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Compression, Clustering and Pattern Discovery in
Very High Dimensional Discrete-Attribute Datasets

Mehmet Koyutürk, Ananth Grama, and Naren Ramakrishnan

Abstract— This paper presents an efficient framework
for error-bounded compression of high-dimensional discrete-
attribute datasets. Such datasets, which frequently arise in a
wide variety of applications, pose some of the most significant
challenges in data analysis. Sub-sampling and compression are
two key technologies for analyzing these datasets. The proposed
framework, PROXIMUS, provides a technique for reducing large
datasets into a much smaller set of representative patterns,
on which traditional (expensive) analysis algorithms can be
applied with minimal loss of accuracy. We show desirable
properties of PROXIMUS in terms of runtime, scalability to large
datasets, and performance in terms of capability to represent
data in a compact form and discovery and interpretation of
interesting patterns. We also demonstrate sample applications of
PROXIMUS in association rule mining and semantic classification
of term-document matrices. Our experimental results on real
datasets show that use of the compressed data for association
rule mining provides excellent precision and recall values (above
90%) across a range of problem parameters while reducing the
time required for analysis drastically. We also show excellent
interpretability of the patterns discovered by PROXIMUS in the
context of clustering and classification of terms and documents. In
doing so, we establish PROXIMUS as a tool for both preprocessing
data before applying computationally expensive algorithms and
directly extracting correlated patterns.

Index Terms— Clustering, classification, and association rules;
Data mining; Sparse, structured and very large systems; Singular
value decomposition.

I. INTRODUCTION

With the availability of large scale computing platforms
for high-fidelity design and simulations, and instrumentation
for gathering scientific as well as business data, increased
emphasis is being placed on efficient techniques for analyzing
large and extremely high-dimensional datasets. These datasets
may comprise discrete attributes, such as those from business
processes, information retrieval, and bioinformatics, as well
as continuous attributes such as those in scientific simulations,
astrophysical measurements, and engineering design. Analysis
of high dimensional data typically takes the form of extract-
ing correlations between data items, discovering meaningful
information in data, clustering data items and finding efficient
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representations for clustered data, classification, and event as-
sociation. Since the volume (and dimensionality) of data is typ-
ically large, the emphasis of new algorithms must be on effi-
ciency and scalability to large datasets. Analysis of continuous
attribute data generally takes the form of eigenvalue/singular
value problems (PCA/rank reduction), clustering, least squares
problems, etc. Analysis of discrete datasets, however, gen-
erally leads to NP-complete/hard problems, especially when
physically interpretable results in discrete spaces are desired.
Consequently, the focus here is on effective heuristics for
reducing the problem size. Two possible approaches to this
problem are probabilistic sub-sampling and data reduction.
This paper focuses on algorithms and heuristics for error-
bounded compression of very large high-dimensional discrete-
attribute datasets.

Compression of discrete data is a particularly challenging
problem when compressed data is required to directly convey
the underlying patterns in the data. Conventional techniques
such as singular value decomposition (SVD), frequency trans-
forms such as discrete cosine transforms (DCT) and wavelets,
and others do not apply here because the compressed data
(orthogonalized vectors or frequency coefficients) are not
directly interpretable as signals in noisy data. Techniques
for clustering do not generalize easily to extremely high
dimensions (104 or more) while yielding error-bounded cluster
centroids. Unfortunately, the run times of all these methods are
unacceptably large when scaled to millions of records of very
high dimension.

In order to overcome the computational requirements of
the problem while providing efficient analysis of data we
propose a new technique – binary({0, 1}) non-orthogonal
matrix transformation to extract dominant patterns. In this
technique, elements of singular vectors of a binary valued
matrix are constrained to binary entries with an associated sin-
gular value of 1. Since this modification results in a heuristic
approximation to a singular vector, we refer to these vectors
as approximation vectors in the rest of this paper to avoid
confusion. In contrast, in a related technique called Semi-
Discrete Decomposition (SDD), elements of singular vectors
are in the set {−1, 0, 1} and the associated singular value
is continuous. We show here that our variant results in an
extremely efficient algorithm and powerful framework within
which large datasets can be summarized.

PROXIMUS is a non-orthogonal matrix transform based on
recursive partitioning of a dataset depending on the distance
of a relation from the dominant pattern. The dominant pattern
is computed as a binary approximation vector of the matrix of
relations. PROXIMUS computes only the first approximation
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vector and consequently, each discovered pattern has a physi-
cal interpretation at all levels in the hierarchy of the recursive
process. For the discovery of the dominant approximation
vector, we adopt an iterative alternating heuristic. Due to the
discrete nature of the problem, initialization of approximation
vectors is critical for convergence to desirable local optima.
Taking this fact into account, we derive effective initialization
strategies, along with algorithms for a multi-resolution repre-
sentation of the dataset.

PROXIMUS provides several facilities to analyze discrete
attributed data. These include:

• discovering dominant and deviant patterns in the data in
a hierarchical manner,

• clustering of data in an error-bounded and physically
interpretable form,

• finding a concise representation for the data,
• isolating signal from noise in a multi-resolution frame-

work.

We also demonstrate the use of PROXIMUS for preprocess-
ing data for subsequent analysis using conventional techniques.
Using the a-priori algorithm [1] for association rule mining we
clearly show PROXIMUS’ ability to accurately represent data in
a very compact form. Our experimental results show that use
of the compressed data for association rule mining provides
excellent precision and recall values (above 90%) across a
range of support thresholds while reducing the time required
for association rule mining by several orders of magnitude.

In the next section, we discuss the use of matrix transforms
in the context of data analysis and compression and review ex-
isting approaches based on probabilistic sub-sampling, matrix
decomposition, and latent structure analysis. In Section III,
we present the basic idea of PROXIMUS using representative
examples, formulate the problem and provide heuristics to
solve the discrete rank-one approximation problem efficiently,
and present our recursive algorithm for hierarchical discovery
of patterns. In Section IV, we present an application of PROX-
IMUS in association rule mining. We demonstrate effectiveness
of PROXIMUS on both synthetic and experimental data in the
context of a variety of applications and illustrate its scalability
to large datasets in Section V. Finally, in Section VI, we draw
conclusions and outline some avenues for future research.

II. BACKGROUND AND RELATED WORK

Conventional approaches to analysis of large datasets focus
on probabilistic sub-sampling and data compression. Data
reduction techniques based on probabilistic sub-sampling have
been explored by several researchers [2], [3], [4], [5], [6].
Data compression techniques are generally based on the idea
of finding compact representations for data through discovery
of dominant patterns or signals. A natural way of compressing
data relies on matrix transforms, which have found various
applications in large scale data analysis. From the pattern
discovery and data analysis point of view, data reduction can
also be regarded as discovery of latent structures in the data,
which is closely related to matrix decomposition. There is
also significant literature on the analysis of latent structure in
continuous domain that are based on matrix decomposition,

probability and signal processing. In the rest of this section,
we summarize commonly used orthogonal and non-orthogonal
matrix transformations, latent structure analysis and their
applications in data analysis and explore alternate approaches
for binary datasets.

A. Orthogonal and Non-Orthogonal Matrix Decompositions

Singular Value Decomposition (SVD) is an orthogonal
matrix decomposition that is used extensively in applications
ranging from Principal Component Analysis (PCA) to di-
mensionality reduction. SVD transforms a matrix into two
orthogonal matrices and a diagonal matrix of singular values.
Specifically, an m by n rectangular matrix A can be decom-
posed into A = UΣV T , where U is an m × r orthogonal
matrix, V is an n × r orthogonal matrix and Σ is an r × r

diagonal matrix of the singular values of A. Here r denotes
the rank of matrix A. The matrix Ã = u1σ1v

T
1 is a rank-

one approximation of A, where u1 and v1 denote the first
columns of matrices U and V , respectively. This is the best
rank-one approximation to A in minimum least squares sense.
These vectors are the left and right singular vectors of A

corresponding to the largest singular value.
If we think of a matrix as a multi-attributed dataset with

rows corresponding to relations and columns corresponding to
attributes, we can say that each 3-tuple consisting of a singular
value σk , kth column in U , and kth column in V represents
a pattern in A characterized by σk. Larger singular values
imply that the corresponding pattern is more dominant in the
dataset. A common algorithm in information retrieval, Latent
Semantic Indexing (LSI) [7] exploits this property of SVD to
summarize the underlying data represented by matrix A by
truncating the SVD of A to an appropriate number of singular
values so that the insignificant patterns corresponding to small
singular values are filtered.

Semi-Discrete Decomposition (SDD) is a variant of SVD
in which the values of the entries in matrices U and V

are constrained to be in the set {−1, 0, 1} [8]. The main
advantage of SDD is its lower storage requirement, since each
element only requires 1.5 bits, thus enabling a higher rank
representation for a given amount of memory. Since the entries
of the singular vectors are constrained to be in the set {-
1,0,1}, computation of SDD becomes an integer programming
problem, which is NP-hard. Kolda and O’Leary [8] propose an
iterative alternating heuristic to solve the problem of finding
rank-one approximations to a matrix in polynomial time. Each
iteration of this heuristic has linear time complexity. Although
PROXIMUS is closely related to SDD, it is different in the
sense that it partitions data based on approximations rather
than extracting the approximation.

Centroid Decomposition (CD) is an approximation to SVD
that is widely used in factor analysis [9]. CD represents the
underlying matrix in terms of centroid factors that can be
calculated without knowledge of the entire matrix; the com-
putation only depends on the correlations between the rows
of the matrix. Centroid factors are computed via the centroid
method, which is a fast iterative heuristic for partitioning the
data. CD runs in linear time in number of rows of the matrix
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but requires knowledge of correlations between all pairs of
rows. This requires quadratic time and space in the number
of rows. Thus, while adapting centroid method to binary data,
an alternative for the correlation matrix must be determined
that takes advantage of the discrete nature of data and is much
sparser.

Principal Direction Divisive Partitioning (PDDP) is a hier-
archical clustering strategy for high-dimensional real-valued
sparse datasets [10]. PDDP partitions documents (rows) into
two parts, recursively, based on the principal direction of the
document-term matrix. The idea of recursively partitioning the
matrix based on the first singular vector is also used by PROX-
IMUS with a heuristic modification. However, PROXIMUS is
designed specifically for binary-attributed data and always
preserves the sparse and binary nature of the data in contrast
to PDDP. This is advantageous in terms of computational
resources (PROXIMUS has no FLOPs) and interpretability of
the decomposition.

B. Latent Variable Analysis and Other Methods for Data
Representation

Principal Component Analysis (PCA) [11] and Factor Anal-
ysis [12] are two common data analysis methods that are used
to explore the latent structure in data. Both of these methods
are based on orthogonal matrix decompositions and are closely
related to each other. Recently proposed methods such as
Probabilistic Latent Semantic Analysis (PLSA) are based on
probabilistic modeling of the latent space [13]. PLSA assumes
an underlying latent structure that generates the observed data
and uncovers this latent structure using EM Algorithm [14].
Although PROXIMUS is algorithmically similar to PLSA in
terms of using iterative projections, it is based on the idea
of optimization-based matrix decomposition rather than the
assumption of an underlying latent structure. In addition, the
recursive structure of PROXIMUS allows hierarchical analysis
of the underlying patterns in the data. At the same time,
patterns discovered by PROXIMUS can be regarded as latent
variables as well. Another technique, Independent Component
Analysis (ICA) [15], tries to find a representation for the
observed data such that the statistical dependency between
the components of representation is minimized. PROXIMUS is
different from latent variable based methods in the sense that
it relates each row (document or data item) with exactly one
pattern. This allows hierarchical analysis of the underlying
cluster structure, taking advantage of the binary nature of data.

C. Other Work on Summarizing Discrete-Attribute Datasets

Other work on summarizing discrete-attributed datasets is
largely focused on clustering very large categorical datasets.
A class of approaches is based on well-known techniques such
as vector-quantization [16] and k-means clustering [17]. The k-
modes algorithm [18] extends k-means to the discrete domain
by defining new dissimilarity measures. Another class of algo-
rithms is based on similarity graphs and hypergraphs. These
methods represent the data as a graph or hypergraph to be
partitioned and apply partitioning heuristics on this represen-
tation. Graph-based approaches represent similarity between

pairs of data items using weights assigned to edges and cost
functions on this similarity graph [19], [20]. Hypergraph-based
approaches are based on the fact that discrete-attribute datasets
are naturally described by hypergraphs and directly define cost
functions on the corresponding hypergraph [21], [22].

Our approach differs from these methods in that it discovers
naturally occurring patterns with no constraint on cluster sizes
or number of clusters. Thus, it provides a generic interface
to the problem, which may be used in diverse applica-
tions. Furthermore, the superior execution characteristics of
our approach make it particularly suited to extremely high-
dimensional attribute sets.

III. NON-ORTHOGONAL DECOMPOSITION OF BINARY

MATRICES

PROXIMUS is a collection of novel algorithms and data
structures that rely on a variant of SDD to determine error-
bounded approximations to binary attributed datasets. While
relying on the idea of matrix transforms, PROXIMUS provides
a framework that captures the properties of discrete datasets
more accurately and takes advantage of their binary nature
to improve both the quality and efficiency of the analysis.
We formulate the problem of error-bounded approximation of
binary matrices as follows.

Definition 3.1: Given m binary vectors a1, a2, ..., am in n-
dimensional space, find k n× 1 binary approximation vectors
y1, y2, ..., yk such that

∀ 1 ≤ i ≤ m, ∃ j s.t. ||ai − yj ||
2
2 ≤ ε (1)

to minimize k, where ε is a prescribed error bound.
Letting A = [a1a2...am]T and Y = [y1y2...ym]T , this be-

comes a minimum-rank matrix decomposition problem where
||A − XY T ||∞ ≤ ε and X is a m × k binary matrix with
X(i, j) = 1 if and only if yj is the approximation vector that
is of minimum Hamming distance from row ai and satisfies
Equation 1.

Our approach to solving this problem is based on recursively
computing discrete rank-one approximations to the matrix to
extract dominant patterns hierarchically [23]. This simplifies
the problem algorithmically while providing a framework for
interpretability and applicability of the approximation. Relying
on the fact that rows and columns have different conceptual
meanings in many applications (e.g. rows being items and
columns being features), and one is generally interested in
the underlying patterns spread across the rows, we develop an
algorithm that is based on recursively partitioning the set of
rows.

The problem of error-bounded approximation can also be
thought of as finding dense patterns in sparse matrices. A
binary rank-one approximation for a matrix is defined as
an outer product of two binary vectors that is at minimum
Hamming distance from the matrix over all outer products
of the same size. In other words, the rank-one approximation
problem for matrix A with m columns and n rows is one of
finding two vectors x and y that maximize the number of zeros
in the matrix (A − xyT ), where x and y are of dimensions
m and n, respectively. The following example illustrates this
concept:
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Example 1: Given a matrix A, we compute a rank-one
approximation as follows:

A =





1 1 0
1 1 0
1 1 0



 =





1
1
1





[

1 1 0
]

= xyT

Here, vector y is the pattern vector which is the best
approximation for the objective (error) function specified. In
our case, this vector is [1 1 0]T . Vector x is the presence vector
representing the rows of A that are well approximated by the
pattern described by y. Since all rows contain the same pattern
in this rank-one matrix, x is vector of all ones. We further
clarify this discussion with a slightly non-trivial example.

Example 2: Consider now a binary matrix A, which does
not have an exact rank-one representation (i.e., the matrix is
of higher rank).

A =









0 1 1 0 1
0 0 1 0 1
0 0 0 1 1
1 0 1 0 1









Consider the following rank-one approximation for A:

Ã =









1
1
0
1









[

0 0 1 0 1
]

=









0 0 1 0 1
0 0 1 0 1
0 0 0 0 0
0 0 1 0 1









The pattern vector here is [0 0 1 0 1]T and corresponding
presence vector is [1 1 0 1]T . This presence vector indicates
that the pattern is dominant in the first, second and fourth rows
of A. A quick examination of the matrix confirms this. In this
way, a rank-one approximation to a matrix can be thought of as
decomposing the matrix into a pattern vector, and a presence
vector that signifies the presence of the pattern.

Conventional singular value decompositions (SVDs) can
be viewed as summations of rank-one approximations to a
sequence of matrices. Starting with the input matrix, SVD
computes a pair of singular vectors that are associated with
the largest singular value of the matrix. The outer product of
this pair, scaled by the corresponding singular value, provides
the best rank-one approximation for the matrix in terms of
minimizing the norm of the error. Then, the approximation is
subtracted from the input matrix, to obtain a residual matrix,
which in turn is the part of the matrix that cannot be repre-
sented by the first singular matrix, and the same procedure
is applied to the residual matrix. Subsequent singular vectors
are chosen to be orthogonal to all previous singular vectors.
The number of singular vectors that are necessary to compute
in order to reach a zero residual matrix is equal to the
rank of the matrix. Indeed, the procedure can be terminated
earlier to obtain a “truncated SVD” for the matrix which
provides the best possible approximation for the given number
of singular vectors. While SVD is useful in some applica-
tions involving discrete datasets such as LSI, the application
of SVDs to binary matrices has two drawbacks. First, the
resulting decomposition contains non-integral vector values,
which are generally hard to interpret for binary datasets. One

such application is illustrated in Section V-C. SDD partially
solves this problem by restricting the entries of singular
vectors to the set {-1, 0, 1}. However, the second drawback
is associated with the idea of orthogonal decomposition or
more generally extraction of singular vectors. If the underlying
data consists of non-overlapping (orthogonal) patterns only,
SVD successfully identifies these patterns. However, if the
patterns with similar strengths overlap, then, because of the
orthogonality constraint, the features contained in some of
the previously discovered patterns are extracted from each
pattern. Figure 1 illustrates this fact. We construct a transaction
matrix by assigning elements tij to the number of instances
of item j in transaction i. In Figure 1(a), we show the three
dominant singular vectors (rank reduction to three) derived
from a synthetic transaction matrix. It is clear from this figure
that items 1 and 3 form the most dominant co-occurring set of
items followed by items 8 and 9, followed by item 2. However,
in the case of overlapping frequent sets, as in the example of
Figure 1(b), the orthogonality constraint poses difficulties. In
this example, the first vector indicates that items 1, 3, 5, 8,
and 9 are most significant. However, in orthogonalizing the
second singular vector with respect to the first, SVD introduces
negative values into the second vector. There is no easy inter-
pretation of these negative values in the context of most post-
processing techniques, such as evaluating frequent itemsets
or association rules as illustrated in Section IV. Since SDD
is based on repeatedly finding rank-one approximations to a
residual matrix which is obtained by extracting the information
that is already contained in a previous approximation, SDD
also suffers from the same problem. A simple solution to this
problem is to cancel the effect of the first singular vector by
removing this singular vector and introducing all subsets of
this vector with appropriate weights. This can prove to be
computationally expensive. What is required here is a non-
orthogonal transform that does not introduce negative values
into the composing vectors.

Based on these observations, our modification to SDD for
binary matrices has two major components:

• pattern and presence vectors are restricted to binary
elements,

• the matrix is partitioned based on the presence vector
after each computation of rank-one approximation, and
the procedure is applied recursively to each partition.
This method provides a hierarchical representation of
dominant patterns.

A. Discrete Rank-one Approximation of Binary Matrices

The problem of finding the optimal discrete rank-one ap-
proximation for a binary matrix can be stated as follows.

Definition 3.2: Rank-one approximation
Given matrix A ∈ {0, 1}m × {0, 1}n, find x ∈ {0, 1}m and
y ∈ {0, 1}n to minimize the error:

||A − xyT ||2F = |{aij ∈ (A − xyT ) : |aij | = 1}|. (2)
In other words, the error for a rank-one approximation

is the number of non-zero entries in the residual matrix.
This 0-1 integer programming problem with 2m+n feasible
points is NP-hard [8]. Indeed, it is closely related to finding
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Fig. 1. SVD examples that illustrate difficulty of interpreting results. In each panel, three figures show the most significant singular vectors in the item space
of a transaction matrix in decreasing order of dominance from left to right. (a) Non-overlapping item sets, (b) Overlapping item sets.

maximum cliques in graphs. Although there is considerable
literature on the maximum clique and biclique problems [24],
[25], we do not know of any approximation algorithms or
effective heuristics in literature for this relaxed formulation
of the problem. However, the main purpose here is to find
a low-rank decomposition that approximates groups of rows
with local patterns rather than a globally optimal rank-one
approximation. As a locally optimal solution for the rank-
one approximation problem will be associated with a local
pattern, it is adequate to apply an efficient heuristic to dis-
cover underlying local patterns in the matrix. Removing the
non-orthogonality constraint and applying such an heuristic
recursively, it is possible to find an approximation for the
entire matrix, while improving the local approximation as well.
For this purpose, we adopt an alternating iterative heuristic
for computation of approximation vectors for binary matrices,
with suitable initialization heuristics.

1) Alternating Iterative Heuristic: Since the objective (er-
ror) function can be written as ||A − xyT ||2F = ||A||2F −
2xT Ay + ||x||22||y||

2
2, minimizing the error is equivalent to

maximizing

Cd(x, y) = 2xT Ay − ||x||22||y||
2
2. (3)

If we fix y and set s = Ay, the corresponding x that maximizes
this function is given by the following equation.

x(i) =

{

1, if 2s(i) ≥ ||y||22
0, otherwise

(4)

This equation follows from the idea that a non-zero element
of x can have a positive contribution to Cd(x, y) if and only
if at least half of the non-zero elements of y match with the
non-zero entries on the corresponding row of A. Clearly, this

equation leads to a linear time algorithm in the number of non-
zeros of A to compute x, as computation of s requires O(N)
time and Equation 4 can be evaluated in O(m) time. Here,
m is the number of rows and N is the number of non-zeros
(ones) in the matrix. Similarly, we can compute vector y that
maximizes Cd(x, y) for a fixed x in linear time. This leads to
an alternating iterative algorithm based on the computation of
SDD [8], namely initialize y, then solve for x. Now, solve for
y based on updated value of x. Repeat this process until there
is no improvement in the objective function.

B. Recursive Decomposition of Binary Matrices

We use a rank-one approximation of the input matrix to
partition the rows into two sub-matrices. This is in contrast to
conventional SVD-based techniques that compute the residual
matrix and apply the transformation repeatedly.

Definition 3.3: Partitioning based on rank-one approxi-
mation:
Given rank-one approximation A ≈ xyT , a partition of A with
respect to this approximation results in two sub-matrices A1

and A0, such that

ai ∈

{

A1, if x(i) = 1
A0, otherwise

(5)

for 1 ≤ i ≤ m. Here, ai denotes the ith row of A.
The intuition behind this approach is that rows corresponding
to 1’s in the presence vector are the rows of a maximally
connected sub-matrix of A. Therefore, these rows have more
similar non-zero structures among each other compared to the
rest of the matrix. Since the rank-one approximation for A

gives no information about A0, we further find a rank-one
approximation and partition this matrix recursively. On the
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PSfrag replacements
A

A ≈ xyT

x(i) = 1 x(i) = 0

A1 A0

A1 ≈ x1y
T

1

x1(i) = 1∀i, r(A1, y1) < ε

x1, y1

A0 ≈ x0y
T

0

x0(i) = 1 x0(i) = 0

A01

A01 ≈ x01y
T

01

x01(i) = 1∀i, r(A01, y01) < ε

x01, y01

A00

A00 ≈ x00y
T

00

x00(i) = 1∀i, r(A00, y00) < ε

x00, y00

Fig. 2. Recursive structure of PROXIMUS. Each rectangular internal node is a rank-one approximation and two circular children of these nodes are the
matrices that result from partitioning of parent matrix based on this approximation. Leaves of the recursion tree correspond to final decomposition.

other hand, we use the representation of the rows in A1 given
by the pattern vector y and check if this representation is
adequate via some stopping criterion. If so, we decide that
matrix A1 is adequately represented by matrix xyT and stop;
else, we recursively apply the procedure for A1 as for A0.

The partitioning-and-approximation process continues until
the matrix cannot be further partitioned or the resulting ap-
proximation adequately represents the entire matrix. We use
the Hamming radius of the set of rows that are present in
the approximation to measure the adequacy of the representa-
tion provided by a rank-one approximation, regarding pattern
vector as the centroid of this set of rows.

Definition 3.4: Hamming radius
Given a set of binary vectors R = {x1, x2, . . . , xn} and a
binary vector y, the Hamming radius of R centered around y

is defined as:

r(R, y) = max
1≤i≤n

h(xi, y), (6)

where h(x, y) = ||x − y||22 is the Hamming distance between
binary vectors x and y.

We use the Hamming radius as the major stopping criterion
for the algorithm to decide whether the underlying pattern can
represent all rows of the corresponding sub-matrix adequately.
The recursive algorithm does not partition sub-matrix Ai

further if the following conditions hold for the rank-one
approximation Ai ≈ xiy

T
i .

• r(Ai1, yi) < ε, where ε is the prescribed bound on the
Hamming radius of identified clusters.

• xi(j) = 1 ∀j, i.e., all the rows of Ai are present in Ai1.

If the above conditions hold, the pattern vector yi is identified
as a dominant pattern in matrix Ai and recorded along with

its associated presence vector in the approximation of A. The
resulting approximation for A is represented as Ã = XY T

where X and Y are m× k and n× k matrices containing the
presence and pattern vectors in their rows respectively and k

is the number of identified patterns.
Figure 2 illustrates the recursive structure of PROXIMUS.

Starting with matrix A, a rank-one approximation to A is
computed. The matrix A is then partitioned into A1 and A0

based on the presence vector x. The rank-one approximation to
A1 returns a presence vector of all 1’s and the approximation is
adequate so the recursion stops at that node and y1 is recorded
as a dominant pattern. On the other hand, matrix A0 is further
partitioned as the approximation A0 ≈ x0y

T
0 does not cover

all rows of A0. The overall decomposition is A ≈ XY T where
X = [x1, x01, x00]

T and Y = [y1, y01, y00]
T .

C. Initialization of Iterative Process

While finding a rank-one approximation, initialization is
crucial not only for the rate of convergence but also the
quality of the solutions since a wrong choice can result in poor
local minima. In order to have a feasible solution, the initial
pattern vector should have magnitude greater than zero, i.e.,
at least one of the entries in the initial pattern vector should
be equal to one. It is important that the initialization of the
pattern vector must not require more than Θ(N) operations,
since it will otherwise dominate the runtime of the overall
algorithm. Possible procedures for finding an initial pattern
vector include:

• Partition: Select a separator column and identify the
rows that have a non-zero at that column. Initialize the
pattern vector to the centroid of these rows. The idea is
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to partition the rows of the matrix along one dimension
expecting that such a partition will include rows that
contain a particular pattern.

• Greedy Graph Growing: Based on the idea of iterative
improvement heuristics in graph partitioning [26], this
scheme starts with a randomly selected row in one part
and grows the part by including rows that share a non-
zero with that part until a balanced partition is obtained.
The initial pattern vector is set to the centroid of rows in
this part.

• Random-row: Observing that a balanced partition of
rows is not necessary due to the nature of the problem, we
select one row randomly and initialize the pattern vector
to that row with the expectation that it shares some non-
zeros with the rows that share the same pattern with itself.

All of the above initialization schemes require O(N) time. Our
observations indicate that the Random-row scheme tends to
initialize the pattern vector close to a desired local minimum,
i.e., the resulting rank-one approximation includes a specific
pattern that represents a small set of rows adequately. On
the other hand, Greedy Graph Growing provides hierarchical
extraction of patterns, the resulting rank-one approximation
generally contains a combination of patterns, which can be
further decomposed in the recursive course of the algorithm.
The Partition scheme lies somewhere between the first two
schemes as the balance of the partition depends on the selec-
tion of the dimension. In our implementation of this scheme,
we select the dimension that yields the most balanced partition
in order to increase the probability of partitioning along a
significant dimension.

D. Generalization of Proposed Framework

Throughout the discussion of the proposed framework, we
have considered rows of a matrix as data items and columns as
features and assumed that patterns of interest lie in rows. While
this assumption is valid in many applications, it might be
necessary to consider patterns in other dimensions as well, in
some cases. PROXIMUS is easily extendible to such instances
as follows.

• If we are interested in column patterns, PROXIMUS is
directly applicable on the transpose of the matrix.
Specifically, decomposition in each dimension (rows or
columns) also reveals some interpretable pattern structure
on the other dimension since both pattern and pres-
ence vectors are binary. This property is illustrated on
document-term matrices in Section V-C.

• PROXIMUS can also be modified to capture pattern
structure in both row and column spaces. This can be
done by computing a binary residual to the matrix by
extracting the rank-one approximation from the matrix
(Ar = A&xyT , where & and - denote binary AND and
NOT operations) and decomposing this residual matrix
recursively as in SDD, until the residual matrix is sparse
enough to be neglected. In this decomposition, a row or
a column may contain more than one pattern. However,
this formulation does not provide a hierarchical clustering
information as PROXIMUS does.

E. Computational Complexity

In the alternating iterative heuristic for computing rank-
one approximations, each solution to the optimization problem
of Equation 3 takes O(N) time. The number of iterations
required to compute a rank-one approximation is a function
of the initialization vector and strength of associated local
minima. In general, if the underlying pattern is strong, we
observe very fast convergence. In our experiments, we observe
the computation time of a rank-one approximation to be linear
in the number of non-zeros of the matrix for all instances.

If we view the recursive process as a tree with each node
being a rank-one approximation to a matrix, we can see that
the total number of non-zeros of the matrices at each level
of the recursion tree is at most equal to the number of non-
zeros in the original matrix. Thus, the overall time complexity
of the algorithm is O(h × N), where h denotes the height
of the recursion tree. If the resulting decomposition has k

pattern vectors (which is equal to the number of leaves) in the
recursion tree, then h ≤ k−1. Therefore, we can conclude that
the time complexity of overall algorithm is O(k × N). Note
that k is a function of the underlying pattern structure of the
input matrix and the prescribed bound on Hamming radius.

IV. APPLICATION TO ASSOCIATION RULE MINING

In this section, we show a simple application of PROX-
IMUS to accelerate association rule mining, a well-known
and extensively studied problem in data mining [1]. Given
a set of transactions and a set of items, transactions being
subsets of the entire item set, association rule mining aims
to discover association rules between itemsets that satisfy
the minimum support and confidence constraints prescribed
by the user. An association rule is an assertion of kind
“{bread,milk}⇒{butter}” meaning that if a transaction con-
tains bread and milk, then it is also likely to contain butter.
Support of a rule in a transaction set is defined as the fraction
of the transactions that contain all items in the rule. Confidence
of a rule is the ratio of the number of transactions that contain
both sides of the rule to the number of all transactions that
contain the left-hand-side of the rule.

Given a transaction set on a set of items, we can construct a
binary transaction matrix by mapping transactions to rows and
items to columns and setting entry tij of transaction matrix T

to 1 if item j is in transaction Ti. Figure 3(a) and (b) illustrate
a sample transaction set of 6 transactions on the item set {beer,
snacks, bread, milk, butter} and its corresponding transaction
matrix, respectively. A locally optimal rank-one approximation
to T is x1y

T
1 with pattern vector y1 = [0 0 1 1 1]T and

presence vector x1 = [0 0 1 1 1 1]T . This means that the pat-
tern {bread, milk, butter} is present in transactions T3, T4, T5

and T6. Based on this pair of approximation vectors, we
can create a virtual transaction T ′

1={bread, milk, butter} that
represents all these transactions. Partitioning T with respect
to x1 and finding a locally optimal rank-one approximation
to the resulting matrix, we end up with pattern and presence
vectors y2 = [1 1 1 0 0 0]T and x2 = [1 1 0 0 0 0]T ,
respectively. Based on these approximation vectors, we can
create a second virtual transaction T ′

2={beer, snacks, bread},
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T1 : {beer, snacks}
T2 : {beer, snacks, bread}
T3 : {milk, bread}
T4 : {milk, bread, butter}
T5 : {milk, butter}
T6 : {bread, butter}

beer snacks bread milk butter
T1 1 1 0 0 0
T2 1 1 1 0 0

T= T3 0 0 1 1 0
T4 0 0 1 1 1
T5 0 0 0 1 1
T6 0 0 1 0 1

(a) (b)

Fig. 3. (a) A sample transaction set of 6 transactions on 5 items and (b) its corresponding transaction matrix.

T ≈

















0 1
0 1
1 0
1 0
1 0
1 0

















[

0 0 1 1 1
1 1 1 0 0

] Virtual transaction Weight
T ′

1 : {bread, milk, butter} 4
T ′

2 : {beer, snacks, bread} 2

(a) (b)

Fig. 4. (a) Decomposition of transaction matrix of the transaction set in Fig. 3 and (b) the corresponding approximate transaction set.

which represents transactions T1 and T2. We associate weights
w(T ′

1) = 4 and w(T ′
2) = 2 representing the number of

transactions that each virtual transaction represents. Finally,
we end up with a transaction set of two transactions that is
an approximation to the original transaction set. We can mine
this smaller approximate transaction set for association rules
on behalf of the original transaction set. This will clearly be
faster than mining the original transaction set as the cardinality
of the approximate transaction set is one third of the original
set. Figure 4(a) and (b) show the decomposition of T into two
pairs of approximation (presence and pattern) vectors and the
resulting approximate transaction set, respectively.

In general, in order to reduce the time required for associa-
tion rule mining, we decompose the corresponding transaction
matrix of the original transaction set and create an approximate
transaction set based on the set of identified pattern vectors.
We associate a weight with each virtual transaction that is
defined as the number of non-zeros in the corresponding
presence vector, i.e., the number of transactions that contain
the corresponding pattern. We then mine the approximate
transaction set. Extension of the a-priori algorithm to the
case of weighted transactions is straightforward; we consider
transaction T ′

i as occurring w(T ′
i ) times in the transaction set

while counting the frequencies of itemsets. Compression of
transaction sets might be particularly useful in data mining
applications where data is distributed and sites are loosely
coupled or privacy is a concern [27].

V. EXPERIMENTAL RESULTS

In this section we illustrate the desirable properties of
PROXIMUS in terms of effectiveness in clustering and discov-
ering patterns, application to association rule mining, semantic
classification of terms and documents, and runtime scalability.

A. Effectiveness of Analysis

In this section, we report two experiments that illustrate the
superior characteristics of PROXIMUS in approximating and

clustering binary datasets compared to other state-of-the-art
clustering and approximation techniques that work particularly
well on continuous data. We generate two sample matrices
by implanting uniform patterns into groups of rows on a
background of uniform white noise.

The first matrix that is shown in Figure 5(a) contains four
overlapping patterns of uniform distribution. This matrix is
generated as follows. For the background noise, any entry of
the 80×52 matrix is set to 1 with probability pb. If the ith row
contains the kth pattern, then the (i, j)th entry of the matrix
is set to 1 with probability pp, where (k − 1)(l + r) + 1 ≤
j ≤ kl+(k+1)r. Here, l denotes the number of columns that
are specific to a single pattern, and r denotes the number of
columns shared by two neighboring patterns. While generating
the matrix of Figure 5, pattern length parameters l and r are
set to 10 and 4 respectively, probability parameters pb and
pp are set to 0.01 and 0.8 respectively and the number of
rows that contain the same pattern is set to 20. Note that
the rows and columns that belong to a particular pattern
are shown to be adjacent in the figures just for illustration
purposes. In other words, for any of the algorithms whose
performance is reported here, the ordering of rows of columns
is not important. Indeed, if we reorder the rows and the
columns of the matrix randomly, it is possible to recover the
block-diagonal structure of the matrix using the hierarchical
clustering of rows provided by PROXIMUS.

The rank-4 approximation provided by binary non-
orthogonal decomposition of the matrix is shown in Fig-
ure 5(b). As seen in the figure, PROXIMUS is able to capture
the four underlying patterns in the matrix and associate each
row with the pattern that it contains. The Frobenius norm of
the error of this approximation is 19.7, which is the square
root of the Hamming distance of 388 between the input and
approximation matrices.

The rank-4 approximation provided by the four most sig-
nificant singular vectors of SVD is shown in Figure 5(c).
This approximation is optimal in the sense of minimum least
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Fig. 5. Approximation of a sample binary matrix that contains four overlapping uniform patterns. (a) Original matrix, (b) rank-4 approximation provided
by PROXIMUS, (c) rank-4 approximation provided by SVD, (d) rank-8 approximation obtained by quantizing SVD approximation, (e) approximation (sum of
4 rank-one matrices) obtained by quantizing most dominant singular vectors, (f) rank-4 approximation provided by K-means clustering.

squares, with an error of 17.2. Although this is less than the
binary approximation provided by PROXIMUS, it is not very
useful in applications involving binary data for several reasons,
as discussed before. Although we can see in the figure that
SVD approximation is able to reveal the underlying patterns on
the diagonal blocks of the matrix once the matrix is reordered,
it is not possible to capture these patterns just by analyzing the
real-valued singular vectors provided by SVD. On the other
hand, binary pattern and presence vectors of PROXIMUS reveal
this structure clearly regardless of ordering. In order to address
the interpretability problem of SVD, it is necessary to quantize
the SVD approximation. This can be done in two ways. The
first method is to quantize the rank-4 SVD approximation
matrix, obtaining the binary approximation of Figure 5(d) with
an error of 19.7, which is the same as that of PROXIMUS. How-
ever, the rank of this approximation is 8, since quantization of
individual entries does not preserve the rank of the matrix.
In order to preserve the rank of the matrix, it is possible
to quantize the dominant singular vectors rather than the
approximation matrix. This makes it possible to represent the
approximation as the sum of four rank-one matrices, although
the sum may have a larger rank due to loss of orthogonality.
However, quantization of singular vectors is problematic since
these vectors may contain large negative values. The only
way to quantize these vectors is rounding the absolute value
of each singular vector amplified by the associated singular
value relying on the assumption that a large negative value
in the singular vector, accompanied with another negative in
the corresponding singular vector, may be associated with

a pattern in the matrix. However, this assumption does not
always hold since a negative value combined with a positive
value in the corresponding singular vector may be associated
with the correction of an error introduced by more dominant
singular vectors. However, binary quantization amplifies such
errors because of misinterpretation of negative values. Indeed,
the rank-4 approximation obtained by quantizing singular
vectors has an error of 45.2 that is more than 100% worse
than that of other techniques. As seen in Figure 5(e), this
method is unable to reveal the underlying pattern structure.

We also compare the performance of PROXIMUS with that
of K-means. We obtain an approximation through K-means
clustering by approximating each row by the centroid of the
cluster that it is assigned to. For the matrix of Figure 5,
4-way K-means clustering provides the same approximation
as PROXIMUS, as shown in Figure 5(f). However, for harder
instances, K-means is not able to separate clusters with sig-
nificant overlap as will be discussed in the next example.

The approximation provided by the methods of interest on
a harder instance is shown in Figure 6. The 134×64 matrix
shown in Figure 6(a) consists of five groups of rows each of
which contain two patterns randomly drawn from five uniform
overlapping patterns. These patterns are generated as described
above with the same pattern length parameters (l = 10, r =
4) and density parameters pb = 0.005 for background noise
and pp = 0.8 for patterns. In this experiment, the number of
rows in each group are also chosen randomly from a normal
distribution.

As seen in Figure 6(b), PROXIMUS is able to provide a rank-
6 approximation for this matrix, which reveals the underlying
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Fig. 6. Approximation of a sample binary matrix that contains five row clusters each contain a randomly chosen pair of five overlapping uniform patterns.
(a) Original matrix, (b) rank-6 approximation provided by PROXIMUS, (c) rank-6 approximation provided by SVD, (d) rank-29 approximation obtained by
quantizing SVD approximation, (e) approximation (sum of 6 rank-one matrices) obtained by quantizing most dominant singular vectors, (f) rank-6 approximation
provided by K-means clustering.

pattern structure reasonably with an error of 27.3. The only
redundancy in this approximation is the division of the second
row group into two parts, which adds an additional rank for
the approximation. This is caused by the outlying sparsity
of some columns in the fifth pattern. On the other hand, as
seen in Figures 6(c) and (d), although SVD provides a rank-
6 approximation with an error of 22.9 and the error of the
quantized SVD approximation is 26.2, which is better than
that of PROXIMUS, this approximation is of rank 29. If we
rather quantize the SVD approximation at the singular vector-
level as a sum of six rank-one matrices, the approximation
totally looses track of the original matrix with an error of
68.7, which is shown in Figure 6(e).

The approximation provided by 6-way K-means clustering
is shown in Figure 6(f). The error of this approximation
is 34.1. Although this approximation is able to capture the
patterns in the first, second and fifth row groups, it clusters the
significantly overlapping third and fourth row groups together.
If we try 5-way clustering taking into account that there are 5
implanted row groups, K-means is still not able to distinguish
these two row groups as separate clusters.

While the computational complexity of SVD is O(mn ×
min{m, n}) in general, sparse implementations of truncated

SVD computations can run in O(kNI) time [7], where k

is the number of computed singular vectors and I is the
number of iterations in the computation of a single singular
vector. Recall that N is the number of non-zeros in the
matrix. Similarly, while a general implementation of K-means
requires O(kmnI) time, its complexity can be improved to
O(kNI) by taking advantage of the sparse and binary nature
of the input datasets. Although these algorithms appear to
have asymptotically similar time complexity, we note three
observations about their runtime performances. First, the factor
that relates to the number of approximation vectors or clusters
is not k itself in PROXIMUS, rather it is the height of the
recursion tree, which is sublinear in most cases. Second,
while no fill-in is introduced by PROXIMUS into any sub-
matrix during the computation, SVD may introduce fill-in
into the residual matrix. Finally, the number of iterations in
PROXIMUS is less than that in the other two methods and
floating point operations are completely avoided due to the
discrete nature of the algorithm.

B. Performance of PROXIMUS in Association Rule Mining

In this section, we illustrate the desirable properties of
PROXIMUS in the context of association rule mining using the
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TABLE I

DESCRIPTION OF DATASETS AND RESULTS OF PREPROCESSING VIA PROXIMUS.

# # # # Approximation Preprocessing
Dataset Transactions Items Non-zeros vectors time (s)
connect 67558 129 2904994 6703 1192
pumsb 49047 2113 3629478 4443 1264
pumsb star 49047 2088 2475997 5416 526

TABLE II

TIME SPENT AND NUMBER OF DISCOVERED RULES IN MINING ORIGINAL AND APPROXIMATE TRANSACTION SETS.

Dataset Confidence ARM time ARM Time # Rules # Rules # Rules
(%) orig. (s) appx. (s) orig. appx. common
50 4766 447 31237901 29342663 28044087

connect 70 3988 388 25174099 23977423 22545595
90 3335 333 17297192 17885346 15588014
50 3818 317 56412765 56333542 52147969

pumsb 70 3187 269 47350093 48920776 44271385
90 2708 235 36750896 41146376 34796814
50 4152 329 53468258 50788639 48137472

pumsb star 70 3315 284 48255192 49015788 44846212
90 2665 191 38066956 42939526 36234688

method described in Section IV. In our implementation, we
use the well-known a-priori algorithm [1] as the benchmark
algorithm for association rule mining. While improved algo-
rithms that reduce the number of passes over data have been
developed, these improved algorithms can also be applied to
the output of PROXIMUS. We use an efficient implementation
of the a-priori algorithm1 [28] for our experiments. We create
a second version of the software which is capable of mining
weighted transaction sets by slightly modifying the original
software. For each data instance, we mine the original transac-
tion set with the original software as well as the approximate
transaction set with the modified software and compare the
results in terms of both precision and recall rates and the
runtime of the software on these two transaction sets.

We evaluate the performance of PROXIMUS in associa-
tion rule mining on three FIMI workshop datasets2. These
datasets are described in Table I. We decompose the matrices
corresponding to these data instances using PROXIMUS with
ε = 5. The resulting number of approximation vectors and the
time spent for obtaining this approximation are also shown in
the table. As seen in the table, PROXIMUS approximates the
transaction set using about one tenth of the original number
of transactions for all three instances.

The results of mining the original and approximate trans-
action sets for association rules on these three instances are
shown in Table II. We mine these transaction sets for rules of
cardinality 6 for a constant support threshold of 20%, 20% and
10% for datasets connect, pumsb and pumsb star, respectively.
These rule cardinalities and support thresholds are selected
large enough to be interesting. While the performance of
PROXIMUS for different values of these parameters is generally
conserved, the speed-up provided by compressing transaction
sets increases with decreasing support threshold and increasing

1C. Borgelt’s implementation of the a-priori algorithm is available as
open source at http://fuzzy.cs.uni-magdeburg.de/˜borgelt/
apriori.html.

2FIMI workshop datasets are available at http://fimi.cs.
helsinki.fi/data/.

rule size. The table shows the runtime of a-priori algorithm
on both original and approximate transaction sets along with
number of discovered rules on each transaction set, and the
number of rules that are common to these transaction sets
for varying confidence threshold. For all three instances, the
number of discovered rules is in the order of 10M, and the
time spent on mining the original transaction sets is much
larger than the time spent for compressing these transaction
sets via PROXIMUS.

The performance figures derived from these results are
shown in Figure 7. Each figure displays speed-up, precision,
and recall values for varying confidence for all three datasets.
Speed-up is calculated as the ratio of the runtime of a-priori
software on original transaction set to that on approximate
transaction set. Precision and recall correspond to the percent-
age of the rules discovered on both transaction sets among the
ones that are discovered on the approximate transaction set
and original transaction set, respectively.

As seen in the figure, PROXIMUS provides a speed-up of
at least 10 for all datasets for all confidence levels, which is
consistent with the rate of compression. While providing this
speed-up, PROXIMUS almost always keeps the precision and
recall values above 90%. As seen in Figures 7 (a) and (b),
precision decreases with increasing confidence, while recall
shows an opposite trend. This observation is consistent with
the fact that PROXIMUS “fills in” the lacking items in all
transactions that have the same pattern, while it “filters out”
the items that are too rare to be included in the pattern.
Therefore, although these rare items can come together to form
low-confidence rules, they cannot be discovered for higher
confidence thresholds even in the original transaction set.
Similarly, by filling in the items for all transactions that belong
to a particular pattern, PROXIMUS increases the confidence of
the rules that are derived from this pattern. The effects of
several other parameters such as bound on Hamming radius
(ε), initialization scheme for rank-one approximation, rule size,
and support threshold are discussed in detail in [29].

It is important to note that meaningful association rules are



12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

◦: connect, �: pumsb, ?: pumsb star

PSfrag replacements

Confidence (%)

S
p
ee

d
-u

p

55 65 75 85 9550 60 70 80 90

100

9

10

11

12

13

14

15

PSfrag replacements

Confidence (%)

P
re

ci
si

o
n

(%
)

55

55

65

65

75

75

85

85

95

95
50

50

60

60

70

70

80

80

90

90

100

PSfrag replacements

Confidence (%)

R
ec

a
ll

(%
)

55

55

65

65

75

75

85

85

95

95
50

50

60

60

70

70

80

80

90

90

100

(a) (b) (c)

Fig. 7. (a) Speed-up, (b) precision and (c) recall obtained by performing association rule mining on approximate transaction set for varying confidence
threshold.

mined by repeatedly varying confidence and support values
until a suitable rule set is determined. This implies that the
cost of applying PROXIMUS is amortized over several runs of
the a-priori algorithm. What is impressive is the fact that even
for a single run, the cost of compression followed by a single
a-priori run is less than the cost of running a-priori on the
original dataset for all instances in Table II. It is also important
to note that these datasets are all dense. PROXIMUS is specially
designed for high-dimensional sparse datasets. Its performance
on sparse datasets is even more impressive.

C. Semantic Classification of Terms and Documents

In this section, we use PROXIMUS to cluster terms in a
document database to extract semantic information, which
allows fine grain classification of terms. All experiments in this
section are performed on a document database that consists of
a collection of articles from the Los Angeles Times newspaper
from the late 80’s. The dataset consists of 26799 terms and
3204 documents, each of which contain a small subset of these
terms.

It is possible to analyze the LA Times dataset in two
different ways. First, we can regard documents as binary
vectors in the term space and cluster/classify them based
on the intuition that similar documents should have many
terms in common. On the other hand, it is also possible to
consider terms as binary vectors in the document space and
cluster/classify them observing that terms that are semantically
similar should occur together in several documents. PROX-
IMUS provides a framework that allows analyzing both dimen-
sions simultaneously, since each pattern is associated with a
pattern and presence vector that characterize row and column
spaces, respectively. For example, in the former case, if we
represent each document vector as a row of a matrix, presence
vectors in the decomposition of this matrix will provide a
disjoint clustering of documents while each pattern vector will
associate the corresponding cluster with a set of terms that
characterize the cluster. Note that a term can be associated
with more than one cluster/class in this formulation. This
also allows easy semantic interpretation of discovered clusters.
Although this formulation is common and very appropriate
since distinct document clusters and overlapping term clusters
make sense, we consider the later formulation in this paper

to illustrate an alternative view point for the analysis of such
datasets.

We represent the dataset as a binary term-document matrix
by mapping terms to rows and columns to documents, so
that a non-zero entry in the matrix indicates the existence
of a word in the corresponding document. This results in a
26799×3204 term-document matrix that contains 109946 non-
zeros. Observe that the matrix is highly sparse, with each term
occurring in about 4 documents and each document containing
about 35 terms on the average. We decompose this matrix
via PROXIMUS, setting ε = 0. This provides a hierarchical
clustering of terms where each leaf cluster is a set of terms that
occur exactly in same documents. For the LA Times dataset,
we obtain a tree with 16324 leaf clusters. This number is
indeed too large for effective analysis but it is possible to
tune the ε parameter to obtain a minimum number of clusters
with desired quality. However, because of space limitations,
we present sample clusters that are chosen from the internal
nodes of the perfect (ε = 0) hierarchical clustering tree for the
purpose of illustration.

A cluster of words discovered by PROXIMUS in LA Times
dataset is shown in Figure 8. This cluster is composed of terms
becker, bonk, bori, edberg, graf, ivan, lendl, martina, mate,
mecir, melbourn, miloslav, navratilova, pam, seed, semifin,
shriver, stefan, steffi, sweden and wiland. This cluster is clearly
related to tennis. The pattern vector that corresponds to this
cluster is shown at the top of the figure, while the vectors
that correspond to the terms in this cluster are shown in the
following rows. LA Times dataset also includes categorical
information about the documents, where each document is
associated with one of six categories. These categories are
Entertainment, Financial, Foreign, Metro, National and Sports.
Note that PROXIMUS does not use this categorical information.
In the figures, the x-axis is divided into six regions, where
each region corresponds to a category. As seen in the Figure,
the term vectors in the cluster discovered by PROXIMUS are
generally dense in the Sports region and this is captured
by the pattern vector provided by PROXIMUS. This pattern
vector contains ten non-zeros, all of which belong to the
Sports category. These non-zeros correspond to ten documents,
which can clearly be classified as tennis-related documents
along with the terms in the cluster. This example illustrates
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Fig. 8. A cluster of words discovered by PROXIMUS in LA Times dataset. Each figure is a binary vector in document space associated with a word, signifying
the existence of the word in corresponding documents. Ticks on the x-axis divide the document space into six document classes. The pattern vector associated
with this cluster is shown at the top. We associate this cluster with tennis.

that PROXIMUS is able to provide classification of documents
and terms at an adjustable resolution, which is much finer
than the available categorical information in this example.
Note also that PROXIMUS can also be used for filtering out
noise, as in LSI, with an additional advantage of removing
the noise completely rather than reducing its magnitude as
in the case of orthogonal decompositions like SVD. On the
other hand, while SVD-based methods such as LSI can be
used for text categorization in order to improve accuracy,
PROXIMUS provides a hierarchical clustering associated with
directly interpretable pattern vectors.

Other pattern vectors detected by PROXIMUS from the LA
Times dataset show the same level of accuracy as shown
in Table III. In this table, each cluster is associated with a
dominant class, which is the document category that holds the
majority in the pattern vector. We also note our interpretation
for this cluster, based on the terms in the cluster. Observe
that these interpretations provide semantic classification at
a finer resolution than the available categorical information,
while being consistent with them. Pattern length is the number
of documents in pattern vector. As seen in the table, it is
easy to interpret these patterns since presence vectors provide
discrete sets of terms and pattern vectors provide discrete sets
of documents. In addition, the number of documents in the
corresponding pattern for each cluster provides a clue about
the dominance of the cluster in the dataset. Pattern length
increases with the depth of the node in the clustering tree as
would be expected. Most clusters are associated with at most a
couple of documents, while some clusters are more dominant

in the dataset. Therefore, it is possible to rank clusters of terms
to identify popular topics of the time. It is also interesting to
note that PROXIMUS captures patterns that are on the border of
actual categories. For instance the dining-related pattern on the
fourth row of the table contains three documents that belong
to Metro and Entertainment categories each, which definitely
makes sense.

D. Runtime Scalability

The results displayed in Figure 9 demonstrate the scalability
of PROXIMUS in terms of number of rows, number of non-
zeros and number of patterns. We generate series of binary
matrices for three settings using the IBM Quest data genera-
tor3. The settings for these three experiments are as follows:

1) Number of patterns and average number of non-zeros
per row are kept constant at 100 and 10, respectively.
The number of rows ranges from ≈ 1K to ≈ 1M . Note
that number of non-zeros grows linearly with number of
rows while number of columns remains constant.

2) Number of rows and number of patterns are kept con-
stant at ≈ 100K and 100 respectively. Average number
of non-zeros per row ranges from 5 to 400. Note that
number of non-zeros and number of columns grow
linearly with average row density.

3) Number of rows and average row density are kept
constant at ≈ 100K and 10 respectively. Number of

3IBM’s Quest data generator is available as open source at http://www.
almaden.ibm.com/software/quest/Resources/index.shtml.
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TABLE III

SAMPLE CLUSTERS DISCOVERED BY PROXIMUS ON THE LA TIMES DATASET.

Dominant Pattern
Terms in cluster class Interpretation length
commod corn crop grain mercantil soybean wheate Financial Commodities 14
alysheba anita bred breeder derbi eclips filli Sports Horse racing 7
jockei mare mccarron santo turf undef whittingham
azing birdi birdie bogei calcavecchia chrysler crenshaw Sports Golf 7
kite lanni lyle mal nabisco par pga wadkin wedge
bak beef cheese cream dessert dishe menu pasta Metro Dining 7
roast salad sauce steak tomato veget Entertainment
cambridg chanceri delawar eastman infring kodak Financial Photography 5
patent photographi polaroid shamrock upheld
schwarzenegg stallon sylvest Entertainment Action movies 3
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Fig. 9. Runtime of PROXIMUS (secs.) with respect to (a) number of rows (b) average number of non-zeros per row (c)number of patterns.

patterns range from 5 to 1000. Note that number of
columns grows linearly with number of patterns while
number of non-zeros remains constant.

All experiments are repeated with different randomly gener-
ated matrices 10 times for all values of the varying parameter.
The reported values are the average run times over these 10
experiments on a Pentium-IV 2.0 GHz workstation with 512
MB RAM. In the first case, the number of non-zeros grows
linearly with number of rows while the number of patterns is
constant. Therefore, we expect the runtime to grow linearly
with number of rows as discussed in Section III-E. As seen
in Figure 9(a), the runtime of PROXIMUS grows linearly with
number of rows. In the second case, we expect runtime to grow
linearly with average row density since the number of patterns
remains constant while number of non-zeros grows linearly.
We see this expected behavior of run time in Figure 9(b).
Finally, in the third case, it is important to note that the runtime
depends on the number of identified vectors, and not directly
on the number of patterns in the matrix. As we expect number
of vectors to be linear in number of patterns, we expect a linear
behavior of runtime with growing number of patterns since the
number of non-zeros remains constant. Figure 9(c) shows that
the behavior of runtime with respect to number of patterns is
almost linear as expected. Note that, generally, the number of
identified vectors is slightly superlinear in terms of the number
of underlying patterns.

VI. CONCLUSIONS AND ONGOING WORK

In this paper, we have presented a powerful new technique
for analysis of large high-dimensional binary valued attribute

sets. Using a range of innovative algebraic techniques and
data structures, this technique achieves excellent performance
and scalability. The application of the method to association
rule mining shows that compression of transaction sets via
PROXIMUS accelerates the association rule mining process
significantly while being able to discover association rules that
are consistent with those discovered on the original transac-
tion set. Another sample application on clustering of term-
document matrices illustrates that the binary and hierarchical
nature of PROXIMUS makes it easy to interpret and annotate
the output of decomposition to obtain semantic information.
The results reported for these applications show that use of
the method is promising in various applications, including
dominant and deviant pattern detection, collaborative filtering,
clustering, bounded error compression, and classification. The
method can also be extended beyond binary attributed datasets
to general discrete positive valued attribute sets.

PROXIMUS is available for free download at
http://www.cs.purdue.edu/homes/koyuturk/
proximus/.

ACKNOWLEDGMENTS

This research was supported in part by NIH Grant R01
GM068959-01. The authors would also like to acknowl-
edge the constructive comments and recommendations of
anonymous reviewers, which considerably strengthened this
manuscript.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proc. 20th Int. Conf. Very Large Data Bases (VLDB’94),
1994, pp. 487–499.
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[22] M. Özdal and C. Aykanat, “Hypergraph models and algorithms for data-
pattern based clustering,” Data Mining and Knowledge Discovery, vol.
9, no. 1, pp. 29–57, 2004.

[23] M. Koyutürk, A. Grama, and N. Ramakrishnan, “Algebraic techniques
for analysis of large discrete-valued datasets,” in Proc. 6th European
Conf. Principles of Data Mining and Knowledge Discovery (PKDD’02),
2002, pp. 311–324.

[24] C. Bron and J. Kerbosch, “Finding all cliques in an undirected graph,”
Communications of the ACM, vol. 16, pp. 575–577, 1973.

[25] R. Peeters, “The maximum edge biclique problem is NP-complete,”
Discrete Applied Mathematics, vol. 131, no. 3, pp. 651–654, 2003.

[26] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Scientific Computing, vol. 20,
no. 1, pp. 359–392, 1998.

[27] J. Chi, M. Koyutürk, and A. Grama, “CONQUEST: A distributed
tool for constructing summaries of high-dimensional discrete-attributed
datasets,” in Proc. 4th SIAM Intl. Conf. Data Mining (SDM’04), 2004,
pp. 154–165.

[28] C. Borgelt and R. Kruse, “Induction of association rules: Apriori
implementation,” in 15th Conf. Comptl. Statistics, Heidelberg, Germany,
2002, Physica Verlag.

[29] M. Koyutürk and A. Grama, “PROXIMUS: A framework for analyzing
very high dimensional discrete-attributed datasets,” in Proc. 9th ACM
SIGKDD Intl. Conf. Knowledge Discovery and Data Mining (KDD
2003), 2003, pp. 147–156.

Mehmet Koyutürk Mehmet Koyutürk received his
B.S. degree in 1998 and M.S. degree in 2000
from Bilkent University, Turkey, in Electrical and
Electronics Engineering and Computer Engineering,
respectively. He has been working towards his Ph.D.
degree at the Computer Sciences Department of
Purdue University since 2001. His research inter-
ests include parallel algorithms, pattern discovery
and data mining in molecular biology, and alge-
braic/graph theoretical algorithms with applications
to optimization and data analysis.

Ananth Grama Ananth Grama received his Ph.D.
in Computer Sciences from the University of Min-
nesota in 1996. Thereafter, he joined the Depart-
ment of Computer Sciences at Purdue University,
where he is currently a University Faculty Scholar
and Associate Professor. Ananth’s research interests
span the areas of parallel and distributed comput-
ing architectures, algorithms, and applications. His
recent work on distributed systems has focused on
resource location and allocation mechanisms in peer-
to-peer networks. His research on applications has

focused on particle dynamics methods, their applications to dense linear
system solvers, and algorithms for data compression and analysis. Ananth
has authored several papers on these topics and co-authored a text book
“Introduction to Parallel Computing” with Drs. Vipin Kumar, Anshul Gupta,
and George Karypis. He is an NSF CAREER awardee, and a member of
American Association for Advancement of Sciences and Sigma Xi.

Naren Ramakrishnan Naren Ramakrishnan is an
associate professor of computer science at Virginia
Tech. His research interests are problem solving
environments, mining scientific data, and informa-
tion personalization. Ramakrishnan is the recipient
of a 2000 NSF CAREER grant, the 2001 New
Century Technology Council Innovation award, and
a co-recipient of a 2002 DARPA Early Contributor
Appreciation award, towards the BioSPICE project.
He currently serves on the editorial board of IEEE
Computer. Ramakrishnan received a Ph.D. in com-

puter sciences from Purdue University in Aug 1997.


