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Abstract—Causality visualization can help people understand temporal chains of events, such as messages sent in a distributed
system, cause and effect in a historical conflict, or the interplay between political actors over time. However, as the scale and complexity
of these event sequences grows, even these visualizations can become overwhelming to use. In this paper, we propose the use of
textual narratives as a data-driven storytelling method to augment causality visualization. We first propose a design space for how
textual narratives can be used to describe causal data. We then present results from a crowdsourced user study where participants
were asked to recover causality information from two causality visualizations—causal graphs and Hasse diagrams—with and without
an associated textual narrative. Finally, we describe CAUSEWORKS, a causality visualization system for understanding how specific
interventions influence a causal model. The system incorporates an automatic textual narrative mechanism based on our design space.
We validate CAUSEWORKS through interviews with experts who used the system for understanding complex events.

Index Terms—Causality visualization, natural language generation, data-driven storytelling, temporal data, quantitative studies.

1 INTRODUCTION

S
TORIES are a central part of what it means to be human [40, 53].
They teach, guide, and caution; they store, recall, and archive;
they praise, spread joy, and inspire. In particular, stories are

especially useful for encapsulating causality—the cause and effect of
events in a plot—in a regular, understandable, and memorable format.
This format is also surprisingly scalable. Examples abound of textual
narratives representing complex chains of cause and effect ranging
from the winding plots of G. R. R. Martin’s A Song of Ice and Fire and
Neal Stephenson’s The Baroque Cycle, through shelf yards of history
books laying out the intricacies of the Napoleonic Wars or the American
Revolution in all their gritty detail, and all the way to quarterly reports
telling the story of a company’s accomplishments over the last three
months. However, despite all of this utility, little work exists on the
use of textual narratives to represent causality in modern visualization
tools. On the contrary, visualization and visual analytics researchers
tend to view textual narratives with suspicion, often instead opting to
apply text analytics and visualization methods to minimize their use.

In this paper, we attempt to remedy this gap in the literature by
investigating how textual narratives can be used to represent causality.
Our classification of narratives is primarily based on their utility as
a complement to causality visualization techniques, such as dynamic
graphs [5] and Hasse diagrams [17,18]. Textual representations are gen-
erally much less compact than geometric ones (i.e., visualizations), and
must thus be designed with specific questions in mind. We first propose
and discuss a design space of causality representations, focusing in
particular on textual narratives. We then report on a crowdsourced user
study where we operationalized parts of our design space and asked par-
ticipants to recover causality information from dynamic graphs versus
Hasse diagrams, with and without an associated textual narrative. Our
findings indicate that narratives can fill an important complementary
role for key questions on causality, and thus serve as a “story-like”
format to summarize a specific causal event chain.

To capitalize on these findings and demonstrate the use of our design
space, we also present a textual narratives implementation in CAUSE-
WORKS, a causality visualization system on the Causal Exploration
of Complex Operational Environments program [1] for understanding
the impact of specific interventions in a causal model. These narratives
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are based on best practices from our design space as well as the user
study, and serve as a quick-reference textual summary of the selected
interventions and objectives shown in a dynamic graph. We studied the
utility of these narratives by interviewing several users with experience
of causality, who used the system to understand climate change data.
Our findings confirm many of the results from the crowdsourced study.

The contributions of our paper are the following: (1) a design space
for complementary textual narratives in representing causality; (2)
results from a crowdsourced study evaluating different causality visual-
izations with and without companion narratives; (3) an implementation
of textual narratives in an existing causality analytics and visualization
system (CAUSEWORKS); and (4) qualitative results from 5 experts
using these narratives to understand climate change data.

2 BACKGROUND

Here we discuss the existing literature on causality, causality visualiza-
tion, and data-driven storytelling.

2.1 Causality Visualization
Causal networks or directed acyclic graphs are commonly used to
map relationships between variables [47]. Much of the work in causal
visualization aims to encode aspects of causality such as temporal
developments of cause and effect [20] using interactivity [64, 65] and
animations [34] to improve the accuracy of causal inference.

Researchers have uncovered characteristics and shortcomings of spe-
cific visual representations of causality. For example, Bae et al. [4] find
that multiple to/from connections from a particular node may influence
how an analyst perceives indirect effects. Similarly, Hasse diagrams are
used widely, but require the user to backtrace every effect, and can also
introduce an overwhelming number of crossings in a large-scale causal
system [19]. Wang et al. attempted to improve causal inference by
overlaying salient statistical parameters such as p-values and regression
co-efficients on 2D-graphs so that analysts can draw more reliable con-
clusions about causal relationships [64]. However, interpreting these
parameters requires understanding statistical inference.

Research on perceptions of causality also show that inference is
context-dependent, and a non-expert with regards to statistics or domain
could see an illusion of causality in data [68]. In our work, we propose
to mitigate misinterpretation by both experts and non-experts alike
through the use of textual narratives to augment causal visualizations.

2.2 Narratives in Visualization
Historically spanning thousands of years [53, 62], storytelling conveys
a series of events, usually involving characters and locations—stories—



using speech, sound, and visuals [26]. Generally, stories are commu-
nicated using visual media, such as illustrations, pictures, animations,
video, and–now–visualization [16, 57]. Visualization, inherently, is
inclined for communication by virtue of its graphical form, resulting in
the notion of communication-minded visualization [63]. Combining the
idea of communication-minded visualization with storytelling yields the
notion of data-driven storytelling: narrative techniques for data [54].

We believe that data-driven storytelling naturally follows the idea
of visualization for explanation (the latter). The production, presenta-
tion, and dissemination of analysis results is an important challenge
in visualization and visual analytics [60]. Gershon and Page first pro-
posed using storytelling for visualization [24], and their work has since
been followed up by workshops [12, 13], surveys [31, 54], and even
commercial tools [37]. Viégas and Wattenberg note the inclination
of visualization for communication by virtue of its graphical form,
and encourage focusing on so-called communication-minded visualiza-
tion [63] for social analysis. In recent years, the use of textual data to
aid visualization and vice versa have been explored [6, 39]. Further-
more, verbalization [10, 30, 55] has also been used for understanding
machine learning models.

2.3 Causality and Causal Networks
The statistical and ML sciences have developed many formalisms to
reason with both the structure and dynamics of causal networks [8]. To
encapsulate causal structure, while there are many network formula-
tions, one of the more popular ones is the Bayesian network formalism
popularized by Pearl [47]. A Bayesian network is a directed acyclic
graph (DAG) and can be thought of as a way to represent a factoriza-
tion of the underlying joint distribution of random variables. However,
interpreting such DAGs is difficult for humans and interpretation rules
such as d-separation [23] and the ‘Bayes Ball’ algorithm [56] have been
proposed. These rules essentially are ways to read or infer conditional
independence relationships from the networks.

To overcome such interpretation difficulties, other representational
formalisms have been proposed, e.g., dependency networks [27], which
allow cycles, and Markov networks [36] (also called Markov random
fields, or MRFs), which are undirected. In terms of dynamics, a causal
representation must allow us to probe the effect of interventions and to
posit and explore counterfactuals. Interventions are modeled using a
calculus (e.g., Pearl’s do-calculus) that mutates the given network to
propagate and understand the downstream consequences of the inter-
vention. Counterfactuals allow us to ask more expressive questions and
explore the progression of different variables in alternative worlds or
situations. We assume in this paper that the underlying causal represen-
tation is fixed and a suitable interpretation of dynamics is available to
probe the effect of interventions, and focus on the role of visualization
in communicating cause-effect relationships.

3 DESIGN SPACE: TEXTUAL NARRATIVES FOR CAUSALITY

Visualizations are themselves considered as ways to tell stories with
data [54] and, in this paper, we view textual narratives as an augmented
form of storytelling that aims to increase insight [9,45], comprehension,
and decision making. We focus on textual narratives as a way to express
causal information in event sequences, specifically as a complement
to causality visualizations [33, 43], such as causal graphs or Hasse
diagrams. For this reason, we tend to think of these textual narratives
as a form of data-driven storytelling [50]—the use of traditional nar-
rative methods to convey data—that relies on a textual, rather than a
visual, medium. We believe that a textual narrative can also replace the
visualization, at least to provide a high-level summary [22, 44].

3.1 Definitions
The causal relation→ is a relation that connects two elements (events) x
and y as x→ y iff x is the cause of y. Sets of events are called processes
P1, . . . ,PN . Internal events are sequential and causally related. External
events interconnect processes through messages. We denote the events
for a process Pi as Ei = {ei

1,e
i
2,e

i
3, . . .}. The causal relation is typically

irreflexive, asymmetric, and transitive.
While some causal tasks are concerned with the entire causal model—

i.e., the set of all processes and their associated events—many real-

world tasks use a more directed formulation. Of most interest is the
ability to impose specific interventions or perturbations on a particular
process and understanding the resulting impact on objective process(es).
A causal model may involve a set of interventions I and objectives O,
each corresponding to specific causes and effects.

3.2 Narrative Rendering Pipeline
We view the representation of causal data using textual narratives as an
interactive rendering pipeline, akin to a classic graphics rendering or
visualization pipeline. In this model, we think of the sentence clause as
the building block. Natural language generation (NLG) systems [48,49]
tend to consist of several stages:

1. Content selection: Determining the causality data to display;
2. Document structuring and aggregation: Prioritizing the order

of data and merging sentences on similar causal data (same source
or destination processes) to improve readability;

3. Realization: Generating the actual text for each piece of causality
information to render in the summary; and

4. Interaction: Providing a feedback loop to allow interaction with
the textual narratives, such as to drill down, link to related narra-
tives, or brush to highlight items in associated views.

Using natural language to represent data as text is quite different
from using visualization, which uses geometric shapes. Unlike visu-
alization, natural language is typically precise. This leads to early
fixation, as well as serial representations, which limits parallel process-
ing. In practice, this means that natural language is better suited to
presenting specific pieces of information rather than the holistic and
parallel overviews that characterize data visualization.

3.3 Step 1: Extracting Causality Information
Our proposed text generation pipeline starts with identifying the specific
causality information that users desire. This generally depends on the
application, which we model using a degree-of-interest (DOI) function
in the next language generation step. Thus, our treatment here includes
all potentially useful causality information, given our data model. We
organize this information into the following categories:

• Cause and effect: A central question when reasoning about
causality tends to be the factors that caused a specific effect,
which we capture as interventions and objectives. Example: a
white cue ball striking the eight ball, sending it bouncing off the
nearest wall of a pool table.

• Correlation: While correlation is not causation, many forms
of causation have their roots in correlation. Depending on the
causality model, the exact cause and effect may not be known;
in such cases, correlations between nodes—i.e., a change in one
node followed by a change in another node—can be used as a
weaker form. Example: a medication administered to a patient
followed by their blood pressure dropping.

• Life cycle: Processes may come and go, often as a result of
them receiving an intervention or an internal event. Such life
cycle information is commonly of interest in causal reasoning.
Example: traffic in a computer network being directed around a
faulty router that is no longer responding.

• Connectivity: Causality modeled as above is essentially a graph,
which means that understanding a causal model requires under-
standing the topology and dynamic connectivity of the events
passed in the system. Example: tracing infections of an airborne
virus in a population based on their social contacts.

For all of the above causality information categories, we can also
identify specific common metadata for them all: path: the processes on
the path between source and destination; weights: the values or weights
associated with each process; and time: the time stamps associated
with each of the events. The types of causal information described
above are included in the generated narratives of the crowdsourced
study and in CAUSEWORKS (figure 1 shows an example).



3.4 Step 2: Calculating Order
Here we determine the structure and order of information that we will
use for the textual narrative. The primary challenge is that even a
moderately complex causal system will have a significant number of
candidate causal information to convey.

To address this challenge, we use a degree-of-interest (DOI) function
fDOI(e)⊆ R based on user interest and task to prioritize each event e
involved in the sequence of causality data extracted from the prior step.
As a first level of prioritization, we propose limiting reports to the sets
of interventions I and objectives O, as described in Section 3.1. We
group items on a per-process basis, and then further prioritize events
based on their occurrences, magnitude of change, and influence. To
represent this information, we use a directed acyclic graph (DAG) as
a scene graph to store the abstract data to render, where each causal
process becomes a top-level container for associated causality data.

Generally speaking, generating a complete sentence for each clause—
recall that a clause corresponds to an individual item of data—is the
most clear and unambiguous approach. However, this often leads to
significant repetition, which is often seen as clumsy and unnatural to
a reader, as well as unnecessary verbosity, which is wasteful given
that summaries are often limited in length. For this reason, we use
aggregation to merge similar clauses that share the same source or
destination process into a single sentence. We have aggregated events
in our generated narratives (see Figures 2 and 7).

3.5 Step 3: Rendering Textual Narratives
We think of realizing the ordered causality data to be expressed as
rendering the narrative, akin to how a computer graphics system may
render a sorted list of triangles to generate a 3D scene. Since our
focus is on generating summaries, the notion of a character budget
is central to our approach: this is the maximum number of characters
that we want to use to realize the textual narrative. This budget is not
prescriptive, only restrictive; in other words, if space is not an issue, the
budget can be set to infinity, resulting in exhaustive textual summaries.

The actual rendering process proceeds by iterating through the sorted
data graph, where items are grouped based on top-level processes, as
described above. By knowing the number of characters for each branch
of the data graph, the renderer can determine how deeply to traverse
while maintaining the character budget. Furthermore, we can also
identify the available visual channels for conveying data using text:

• Textual content: The primary visual channel is obviously the
written content that the text spells out.

• Font size: Most summaries will use a uniform font size, as chang-
ing the size of individual words or sentences throughout a text
can be disruptive to reading as well as when calculating its space
needs. However, it can be an effective way to show emphasis,
particularly for titles and section headings.

• Typographic emphasis: A more common and typographically
accepted practice is to use emphasis such as boldface, italics,
or underlining to communicate data in the narrative, such as to
mark processes, effects, or magnitudes. Additional such empha-
sis markers include SMALL CAPS, ALL CAPS, or the use of
punctuation (!) or “quotation marks” in the text.

• Color: As for visualization, color can be an effective visual
channel. We differentiate between the use of font color and
background color , which can be used to convey different data

(although, as always, care must be taken to avoid interference).

• Hierarchical lists: While not part of classic running prose, which
tends to just use sentences and paragraphs as its typographic
structures, we also consider lists—both enumerated and itemized
ones—a useful visual channel. In particular, nesting lists can
allow for showing hierarchical part-of relationships.

• Word-scale graphics: Despite our focus on written text, we
cannot resist drawing on visualization, in the form of word-scale
graphics [25]: small data-driven graphics that can be embedded
into running text. Examples include mathematical symbols such

as ↑,4, and ./, icons such as , , and , as well as micro
visualizations such as , , and (sparklines).

3.6 Step 4: Interacting with Narratives
Finally, since our intended output format almost always is on a com-
puter screen—and not paper—we should also consider how to interact
with these textual narratives. We propose the following possibilities:

• Brushing: Hovering over a process or an event in a narrative
highlights all of its occurrences in related views (or narratives).

• Hyperlinking: Entities in the narrative are hyperlinks where
clicking on one will navigate to it in related views (or narratives).

• Drill-down/roll-up: Dynamically changing the user’s degree of
interest will allow for drilling down, e.g., by unfolding the items
in a list or expanding suppressed elements in an enumeration.

• Search: Directly querying specific elements in a narrative by typ-
ing partial or complete search terms allows for quick access [21].

A decrease in K, through an intervention at T1, by 32% causes an increase in F.

One of the major reasons behind the change is a 6% decrease in B.

However, no change is observed in D. A change in K causes no change in A.

Besides this, the highest increase is observed in C whereas the highest decrease is
observed in E.

The values for C and F observe an increased rate of rise. The values for B and E
observe a large fall before stabilizing to a constant value.

time weight

connectivity

path

cause and 
effect

lifecycle

correlation
A decrease in X at T3, by 32% follows an increase in Y at T1, by 20%.

Other nodes, in the path between X and Y, that experience a change are U, V

and Z.

Fig. 1: Annotated example of a narrative conveying causal information
about interventions and objectives.

3.7 Discussion: What Makes an Effective Narrative?
Textual narratives are slowly making their way into visualization sys-
tems, either as a way to generate data insights to accompany a visualiza-
tion [58] or to structure a visualization for better communication [59].
Research into what makes an effective narrative is still in its infancy
and is necessarily tied to the underlying analytical task and domain. For
the causal networks domain considered here we identify four facets:

• Language diversity: More language diversity avoids monotony
but might detract from conveying key messages and conclusions.
Less language diversity supports comparison of generated narra-
tives but might lead to ‘glossing over’ by analysts.

• Level of detail: Should the narrative capture an executive sum-
mary or provide in-depth access to the underlying data? We
briefly discuss the preferred level of detail in our expert review.

• Verbalizing numbers: Verbalizing quantitative/probabilistic
data (e.g., using Kent’s words of estimative probability [35] or
the NIC/Mercyhurst standardization) is considered important in
specific domains (e.g., intelligence analysis [29]) but other appli-
cations argue for direct access to the original numeric information.

• Human performance aspects: Understanding the characteris-
tics of narratives that lead to improved human performance is an
ongoing research problem [42]. Narratives provide increased com-
prehension, interest, and engagement and are known to contribute
“distinct cognitive pathways of comprehension” with increased
recall, ease of comprehension, and shorter reading times [11].
Conversely, the challenge of the written word implies slowness
and error-prone behavior due to short-term memory limits.

In general, successful narrative research requires a standardization of
both the generation and evaluation space, and an understanding of how
a narrative fits into the larger comprehension process of the analyst.



4 CROWDSOURCED STUDY: NARRATION FOR CAUSALITY

We conducted a crowdsourced study to understand how narratives
augment causal data exploration through visual analysis.

4.1 Participants
We recruited our participants through crowdsourcing from Amazon
Mechanical Turk (MTurk) to complete visual analysis tasks that did
not require prior training or data visualization expertise. Owing to the
nature of MTurk, we had limited control over participant demographics,
technology, and skill level. However, prior work indicates that simple
tasks such as ours are flexible to a crowdsourced study design [28].
We planned to recruit 150 participants; all were drawn from within the
United States due to tax and compensation restrictions by our Institu-
tional Review Board (IRB). To ensure that our participants understood
our task instructions, we screened our participants for working English
knowledge. Participants were allowed to participate only once. We
estimated our study completion time to be 20–30 minutes, and compen-
sated our participants ethically at a rate of at least $8/hour (similar to
the U.S. federal minimum wage in 2019 of $7.25).

4.2 Apparatus
We required our participants to use a desktop computer (no mobile
devices), and the study was distributed through a web browser. We
ensured that the visual representations, textual narratives, and their
labels were legible for all common device formats. The testing plat-
form was implemented as a Qualtrics survey with static trials saved as
non-interactive mockups that were manually created using Microsoft
PowerPoint, and were based on various factors such as polarity of links,
link overlaps, and the number of intervening/objective nodes. The
narratives were created manually based Section 3.2 (Figure 2).

4.3 Experimental Factors
Our goal was to first experimentally understand how the presence
of a narrative augments causal analysis using visual representation.
We chose a more familiar and less temporal causal representation
(Causal Graph) and less familiar and more temporal causal representa-
tion (Hasse Diagram). We modeled four factors in our experiment:

• Causality Visualization (VR): The visual representation used
for conveying causality. We chose two levels:

– Causal Graph (NL): A Causal Graph is a node-link repre-
sentation of the causal network.

– Hasse Diagram (HD): We use a similar representation of
Hasse diagrams as seen in previous work [19].

• Textual Narrative (TN): This is a key factor in our study: the 1)
presence (ON) or 2) absence (OFF) of a textual narrative.

• Difficulty (DL): The difficulty of the trial is expressed in the size
of the causal system involved in the event sequence. We chose
three levels for this factor:

– Simple (S): 3 or 5 nodes, and up to 4 time-hops (T1–T4)
– Medium (M): 5 to 8 nodes, and up 5 time-hops (T1–T5)
– Hard (H): 9 to 12 nodes, and up to 5 time-hops (T1–T5)

We settled on these values through pilot testing to ensure
that our tasks can typically be completed in 30 minutes.

• Narrative Scope (NS): Inherently, the Hasse diagram affords
the explicit showing of changes in a node across time intervals
(e.g. T1–T2; T2–T3, etc.). On the other hand, the Causal Graph
(NL) requires the user to follow the causal path between nodes to
extrapolate temporal information. This means that the accompa-
nying textual narrative could describe effect propagation between
successive time-hops—Instantaneous (IS)—or can provide a
Cumulative (CU) summary across all observed time.

This leads to 24 conditions. Since NS is only relevant for situations
when TN is ON, this yields a total of 18 conditions. We presented a

total of 12 causal graph systems (CGS) to each of our participants. Al-
though we do not include all aspects of our design space as experimental
conditions, we use our narrative rendering pipeline in our mockups.
We were also limited by the non-interactivity of our stimulus. Figure 2
shows a representation of the above mentioned factors, and also is
annotated with applicable aspects of our narrative rendering pipeline.
The nodes and edges in both visual representations of our abstract
data were drawn manually with the aim of reducing edge crossing and
length minimization. For larger and realistic datasets, we recommend
using graph layout algorithms that minimize edge length and crossings.
We can also note that the generated narratives are similar to those in
Figure 1, which are a manifestation of the proposed design space.

4.4 Experimental Design

We used a mixed design in our study: between-subjects for VR, TN
and NS; and within-subjects for DL (Table 1).

Table 1: Six groups with 25 participants per group; N=150 (25 × 6).

H1 H2 H3 N1 N2 N3
VR HD HD HD NL NL NL
TN OFF ON ON OFF ON ON
NS – CU IS – CU IS

DL
S
M
H

S
M
H

S
M
H

S
M
H

S
M
H

S
M
H

Each participant saw all conditions of difficulty, but only one causal-
ity visualization. The relatively small total number of conditions en-
abled us to keep the session duration shorter than 30 minutes in duration
to minimize fatigue and maximize attention for crowdworkers. In total,
we planned to recruit 25 participants to each of six groups.

4.5 Analysis Tasks

Causal systems are complex structures that involve many processes
(events) and messages propagating through a network of connections.
In our user study, we use the words ‘node’ to mean a process and ‘link’
to mean a connection between ‘nodes’. The comprehensibility of a
cause-effect relationship between, say, two nodes might also require an
understanding of other effects that have propagated or will propagate
through the system. Broadly, an understanding of causality might
require a user to ask questions such as a) what factors caused a specific
effect?, b) how does the effect on a node affect other connected nodes
and to what extent?, c) what are the sequential and temporal impacts of
this effect on the entire system?, d) how does this effect change or not
change the earlier trend of the node. We adapted types of analysis tasks
from previous work [19], and created 24 tasks for our participants.

Each task was of one of the following three types (QT): 1) Influence
analysis (I), 2) Cause-effect analysis (C), and 3) Life-cycle Analysis
(L). These task types are adaptations of causality information described
in Section 3.3. In the tutorial, we explained to our participants that
we choose certain Intervention and Objective nodes to analyze causal
relationships. Table 2 shows the 9 types of tasks included in our study.

Within each group, each participant saw 12 graph systems (4 × [S,
M, H]). A fixed order of increasing graph difficulty and tasks were used
to improve familiarity by limiting chances of early task failure. Each
graph system had 2 analysis sub-tasks. We distributed the first 8 task
sub-types sequentially to each graph system within a DL, and alternated
Trend (L4) with Spike (L5), in the event of a particular graph system
showing a spike in a particular node (more on spikes in Section 5.2).
Thus, each DL covered all the Task types (QT). Each sub-task required
participants to read the question text and choose 1 out of 4 possible
responses. Thus, for 150 participants, we planned to collect a total of
3,600 trials –150 × 2 (questions) × 4 (graph systems) × 3 (DL).

These graph systems were modeled after abstract causal relation-
ships with each node being labeled by alphabets (Figure 2). We avoided
modelling real-world phenomena to avoid knowledge bias affecting



Impact Summary
An increase of A through an intervention at T1 by 26% causes a decrease in D. The main 
reason is a 9% increase in B. In addition, the largest increase is observed in B (+9%).

Projected Trends
The values for D observe a decreased rate of rise.
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Impact Summary
An increase in A through an intervention at T1 by 
26% leads to an increase in B (+9%).

Impact Summary
An increase in B by 9% causes an increase in C 
(+2%) and E (4%), and a decrease in D (-3%).
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Fig. 2: Sample stimuli (DL: Simple) used in our 6 groups, with Hasse Diagram (HD) and Causal Graphs (NL). Sample narrative from groups N2
and H2 has been annotated with elements used from our design space.

performance. As described in Section 4.3, we assume that all 4 repeti-
tions of a DL are equally simple or hard. Each survey page consisted
of a chart (VR + TN + NS) corresponding to the experimental group.

4.6 Collected Metrics
The tasks for all trials were controlled so that all participants saw the
same graph systems, and were asked the same set of questions to allow
comparison of participant performance between experimental groups.

Performance Measures. Correctness (TRUE or FALSE) is our
primary performance measure to interpret the effectiveness of narratives
in augmenting visual exploration. We also recorded time spent on each
trial (from when the two tasks were displayed until the participant
submitted both the answers) to understand if and how Completion Time
influences correctness. However, due to a limitation in Qualtrics and
the need to maintain low session time, we recorded both tasks together.

Subjective Responses. We also asked our participants to rate
the ease-of-understanding of both graphs, and narratives (when appli-
cable) after each DL. This was measured on a 5-point Likert scale (1:
extremely easy, 5: extremely difficult). In the conditions where TN was
ON, we also asked participants to rate the usefulness of the narratives
on a 5-point scale (1: extremely useful, 5: not at all useful). Participants
also provided open-ended feedback about graphs and narratives.

4.7 Procedure
All recruitment was conducted via MTurk. Participants that fit the eligi-
bility criteria opened the Qualtrics survey in a separate browser window.
At the end of their participation, they copied a unique completion code
back into the MTurk interface, and were later paid as their work was
checked. Each session started with a consent form with waived signed
consent. Failing to give consent terminated the experiment. Partici-
pants were instructed that they could abandon their session at any time.
Unfortunately, due to constraints in Qualtrics, we were not able to pay
participants who only completed a partial session.

After consenting, we showed participants a tutorial to explain the
visualization and narrative that they would see. We also explained
causal relationships, and how to interpret them. The tutorial included 3
examples of simple causal relationships. There was also a separate page
explaining the visual mappings that were used in our visualizations.

This legend information was also accessible across every survey page,
along with the visualization and a sample narrative from the tutorial.

Then participants were shown a single illustrated page of instructions
explaining the task. Additionally, we also introduced 3 “attention trials,”
which involved 3 easy cause-effect (C) tasks. Each DL had one attention
trial. The purpose of these attention trials was to eliminate responses
from crowdworkers who did not pay attention to the task and only
“clicked through” the experiment. Participants that spent less than 7
minutes (roughly 1/3rd the average study duration) were also discarded;
these participants were also not paid. We informed participants in the
consent form that they would be paid only after response validation.

Typical sessions lasted between 7 to 50 minutes in duration. A few
participants took significantly longer to complete their sessions, but
our logs indicate that these participants took significant breaks between
trials (presumably due to interruptions halfway through). Some par-
ticipants also contacted us with reasons for the delay, such as trials
genuinely being hard, or network issues. We believe that the effective
time spent on the experiment was no more than 23 minutes. Participants
were also asked some demographic questions about their age, education
level, and knowledge of statistical concepts and graph visualizations.
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Fig. 3: Correctness comparison between 6 experimental groups (error
bars represent 95% confidence intervals derived through bootstrapping).

4.8 Results
We ran our crowdsourced graphical perception study on MTurk and
collected a total of 4,824 responses from 201 unique respondents. This
was higher than the 150 we had initially planned. During the recruit-
ment process, we invalidated and rejected respondents (n=44) that just



Task type (QT) Task sub-type Question Structure

Major Cause (I1) Considering all the nodes, which node(s) caused the most influence on the system?Influence (I) Most Affected (I2) Considering all the nodes, which node(s) were affected the most by changes in the system?

Cause-Effect (C1) Which statement best describes the cause-effect relationship between <I> and <O>?Causality (C) Major Factors (C2) Choose all the nodes, including the objective that were affected by a change in <I>.

Max Increase (L1) Excluding interventions/objectives, which node(s) goes through the greatest increase?
Max Decrease (L2) Excluding interventions/objectives, which node(s) goes through the greatest decrease?
Time-Change (L3) In the above system, at which time does node <X> increase/decrease the most from its initial level?
Trend (L4) Which statement best describes the trend that node <X> goes through?

Lifecycle (L)

Spike (L5) In the above system, which node goes through a sharp increase or decrease?

Table 2: List of task types and corresponding question structures for our user study. Each trial corresponded to a given task sub-type.

“clicked through” and completed the survey in less than 7 minutes.
Thus, 157 participants were compensated for their time. During our
analysis, we excluded data from participants (n=20) who spent less
than 10 minutes on the survey. We expected a reasonable attempt
to take 20 minutes based on our pilot, and believe that our complex
perception tasks along with the tutorial required at least half of the esti-
mated time. We also eliminated one participant that submitted a survey
response after 3.8 hours. We present below results from the analysis of
n=134 participants that completed 3,216 tasks (trials). The trials were
distributed across experimental groups as follows: H1-480 (n=20) —
H2-528 (n=22) — H3-528 (n=22) — N1-600 (n=25) — N2-552 (n=23)
— N3-528 (n=22). We analyzed all our data using estimation methods
to derive 95% confidence intervals (CIs). We employed non-parametric
bootstrapping [15] with R = 1,000 iterations. This was done to follow
current best practices for fair statistics in the field of HCI [14].

Task Correctness. Overall, we observed an accuracy of 51.6%
(1,661/3,216) (Figure 3). First, we observed that the participants as-
signed to experimental groups that included a textual narrative — H2,
H3, N2, N3 — outperformed those assigned to groups without a nar-
rative — H1, N1. Secondly, we noted that participants that interacted
with Causal Graphs (N1, N2, N3) performed better than those that used
Hasse Diagrams (H1, H2, H3). We believe this to be a byproduct of
participants being more familiar with node-link diagrams. We can infer
that narratives providing Instantaneous NS (H3, N3) fare better across
both VR, with the causal graphs (N3) outperforming all other groups.
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Fig. 4: Comparing effectiveness of the narrative in answering different
question types (error bars represent 95% confidence intervals).

Figure 4 highlights the specific type of questions that the narratives
were most effective in answering. Although the correctness increases
for each condition that includes narratives, participants found the pres-
ence of narratives most helpful in answering the Influence (I) and
Life-cycle Analysis (L) questions, for both type of visualizations. This
became a useful insight while deciding on the modules in Section 5.

Figure 5 further highlights the improvement in the correctness of
participant’s scores, across each difficulty level (S, M, H), when the
visualizations are coupled with textual narratives. The comparatively
lower task correctness improvements for the Hard (H) task type, in
comparison to the Simple (S) and Medium (M) graph sets, can be
attributed to the inherent added complexity, in terms of the added edges
and number of nodes, within those datasets.

Completion Time. Completion time was measured per graph sys-
tem. There were 4 repetitions of graph systems for every DL — S, M,
H. In other words, completion time reflects time spent by a participant
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Fig. 5: Comparing the correctness between graph difficulty levels (error
bars represent 95% confidence intervals).
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Fig. 6: Completion time for the test trials across different conditions
(error bars represent 95% confidence intervals).

for two tasks. We eliminated outlier trials three standard deviations
away from the mean for our analysis (Figure 6). We note that partici-
pants took much longer in groups where a narrative was present (H2,
H3, N2, N3); with participants taking more time for Causal Graphs.
Participants who were provided with narratives (H2, H3, N2, N3) took
on an average 23.6 seconds more to answer 2 analysis tasks per graph
as compared to participants without the narrative.

Subjective Responses. On an average, our participants ranked
ease-of-understanding of the DL in the following order: Simple
(mean=3.21), Medium (mean=3.68), Hard (mean=3.95). Graphs were
rated as more easily understandable in the conditions where textual
narratives were present versus when narratives were absent: Simple
(mean=3.55 [OFF] vs. mean=3.0 [ON]); Medium (mean=3.82 [OFF]
vs. mean=3.60 [ON]); Hard (mean=3.55 [OFF] vs. mean=3.0[ON]).
The same trend was observed in the ease-of-understanding of nar-
ratives for each DL: Simple (mean=2.98), Medium (mean=3.38),
Hard (mean=3.80). Additionally, the usefulness of the narratives de-
creased with increasing graph difficulty: Simple (mean=2.22), Medium
(mean=3.38), Hard (mean=3.05).

Reviewing open-ended feedback showed us that difficulty under-
standing was attributed to unfamiliarity with a visualization: “It was
somewhat challenging because I’m not familiar with this type of graph.
Additionally, the abstract nature of our graph systems, and also novelty
effects influenced difficulty. P111 says, “Their abstract nature was
the most difficult to understand. Observing this with a real life exam-
ple would make it easier to visualize and conceptualize.” Finally, our
participants indicated that they used both visualization and narratives
for causal inference: “I think having both the summary and the color
coded chart makes it much easier to understand [...].”



4.9 Discussion
The main takeaway from our crowdsourced study is that narratives
complement visualizations by providing descriptions to explain changes
in the causal system. Based on our analysis of difficulty level and
subjective responses, we believe that narratives will be more useful as
the complexity of the system increases. Our participants also indicated
that interactivity would have eased task difficulty—a known limitation
in our study. We also strongly believe that interactivity can be leveraged
to facilitate details on-demand in the narratives, especially when system
complexity is bound to increase verbosity. The fact that Causal Graphs
had a higher accuracy score than Hasse Diagrams further corroborated
the prioritization of DAGs during the DOI step, and drove us to use
them as the visualization medium in the CAUSEWORKS system. The
study also encourages us to allocate a separate paragraph to talk about
the trends followed by important nodes, owing to the high accuracy
gains observed in the Lifecycle (L) task.

We also observed that the experimental groups that had higher ac-
curacy also demonstrated higher completion times. We believe that
the additional time stems from having to read the narratives before
making an inference. This supports the aggregation DOI prioritization
feature, wherein to reduce the verbosity of the textual snippets, nodes
experiencing similar trends should be combined. This corroborates
with our prediction that narratives aid in causal inference by providing
descriptive texts that explain the changes occurring in the network.

5 APPLICATION: THE CAUSEWORKS SYSTEM

CAUSEWORKS, a system for intelligence analysis [51, 66, 67], inte-
grates a range of network analysis, natural language generation (NLG),
and data analytics techniques to develop coherent, concise, and explain-
able causal visualizations augmented by narratives for use by analysts.
Drawing on our design space, our visualizations and narratives provide
two main mechanisms (Figure 7): (1) a summary of changes and their
impact on the objectives; and (2) additional projected trends.

5.1 System Overview
Figure 8a shows a screenshot of the CAUSEWORKS system. Various
visual aspects of the design space (Section 3.5 and 3.6), such as ‘Node
Coloring’, ‘Hyperlinking’ and ‘Brushing’, form an integral part of the
narrative rendering process and its subsequent interactivity. Moreover,
the performance metrics helped determine the usefulness of the various
types of information snippets (Section 3.3), whereas the subjective
responses played an important role in deciding the order in which the
various information snippets are bundled together (Section 3.4). The
left pane displays the whiteboard, a drawing space for causal graphs
that allows the user to create and edit the network by adding, deleting,
and modifying nodes as well as the edges amongst nodes, thus defining
the semantics of the network. The whiteboard itself is unbounded,
which allows the pane to incorporate a large number of nodes, and
can be navigated using the scrolling wheel and the magnifying scope
tools on the top left. Furthermore, the system also displays the chosen
objective nodes, intervention nodes as well as the generated narrative,
the placeholders for which can be seen in the right pane. The interactive
GUI allows the user to select multiple intervention nodes and multiple
objective nodes, and displays an explanatory narrative in real-time.

5.2 Extracting Causality
The impact summary elucidates how interventions introduced over one
or more nodes propagate through the network and change target nodes
(Effect) and the major nodes that help propagate that change (Major
Effect). Note that the interventions could be made over one or multiple
source nodes, and, further, they could be point interventions introduced
at a specific timestamp or a sustained intervention introduced over a
time period. The precise differences in how such interventions create
observable changes in the target nodes is dependent on the causal model
semantics (e.g., whether it is an ODE-based model or a discrete time-
stamped Bayesian model), which is beyond the scope of this paper.
Irrespective of the causal semantics, the impact summary encapsulates
the cumulative effect of the interventions and identifies nodes in the
causal path that depict the highest and least changes.

Impact Summary. Generating a summary of causal impacts is
non-trivial due to the multitude of paths between source and target
nodes. An effective narrative must reduce the number of words utilized
to describe the associated effects. Below we detail how changes made
on a set of interventions propagate through the network and affect the
target nodes (Effect), the major nodes that help propagate that change
(Major Effect), the intervening nodes that have no observable variation
on the target nodes (No Effect) and, finally, the nodes that experience
the most impact (Max Effect).

• Effect Module: The ‘Effect Module’ usually contributes the
first sentence of the narrative and provides information on the
propagation effect of each intervention on the specified target
nodes. The set of source nodes and target nodes are grouped
together based on common nodes in their causal path via a dic-
tionary of 〈key,value〉 pairs. Then, paths are grouped by merging
source nodes that have at least one common node for each target
node and then subsequently merging together target nodes. This
often requires multiple passes and merge operations over the dic-
tionary constructed. Figure 7 depicts a sample snippet detailing
the effect of decreasing Fossil Fuel Consumption on Quality of
Marine Ecosystem.

• Major Effect Module: Each ‘Effect’ sentence in the above
module may or may not be followed by a sentence from the
‘Major Effect’ module. This module tries to capture the important
nodes along the causal path between the set of source and target
nodes, thus shining light on those causal path nodes that experi-
enced the highest variation in either direction. This enlightens the
user regarding the nodes that were the highest contributors to the
effect propagation. Sample text snippets are shown in Figure 7
to list out the major factors that propagate the effect between the
chosen intervention and target nodes.

• No Effect Module: This module articulates the specific source
nodes that aren’t responsible for the change observed in the target
node as well as the target nodes that remain unaffected due to the
combined effect of all the interventions imposed on the network.
This step can potentially lead to highly verbose sentences, thus
affecting readability. To address this problem we introduce an-
other grouping over the (input, output) node pairs, create n-grams
of the source nodes, and articulate the most frequently occurring
tuples amongst all the target nodes. These groups of tuples are
then plugged into sentences, which are then included in the narra-
tive. Figure 7 shows sample text snippets showing the non-impact
of the interventions on ‘Government Policies against Climate
Change’ as well as describes the 〈Intervention,Ob jective〉 pairs
that are not connected.

• Maximum Effect Module: The narrative generated until now
focuses only on a subset of the whole network. This subset covers
the edges and the nodes that lie in the causal paths between the
set of Intervention and Objective nodes. However, there may
still be nodes that might have been affected by the interventions
but may have not been considered before. These nodes may
provide interesting insights to the user and thus are worth adding
to the final narrative. Hence, this module traverses through all
the nodes in the system, instead of only the causal path nodes,
and finds the nodes experiencing the maximum variation along
both the positive and negative axis. Finally, it wraps both the
nodes in a well structured sentence and attaches it to the end
of the Impact Summary narrative. Figure 7 points out the most
positively impacted node, (Risk of Diseases), as well as the most
negatively impacted node, (Atmospheric CO2).

Projected Trends. While the Impact Summary articulates the
overall influence of the source nodes on the target nodes, it leaves out
information such as the temporal patterns observed by the nodes, or
spikes in values that may have occurred in the course of the interven-
tion, or other contextual information from external data sources (e.g.,
Wikipedia). We outline these parts of the narrative below.



Fig. 7: Narrative explaining a detailed causal network. The ‘processes’ or ‘events’ are depicted within single-quotes in this figure.

• Time Series Module: The Time Series module parses over the
temporal information for entities in the causal path between the
source and target nodes and captures key change trajectories
observed over those nodes. Following a k-means clustering [41]
over the temporal progressions across a 12 month period (with
number of clusters selected using the Silhouette coefficient [52]),
the clusters are sorted based on the number of nodes in each
cluster and the high volume clusters are verbalized in the narrative.
To limit the description length, a Pagerank score [46] is used as a
filtering criterion to determine the most important nodes. Figure 7
details the time series patterns observed by ‘Land Degradation’,
‘Deforestation’, ‘Methane Emissions’ and ‘Greenhouse Effect’.

• Spike Detection Module: Important nodes found in the pre-
vious step are further analyzed to check for presence of spikes
or troughs during the timespan in consideration. This provides
information to the user of any key abnormalities or milestones
that might have occurred in these nodes. Each sentence of the
Time Series module may or may not be followed by an output
from the ‘Spike Detection’ module. For detecting spikes in the
timeseries, the concept of a moving window is used to distinguish
between gradual and sudden rises or falls in the time series value.
Example text snippet showing the spikes in the time series value
for ‘Quality of Marine Ecosystem’ is shown in Figure 7.

• Wikification Module: This constitutes the final module of the
generated narrative. However, similar to the scenario with previ-
ous module, the Wikification module is also interleaved with the
Time Series module to provide a seamless and continuous reading
experience to the user. This module involves parsing through the
summary paragraphs in the corresponding Wikipedia pages for
important nodes mentioned in the Timeseries module and attach-
ing key descriptive information to provide context to the narrative.
If a Wikipedia page does not exist for the node mentioned, this
module is skipped in its entirety.

5.3 Generating Textual Narratives
Figure 7 shows an example narrative1. Most importantly, the narrative
highlights important aspects of the cumulative causal impacts caused
by the interventions on the specified objectives. It also explains the
effect that the interventions made on ‘Fossil Fuel Consumption(-31%)’,
‘Land Degradation(+21%)‘ and ‘Ozone Layer Depletion(+20%)‘ had
on the target nodes, ‘Quality of Marine Ecosystem‘, ‘Food Availability‘
and ‘Government Policies against Climate Change‘.

Beyond the basic cause and effect relationships, the narrative also
accounts for the changes to the entire system by mentioning the nodes

1Please refer to our supplementary material for the reference graph.

experiencing the highest rise and decline across the whole network.
Furthermore, it clusters together nodes experiencing the same value
patterns, and details the time-series patterns as well as spikes for the
important nodes in those clusters. It also provides additional insights,
by attaching the associated Wikipedia summary, for the available nodes.

5.4 Expert Review: CAUSEWORKS Narratives
We conducted an expert review [61] to validate the narrative engine.

Method. We recruited 5 experts who worked with causal systems
in varying capacities (P1 and P5 were developers working on building
system frameworks and analytics for causal systems; P2 and P4 were
usability experts working on user research and visualization design for
causal systems; and P3 was a visualization expert working with causal
systems). We engaged with our experts in an hour-long semi-structured
feedback session in a remote video call where they indirectly interacted
with the CAUSEWORKS system. We encouraged the participants to
think aloud, and interrupt at any point to ask questions, make, and share
observations. These experts all work with planners who model and infer
causality with the aid of visualization. P1, P3, and P5 were familiar
with causal visualization and modelling, but were relatively unfamiliar
with narrative generation. We gave a brief tutorial that explained both
the visualization and the narrative structure. We created a scenario to
demonstrate the system features. Two researchers collaborated with
experts in the review: one researcher and the expert performed pair-
analytics [2] while exploring the scenario, while the second researcher
asked questions. We explained to our experts that the focus of the
session was to critique the generated narratives in the system, and not
features such as the visualization or other user-interface elements.

Results. Overall, our experts were impressed with how the narra-
tive augments the causal graph in the system, especially to tackle large-
scale causal systems “with multiple factors” (P2), and the narrative
“puts everything in context” (P2) when beginning causal exploration.
Referring to our design space, we summarize these results below:

• Content Generation:
P3 suggested making the narrative more robust by including a
‘model summary’ of the underlying causal model: “Narrative
should try (very) hard to have model scope (temporal and geo-
graphic scope).” Experts also noted that the narrative compensates
for information loss from visual mapping by showing absolute
values. Said P2: “[my] first instinct was to look at the graph
because that would tell the specific percentage.” P1 noted that
the reliability of the narrative can be improved by “including the
baseline trends.”

• Document Structuring and Aggregation: Experts were satis-
fied with the presentation order of causal information. P3 com-
mented that the order of presentation can remain the same for



(a) Screenshot of the CAUSEWORKS system.

(b) The use of color gradients to signify the polarity and impact of the
effects with a darker shade corresponding to a higher impact.

(c) The use of edge thickness to signify the effect propagation capability of
the edges, with a thicker line corresponding to a larger effect propagation.

Fig. 8: Overview of interface and features of the CAUSEWORKS system.

a particular type of narrative and may change if more types are
introduced. For example, the impact summary, projected trends,
and model summary may have different causal information—
aggregated and structured in different order.

• Realization and Interaction: All 5 experts acknowledged the
idea of a character budget, and that the current rendering of the
textual narratives can be improved with the use of rendering
effects such as hierarchical lists (all 5) and interactivity such as
Brushing (P2, P4), Search (P5), and Sliders (P5).

6 DISCUSSION

Our work indicates that textual narratives help users infer information
from causal networks. More specifically, the user study shows our
method faring favorably for time, correctness, and confidence of in-
formation absorption. These narratives also reinforce the ‘narrative
intelligence’ viewpoint proposed by Blair and Meyer [7]. Narratives
can be used to generate quick, precise, and informative reports (or
subsections of reports) [38] owing to their structured representations.

The CAUSEWORKS system adds another layer of abstraction to nar-
ratives. Furthermore, the use cases presented here support past findings
on visualization rhetoric [32] in combining interactivity with organized
information presentations to enhance the decision-making process for
the end-user. The findings are also in line with graph comics [3], which
explored the effectiveness of using textual snippets with graphical
images for communicating changes in dynamic networks.

As we mentioned earlier, we did not experimentally validate all of
our design space in the crowdsourced study. However, we used our
4-step narrative rendering pipeline broadly in both the mockups of
the crowdsourced study (e.g., causality information extraction, typo-
graphic emphasis, calculating order, and font size) and CAUSEWORKS
(causality information extraction, calculating order, textual rendering
and color, word-scale graphics, and interactivity through brushing).
Our expert review results also validate our design choices.

We believe that future evaluations on the effectiveness of our nar-
rative design space can help expand the space for causal systems, and
eventually other systems. To test this hypothesis, we also plan on con-
ducting another user study with the CAUSEWORKS system to evaluate
the performance benefits offered by the system in a more interactive
setting. Limitations in our work pertain to the scope of questions about
causality that it can answer, e.g., we have not focused on communicat-
ing dynamics of the system as a whole. The current methodology is
also designed in-line with the temporal datasets. Future work will be
targeted towards a more generic approach that ingests non-temporal
datasets as well as incorporating a visual DOI function to focus the
user’s attention on important nodes and links.
7 CONCLUSION

We have presented a review of the design space for a specialized form
of data-driven storytelling: the use of natural language narratives for
causal network data. Based on the review, we isolated several interest-
ing questions about the role of textual narratives for this purpose. To
answer these questions, we conducted a large-scale crowdsourced user
study where participants saw causal systems of increasing complex-
ity. The data was displayed using one of two visualization techniques,
causal graphs and Hasse diagrams, with and without the presence of
textual narratives. The main finding is that the coupling of causality
visualization techniques with textual narratives significantly increases
accuracy and acts as a pivotal complement to information visualization.
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