ta
move out of their

clusters and are clustered together with different genes in wtc
tb+1

. As an example,
consider the following contingency tables from a dataset involving 18 genes and
three clusters in each window.

2 2 2
2 2 2
2 2 2

6 0 0
0 6 0
0 0 6

0 6 0
0 0 6
6 0 0

(a) (b) (c)

Here the rows refer to clusters of wtb
ta

and the columns refer to clusters of wtc
tb+1

and the cells represent the overlaps in the clusters across the windows. The table
(a) represents the case in which the clusters across the windows have maximum
dissimilarity: each cluster in wtc

tb+1
is comprised of genes taken from all the clusters

in wtb
ta

and vice versa. The tables (b) and (c) represent the cases where the clusters
in both windows have high similarity: the same sets of genes are clustered together
across the windows (resulting in overlap counts of 6). We require that our criterion
favors clusters as shown in table (a) to those in tables (b) and (c). Each row and
column of this contingency table can be interpreted as a normalized probability
distribution. In the case of table (a) each distribution is [1/3, 1/3, 1/3], which is
a uniform distribution while in the case of tables (b) and (c), each distribution is
[0, 1, 0] which has a maximum deviation from the uniform distribution. We use this
observation to formulate our criterion as described below.
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Formally, given two windows wtb
ta

and wtc
tb+1

, we seek r clusters in the window
wtb

ta
and c clusters in the window wtc

tb+1
. Let α = {1, . . . , r} and β = {1, . . . , c}

represent the cluster random variables for the windows wtb
ta

and wtc
tb+1

, respectively.
The similarity of the clusters in the windows is measured using a two dimensional
contingency table. The number nij in the (i, j)th cell of the contingency table
represents the number of samples that are clustered together in cluster i of window
wtb

ta
and cluster j of window wtc

tb+1
. The sizes of the clusters in the window wtb

ta

are obtained by the column-wise sums across each row (ni. =
∑c

j=1 nij), while the
sizes of clusters in the window wtc

tb+1
are obtained by the row-wise sums down each

column (n.j =
∑r

i=1 nij). Also note that, N , the total number of data samples in
each window, is obtained by the sum of all cluster sizes in the window:

∑r
i=1 ni. =∑c

j=1 n.j = N . Given these counts, the normalized contingency table of cluster
similarity counts can be interpreted as a joint distribution of the cluster variables
α and β,

P (α = i, β = j) =
nij

N
, i = 1, . . . , r, and j = 1, . . . , c. (1)

The row-wise distributions of this contingency table represent the conditional prob-
abilities of the clusters in window wtc

tb+1
given the clusters in window wtb

ta
. Similarly,

the column-wise distributions represent the probabilities of the clusters in window
wtb

ta
given the clusters in window wtc

tb+1
. We define r random variables {R1, . . . , Rr}

corresponding to the r rows, and c random variables {C1, . . . , Cc} corresponding
to the c columns. The probabilities of these random variables are then defined in
terms of the conditional probabilities of the cluster variables α and β as follows:

P (Ri = j) = P (β = j|α = i) =
P (α = i, β = j)

P (α = i)
=

nij

ni.
, (2)

P (Cj = i) = P (α = i|β = j) =
P (α = i, β = j)

P (β = j)
=

nij

n.j
. (3)

Each row variable Ri takes c values from the columns corresponding to the ith row
as given by the probability mass function pRi , and similarly each column variable Cj

takes r values from the rows corresponding to jth column as given by the probability
mass function pCj . Since each row has c cells, the uniform distribution over the
cells in each row is U(1

c ), and for each column the uniform distribution is U(1
r ). We

capture the deviation of these row-wise and column-wise distributions w.r.t. the
uniform distribution as:

F =
1
r

r∑
i=1

DKL

(
pRi‖U(1

c )
)

+
1
c

c∑
j=1

DKL

(
pCj‖U(1

r )
)
, (4)

where DKL(p‖q) =
∑

x p(x) log2
p(x)
q(x) is the Kullback-Leibler (KL) divergence

between two probability distributions with probability mass functions p(x) and
q(x), and U(·) denotes the uniform distribution whose argument is the probability
of any outcome.
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Thus, we have r KL-divergences, one for each row, and c KL-divergences, one
for each column. In order to mitigate the effect of lopsided contingency tables
(where either r � c or c � r), note that the sums of these divergences are in
turn averaged (row-wise and column-wise). In such cases, it is possible to optimize
F by focusing on the “longer” dimension without really ensuring that the other
dimension’s projections are close to uniform. Finally, note that Eq. (4) can be
readily extended to the case where we have more than two segments.

The objective function defined in Eq. (4) has connections to the principle of
minimum discrimination information (MDI) introduced by Kullback for the analysis
of contingency tables.16 The MDI principle states that if q is the assumed or true
distribution, the estimated distribution p must be chosen such that DKL(p‖q) is
minimized. In our case, q is the uniform distribution desired and p is the distribution
estimated from observed data.

By definition of KL-divergence, the objective function in Eq. (4) can be
expressed as

F = −1
r

r∑
i=1

H(Ri) + log2(c) −
1
c

c∑
j=1

H(Cj) + log2(r)

= −1
r

r∑
i=1

H(β|α = i) − 1
c

c∑
j=1

H(α|β = j) + log2(r · c), (5)

where H(X) is the entropy of the random variable X with probability mass function
p(x) and is defined as H(X) = −

∑
x p(x) log2(p(x)). Entropy is a measure of the

uncertainty of a random variable. Minimizing F leads to a high entropy of the
cluster conditional distributions P (β|α = i) and P (α|β = j). Intuitively, this means
that given a cluster in window wtb

ta
, it is difficult to predict a cluster in the adjacent

window wtc
tb+1

and vice versa. This occurs when the clusters in the adjacent windows
are highly dissimilar as required by the independent clusters we wish to find in the
adjacent windows. On the other hand, maximizing F leads to a low entropy of
the cluster conditional distributions and thus maximally similar clusters across the
windows (this aspect is not studied further in this paper). However, for ease of
interpretation and connections to the MDI principle, we prefer to represent the
objective function F in terms of KL-divergence as shown in Eq. (4).

Minimizing F will yield row-wise and column-wise distribution estimates that
are close to the respective uniform distributions and, hence, result in independent
clusterings across the neighboring windows.

4. Clustering Across Windows

We now turn our attention to the clustering algorithm that must balance two con-
flicting criteria: namely, the clusters across neighboring windows must be inde-
pendent and, yet the clusters must exhibit concerted behavior within a window.
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The former criterion is modeled as described previously while the latter is achieved
by parameterizing the clusters using soft cluster prototypes as described below.

4.1. Parameterizing cluster prototypes

We develop our notation for two adjacent windows, and the extension to greater
numbers of windows is straightforward. Given a gene vector gk, let its projection
onto the “left” window wtb

ta
be referred to as xk, and its projection onto the “right”

window wtc
tb+1

be referred to as yk. Recall that sets of such projections are clus-
tered separately such that the clusters are maximally dissimilar. Let r and c be
the number of clusters for x and y vectors, which results in an r × c contingency
table. Let m(x)

i be the prototype vector for the ith cluster of the x vectors. The ran-
dom variable V (xk) denotes the assignment of the data vector xk to the clusters: the
probability of xk being assigned to cluster i is given by P (V (xk) = i) = v

(xk)
i , where∑r

i=1 v
(xk)
i = 1. We refer to the probabilities v

(xk)
i as cluster membership indica-

tor variables. Similar cluster prototypes m(y)
j , random variables V (yk), and cluster

indicator variables v
(yk)
j are defined for y vectors as well. We denote the probability

mass function associated with each V (xk) as pV (xk) , and with each V (yk) as pV (yk) .
Then the contingency table counts can be calculated as nij =

∑N
k=1 v

(xk)
i v

(yk)
j .

In hard clustering algorithms, like the traditional k-means, each data sample is
assigned to the nearest cluster with a probability of 1. However, calculating nij

using hard memberships renders the function F in Eq. (4) nondifferentiable at cer-
tain points, as a result of which, we cannot leverage classical numerical optimization
algorithms to minimize F . To avoid this problem, cluster indicator variables are
typically treated as continuous real variables making F a smooth function that is
continuously differentiable and assigning a nonzero cluster membership probability
for each data sample, i.e. v

(xk)
i , v

(yk)
j ∈ (0, 1).

There are many ways of smoothing, one approach being the use of a Gaussian
kernel between the vector and the cluster prototype. We present a novel derivation of
this kernel that explains how the error in the smoothing can be explicitly controlled
and also suggests other formulations for smoothing. First, we define

γ(i,i′)(xk) =
‖xk − m(x)

i′ ‖2 − ‖xk − m(x)
i ‖2

D
, 1 ≤ i, i′ ≤ r, (6)

where D = maxk,k′ ‖xk − xk′‖2, 1 ≤ k, k′ ≤ N is the pointset diameter.
The non-normalized cluster assignment probabilities are given by

v̂xk
i = exp

(
ρ
(
min

i′
γ(i,i′)(xk)

))
, (7)

and the normalized probabilities are then given by

v
(xk)
i =

v̂xk
i∑

i′ v̂xk

i′
. (8)
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A well known approximation to mini′ γ(i,i′)(xk) is the Kreisselmeier-Steinhauser
(KS) envelope function17,18 given by

KSi(xk) =
−1
ρ

ln

[
r∑

i′=1

exp(−ργ(i,i′)(xk))

]
, (9)

where ρ � 0. The KS function is a smooth function that is infinitely differentiable.
Using this, the cluster membership indicators are redefined as:

v
(xk)
i =

exp[ρKSi(xk)]∑r
i′=1 exp[ρKSi′(xk)]

=
exp(− ρ

D‖xk − mi‖2)∑r
i′=1 exp(− ρ

D‖xk − m′
i‖2)

. (10)

The cluster memberships for the “right” window, v
(yk)
j , are also smoothed similarly.

The astute reader would have noticed that ρ/D is the width of the Gaussian
kernel used for approximation but the KS-function helps tease out how the width
must be set in order to achieve a certain quality of approximation. Notice that
D is completely determined by the data but ρ is a user-settable parameter, and
precisely what we can tune. The KS-function provides bounds on the error with
which it approximates min

i′
γ(i,i′)(xk), given as follows:

min
i′

γ(i,i′)(xk) − ln(N)
ρ

≤ KSi(xk) ≤ min
i′

γ(i,i′)(xk). (11)

The above inequality shows that the value of ρ can be determined for a given error
precision. Furthermore, we can use any other rapidly decaying function to assign
the probabilities (i.e. in place of the exponential) and the KS-function would again
help us smooth the resulting assignments, but will yield assignment probabilities
that are quite different from the traditional Gaussian kernel. In this sense, the
KS-approximation is a versatile approach to smooth a variety of functions.

4.2. Regularized objective function for independent clusters

Minimizing the function F in Eq. (4) should ideally yield clusters that are indepen-
dent across windows and local within each window. However, using smooth cluster
prototypes gives rise to an alternative minimum solution where each data sample is
assigned with uniform probability to each cluster. For example, recall the uniform
contingency table example, in Sec. 3. Each of the 18 samples can be assigned to the
three row clusters and three column clusters with probability [1/3, 1/3, 1/3] and the
estimate of the count matrix from these soft counts would still be uniform in each
cell (

∑
k v

(xk)
i v

(yk)
j = 2). To avoid degenerate solutions such as these, we require

maximum deviation of individual data vector probabilities (v(xk)
i and v

(yk)
j ) from

the uniform distribution over the number of clusters. This leads to the regularized
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objective function:

F =
λ

r

r∑
i=1

DKL

(
pRi‖U(1

c )
)

+
λ

c

c∑
j=1

DKL

(
pCj‖U(1

r )
)

− 1
N

N∑
k=1

DKL

(
pV (xk)‖U(1

r )
)
− 1

N

N∑
k=1

DKL

(
pV (yk)‖U(1

c )
)
, (12)

where λ is the weight, set to a value greater than 1, to give more emphasis to mini-
mizing the row and column distributions. This also enforces equal cluster sizes. The
role of λ is to enforce a “balancing constraint” on the clusters (i.e. approximately
equal cluster sizes) and to prevent samples from being assigned to multiple clus-
ters. Other works have focused on explicitly capturing these aspects by an objective
function (e.g. see Ref. 19) but here we intend λ to be a regularization parameter,
to avoid degenerate solutions. Hence the exact value of λ is not as crucial as the
regime in which we conduct the optimization. In order to adjust λ, we vary its
value over a range (typically [1,2] in small step sizes). Based on experimentation,
the cluster assignments of most gene vectors (more than 90%) do not change after
a particular value of λ and we use this criterion to set λ. All the terms in Eq. (12)
above can be calculated in terms of the smoothed cluster membership probabilities
v
(xk)
i and v

(yk)
j , which are in turn calculated in terms of the cluster prototypes m(x)

i

and m(y)
j . Thus the objective function F is effectively parameterized in terms of the

cluster prototypes, and the problem of finding independent clusters now reduces to
finding the cluster prototypes that optimize the objective function. The gradient of
this function with respect to the prototypes m(x)

i is given by

∇
m

(x)
i

F =
1

ln(2)

r∑
i′=1

N∑
k=1

(
λ

r

{
c∑

j=1

[
1 + ln

(∑N
k′=1 v

(xk′)
i′ v

(yk′ )
j∑N

k′=1 v
(xk′)
i′

/
1
c

)]

·
[

v
(yk)
j∑N

k′=1 v
(xk′)
i′

−
∑N

k′=1 v
(xk′)
i′ v

(yk′ )
j∑N

k′=1(v
(xk′ )
i′ )2

]}

− λ

c

{
c∑

j=1

[
1 + ln

(∑N
k′=1 v

(xk′ )
i′ v

(yk′)
j∑N

k′=1 v
(yk′)
j

/
1
r

)][
v
(yk)
j∑N

k′=1 v
(yk′)
j

]}

− 1
N

[
1 + ln

(
v
(xk)
i′

/
1
r

)])
∇

m
(x)
i

v
(xk)
i′ , (13)

where

∇
m

(x)
i

v
(xk)
i =

2ρ(xk − m(x)
i )

D
v
(xk)
i (δi′,i + v

(xk)
i ). (14)

Here δi′,i is the Kronecker delta. The index variables i, i′, and i′′ are over the
clusters in the x vectors, j over the clusters in the y vectors, and k and k′ over
the data vectors. The gradients with respect to the prototypes m(y)

j are calculated
analogously.
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Optimization of F is performed using the augmented Lagrangian algorithm with
simple bound constraints on the cluster prototypes using the FORTRAN pack-
age LANCELOT.20 The initial cluster prototypes are set using individual k-means
clusters in each window. The augmented Lagrangian algorithm iteratively improves
these initial prototypes till a local minimum of the objective function is attained.

5. Segmentation Algorithm

The approach we take is as follows. A segmentation is a sequence of windows, where
each window is maximally dissimilar from its neighboring windows. But what should
the windows be? i.e. where should they start and what should their length be? We
first create a “pool” of windows and, for every adjacent pair of windows, apply our
optimization problem to determine the quality of independent/dissimilar clustering
that can result with the given pair of windows. Subsequently, we aim to tile the
entire time course by picking windows where adjacent pairs have been whetted by
the optimization algorithm to have dissimilar clusterings.

In more detail, let T = (t1, t2, . . . , tl) be the given time series data sequence, and
lmin and lmax be the minimum and maximum window lengths, respectively. For each
time point ta, we define the set of windows starting from ta as Sta = {wtb

ta
|lmin ≤

tb − ta + 1 ≤ lmax}. Given a window wtb
ta

, the choices for the next window are given
by Stb+1 , the set of windows starting form tb+1. These windows can be organized
as nodes of a directed acyclic graph, where directed edges exist between wtb

ta
∈ Sta

and every wtc
tb+1

∈ Stb+1 . The edge weights are set to be the objective function
from Eq. (12) realized by simultaneously clustering the windows wtb

ta
and wtc

tb+1
, as

discussed in the previous section. Since local optimization procedures are sensitive
to initialization, we perform 100 random restarts of the optimization procedure
(each time with different k-means prototypes found in individual windows) and
choose the best (minimum) of the local optimum solutions as the weight for the
edge between the two windows. Given this weighted directed acyclic graph, the
problem of segmenting the time series is equivalent to finding the minimum path
(if one exists) between a node representing a window beginning at t1 and a node
corresponding to a window that ends in tl (recall that there can be several choices
for nodes beginning at t1 as well as for those ending at tl, depending on lmin and
lmax). We find the shortest path using dynamic programming (Dijkstra’s algorithm)
where the path length is defined as Davg, given by Eq. (16), described later.

6. Experiments

6.1. Datasets

We analyzed the following datasets using our segmentation algorithm.

YMC: As stated earlier, the YMC dataset2 consists of 36 time points collected
over three continuous cycles.



March 17, 2009 10:20 WSPC/185-JBCB 00411

350 S. Tadepalli et al.

Table 1. Datasets analyzed and parameters used.

No. of genes Parameters

Dataset No. time pts. Original After filtering λ lmin lmax

YMC 36 6555 3602 1.4 4 7
YCC 18 6076 2196 1.25 3 5
HP 14 6076 2471 1.55 3 7

YCC: This dataset is taken from experiments performed by Spellman et al.1 We
analyzed the data containing the gene expression measurements over two continuous
cell cycles after the Yeast cells are released from an α-factor arrest.

HP: This dataset was taken from the experiments conducted by Shapira et al.21

The effects of oxidative stress induced by hydrogen peroxide (HP) on the Yeast cell
cycle are studied in these experiments. Adding HP to Yeast cells at 25 minutes after
release from G1 arrest leads to a cell cycle arrest in the subsequent G2/M phase.

For all the datasets, we filtered the genes containing missing values and also
the genes that do not have an annotation in any GO biological process category
(revision 4.205 of GO released on 14 March 2007). We then used the parameters
as shown in Table 1 to segment the datasets. For all the datasets, we ranged the
number of clusters in each window between 3 and 15, and the λ value was adjusted
to give approximately equal sized clusters with good intra-cluster similarities.

6.2. Evaluation metrics

We evaluate our clusterings and segmentations in five ways: cluster stability, cluster
reproducibility, functional enrichment, segmentation quality, and segmentation sen-
sitivity. Cluster stability and cluster reproducibility are used to filter the patterns
obtained by the segmentation algorithm whereas the other three criteria are used
to evaluate the quality of segmentation.

We assess cluster stability using a bootstrap procedure to determine the sig-
nificance of genes brought together. Recall that each window except the first and
last windows has two sets of clusters, one set independent with respect to the pre-
vious window and the other independent with respect to the next window. We are
interested in the genes that are significantly clustered together in these two sets of
clusters, as they represent the genes that are specific to the window under consid-
eration. We calculate a contingency table between these two clusterings for each
window (excluding the first and the last windows) in which each cell represents
the number of genes that are together across the two independent sets of clusters.
We randomly sample 1000 pairs of clusterings within each window (with cluster
sizes the same as the two independent clusterings) and compute their contingency
tables. By the central limit theorem, the distribution of counts in each cell of the
table is approximately normal (also verified using a Shapiro-Wilk normality test
with p = 0.05). We now evaluate each cell of the actual contingency table with
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respect to the corresponding random distribution and retain only those cells that
have more genes than that observed at random with p < 0.05 (Bonferroni corrected
with the number of cross clusters to account for multiple hypothesis testing). To
ensure reproducibility of clusters, we retain only those genes in each significant
cell of the contingency table that are together in more than 150 of the 200 clus-
terings (conducted with different initializations). For the first and last windows,
which have only 100 randomly initialized clusterings, we retain those genes that
are clustered together in more than 75 of the 100 clusterings. At this stage, for each
segment we obtain a contingency table with significant cells representing the group
of genes specific to the particular segment, which we can refer to as cross-cluster. We
perform functional enrichment using the GO biological process ontology (since
we are tracking biological processes) over each of these cross clusters. A hypergeo-
metric p-value is calculated for each GO biological process term, and an appropriate
cutoff is chosen using a false discovery rate (FDR) q-level of 0.01.

The segmentation quality is calculated as a partition distance22 between the
“true” segmentation (from the literature of the YMC and YCC) to the segmen-
tations computed by our algorithm. We view each window as a set of time points
so that a segmentation is a partition of time points. Given two segmentations S1

and S2, whose windows are indexed by the variables wtb
ta

and ztd
tc

respectively, the
partition distance is given by:

PD = −
∑

w
tb
ta

∈S1

∑
z

td
tc

∈S2

|wtb
ta

∩ ztd
tc
| log2

|wtb
ta

∩ ztd
tc
|

|wtb
ta
|

−
∑

z
td
tc

∈S2

∑
w

tb
ta

∈S1

|wtb
ta

∩ ztd
tc
| log2

|wtb
ta

∩ ztd
tc
|

|ztd
tc
|

. (15)

The segmentation sensitivity to variations in the number of clusters is calcu-
lated as the average of the ratios of KL-divergences between the segments to the
maximum possible KL divergence between those segments. This latter figure is easy
to compute as a function of the number of clusters, which is considered uniform
throughout the segmentation. Suppose we have |S| windows in a given segmenta-
tion S = {wta

t1 , wtb
ta+1

, . . . , wtk
tj+1

, wtl
tk+1

} with c clusters in each window. Let Fmax be
the objective function value for the maximally similar clustering (the c× c diagonal
contingency table (b) in the example in Sec. 3). Then the measure we compute is

Davg =
1

|S| − 1

[F{wta
t1

,w
tb
ta+1

}

Fmax
+

F{wtc
tb+1

,w
td
tc+1

}

Fmax
+ · · · +

F{w
tk
tj

,w
tl
tk+1

}

Fmax

]
, (16)

where F{w
tb
ta

,wtc
tb+1

} is the optimal objective function value obtained by clustering

the pair of adjacent windows wtb
ta

, wtc
tb+1

. Observe that this criterion is different
from the actual criterion optimized during the segmentation. Davg compares our
segmentation (which identifies dissimilar sets of clusters) to the case when there are
exactly similar clusters. Lower values of this ratio indicate that the segmentation
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captures maximal independence between adjacent segments while higher values
indicate that the clusters obtained are more similar in adjacent segments.

6.3. Results

YMC: The segmentation generated for the minimum number (3) of clusters is: 1–6,
7–10, 11–14, 15–18, 19–22, 23–26, 27–31, 32–36, which correspond to alternating
R/B, R/C, and Ox phases. The GO categories enriched (p < 10−7) are depicted in
Fig. 1 (bottom).

YCC: The segmentation [Fig. 2(a)] generated for YCC — 1–3, 4–6, 7–9, 10–12,
13–15, 16–18 — is also periodic with the stages approximately corresponding to
alternating M/G1, {G1,S}, {G2,M} phases. Note that each phase is of very short
length in this experiment as compared to YMC: the phases M/G1, G1, S each last
for approximately two time points, while the G2 phase lasts only for one time point.
Because our minimum window length is three (set so that we recover significant
clusterings and regroupings), we cannot resolve these short-lived phases. A possible
approach is to use continuous representations such as spline fits to gain greater res-
olution of data sampling. Nevertheless, the key events occurring in these segments
are retrieved with high specificity (p < 10−7) as shown in Fig. 2(a).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mitotic metaphase/anaphase transition
mitotic spindle elongation

mitotic sister chromatid cohesion
G1/S-specific transcription

RNA processing
strand elongation

DNA replication initiation
regulation of exit from mitosis

cytokinesis, completion of separation

timepoints

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

cell cycle arrest
cysteine metabolic process

glutathione metabolic process
histone acetylation

DNA unwinding during replication
DNA replication initiation
RNA export from nucleus

timepoints

(b)

Fig. 2. Gantt charts depicting the segments and enriched GO categories: (a) YCC, (b) HP. The
bars in the Gantt chart represent functionally enriched GO categories in the cross-clusters of the
segements. Only a few GO categories are depicted due to lack of space.
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Fig. 3. (a) Average ratio of the objective function values for the contingency tables to the maximum
possible value. (b) Distance of the segmentation recovered to the “true” segmentation.

HP: The segmentation obtained is 1–4, 5–11, 12–14, 15–20, corresponding to G1,
S, G2, G2/M phases of the cell cycle as depicted in Fig. 2(b). Note that the cells
here are arrested in the G2/M phase.

Effect of number of clusters: The sensitivitily of segmentation output to change
in the number of clusters is studied in Fig. 3. In Fig. 3(a), we see that as the number
of clusters increases, it is increasingly difficult to obtain independent clusterings,
and hence for higher values of the number of clusters, the segmentation problem
actually resembles associative clustering (observe that this curve tends toward a
Davg value of 0.5). Figure 3(b) tracks the segmentation quality, and shows that the
correct segmentation is recovered for many settings in the lower range for number
of clusters, but as the number of clusters increases, the best segmentations consid-
erably deviate from the true segmentation. Nevertheless, comparing the two plots,
we see that Davg tracks the segmentation quality PD well and hence can be a useful
surrogate for determining the “right” number of clusters.

Biological significance of results: One of the applications of our methods is
to decode temporal relationships between biological processes. Since cell division
processes are enriched in both YCC and YMC, we superimposed those segments of
our two Gantt charts [from Fig. 1 and Fig. 2(a)], and observed that the oxidative
metabolism phase of YMC typically precedes the transition from G1 to S in the
YCC. This is significant because it permits the DNA replication process to occur
in a reductive environment. These and other connections between the YMC and
the YCC are presently under intense investigation,23–25 and hypotheses involving
biochemical process compatibility versus coordinated metabolic “bursts” are cur-
rently being compared and contrasted. These methodologies can be used to evaluate
transcriptional profiles for direct comparison with proteomic and metabolic profil-
ing datasets,25 permitting a systems-biology perspective of yeast cellular dynamics.
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Such work can also lead to the design of targeted biological experiments aimed at
determining the central players in transition from one individual state to another,
as well as the evaluation of similar temporal shifts in other organisms. Also note
that in the case of HP dataset, the biological processes include glutathione and
cysteine metabolic processes which eventually lead to cell cycle arrest as indicated
by Shapira et al.21

7. Discussion

We have presented a novel approach to simultaneously segment multiple time course
data using clusterset dissimilarity as a driving criterion for optimization. Temporal
modeling of biological process activity is a burgeoning area of research. In Ref. 26,
for instance, the authors use a HMM for modeling transitions between biological
processes (which are assumed to be the hidden, unobserved, variables) and also
estimate gene-process association matrices along with activity levels of different
processes. However, since the processes are not a priori defined, this approach uses
multiple time course datasets to estimate gene-process association matrices with
high fidelity and, unlike our approach, does not result in a segmentation of a given
dataset. Nevertheless, the ideas of activity-level modeling from Ref. 26 and our
emphasis on segmentation through cluster dynamics can be fruitfully combined in
a single framework. In particular, we can develop richer models of cluster reorgani-
zation, e.g. dynamic revisions in the number of clusters, split-and-merge behavior
of clusters, and a HMM for cluster reorganization, leading to inference of complete
temporal logic models.
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22. De Mántaras RL, A distance-based attribute selection measure for decision tree induc-
tion, Machine Learning 6:81–92, 1991.

23. Chen Z, Odstrcil EA, Tu BP, McKnight SL, Restriction of DNA replication to the
reductive phase of the metabolic cycle protects genome integrity, Science 316:1916–
1919, 2007.

24. Futcher B, Metabolic cycle, cell cycle, and the finishing kick to start, Genome Biol
7:107–111, 2006.

25. Murray DB, Beckmann M, Kitano H, Regulation of yeast oscillatory dynamics, Proc
Natl Acad Sci USA 104:2241–2246, 2007.

26. Shi Y, Klustein M, Simon I, Mitchell T, Bar-Joseph Z, Continuous hidden process
model for time series expression experiments, Bioinformatics 23:i459–i467, 2007.

Satish Tadepalli is a Ph.D. student in the Department of
Computer Science at Virginia Tech., USA. He received his M.S.
in Computer Science from Virginia Tech in 2003. His research
interests include data mining, computational biology, and graph-
ical models. He has worked at Novartis Pharamceuticals, and
Rogers Casey.



March 17, 2009 10:20 WSPC/185-JBCB 00411

356 S. Tadepalli et al.

Naren Ramakrishnan is a Professor and Director of Grad-
uate Studies in the Department of Computer Science at Vir-
ginia Tech., USA. His research interests include problem solving
environments, mining scientific data, and information personal-
ized. He received a Ph.D. in Computer Sciences from Purdue
University.

Layne T. Watson received a Ph.D. in Mathematics from the
University of Michigan, Ann Arbor, in 1974. His research inter-
ests include numerical analysis, optimization, parallel compu-
tation, and bioinformatics. He has worked at Sandia National
Laboratories, University of Michigan, and Michigan State
University.

Bud Mishra is a Professor of Computer Science and Mathemat-
ics at NYU, Professor of Human Genetics at Mt. Sinai School
of Medicine, and a Professor of Cell Biology at NYU School of
Medicine. He has a Ph.D. in Computer Science from Carnegie-
Mellon University and serves as the editor of several journals.

Richard F. Helm is an Associate Professor of Biochemistry at
Virginia Tech. His research focus is on understanding the pro-
cesses used by organisms to turn off metabolic activity. His areas
of expertise include analytical biochemistry, as well as carbohy-
drate chemistry. He is the Director of the Virginia Tech mass
spectrometry incubator.


