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ABSTRACT

We present a recommender systems approach to conference
paper assignment, i.e., the task of assigning paper submis-
sions to reviewers. We address both the modeling of reviewer-
paper preferences (which can be cast as a learning prob-
lem) and the optimization of reviewing assignments to sat-
isfy global conference criteria (which can be viewed as con-
straint satisfaction). Due to the paucity of preference data
per reviewer or per paper (relative to other recommender
systems applications) we show how we can integrate mul-
tiple sources of information to learn reviewer-paper prefer-
ence models. Our models are evaluated not just in terms of
prediction accuracy but in terms of end-assignment quality.
Using a linear programming-based assignment optimization,
we show how our approach better explores the space of un-
supplied assignments to maximize the overall affinities of
papers assigned to reviewers. We demonstrate our results
on real reviewer bidding data from the IEEE ICDM 2007
conference.
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1. INTRODUCTION
Modern conferences are beset with excessively high num-

bers of paper submissions. Assigning these papers to ap-
propriate reviewers in the program committee (which can
constitute a few hundred members) is a daunting task and
hence motivates the use of recommender systems.
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The primary input to the conference paper assignment
problem (CPAP) is a papers × reviewers matrix of ‘bids’,
expressing interest or disinterest of reviewers to review spe-
cific papers. The goal is to construct a set of reviewing as-
signments taking into account reviewer capacity constraints,
adequate numbers of reviews for papers, expertise modeling,
conflicts of interest, and other global conference criteria.

There are three key differences between traditional recom-
mender applications and the CPAP problem. (i) In a tradi-
tional recommender, recommendations that meet the needs
of one user do not affect the satisfaction of other users. In
CPAP, on the other hand, multiple users (reviewers) are bid-
ding to review the same papers and hence there is the pos-
sibility of one user’s recommendations (assignments) affect-
ing the satisfaction levels (negatively) of other users. Hence
the design of reviewer preference models must be posed and
studied in an overall optimization framework. (ii) In a con-
ventional recommender, the goal is often to recommend new
entities that are likely to be of interest, whereas in CPAP, the
goal is to ensure that reviewers are predominantly assigned
their (most) preferred papers. Nevertheless, preference mod-
eling is still crucial because it gives the assignment algorithm
some degree of latitude in aiming to satisfy multiple users.
Finally, (iii) recommender systems are used to working with
sparse data but the amount of ‘signal’ available to model
preferences in the CPAP domain is exceedingly small; hence
we must integrate multiple sources of information to build
strong preference models.

We organize our framework into two stages: ‘growing’ the
given bids by adapting recommendation techniques to pre-
dict unknown reviewer-paper preferences, and identifying a
good assignment by optimizing conference criteria. Other
approaches to CPAP (e.g., [1]) are surveyed elsewhere [2].
We apply our framework on bids and auxiliary information
(see Fig. 1) gathered from the 7th IEEE Intl. Conf on Data
Mining (ICDM’07) for which the third author was a pro-
gram chair. Similar scope datasets from other conferences
are not publicly available (also acknowledged in [5]) and we
hope our research will spur greater availability. (The Cyber-
chair system used by the ICDM series has expressed inter-
est in implementing our approach and we plan to approach
Easychair and other CMSs as well.) We emphasize that all
datasets were anonymized before the modeling and analysis
steps conducted here.

2. MODELING REVIEW PREFERENCES
We are given ratings (henceforth, interchangeable with

preferences) between m reviewers and n papers. (Recall that



Figure 1: Data used in this paper for building paper-reviewer preference models.

these ratings are really bids/signs of interest to review pa-
pers, not the actual ratings reviewers assign to papers after
reading and evaluating them.) A rating rui indicates the
preference by reviewer u of paper i, where high values mean
stronger preferences. Usually the vast majority of ratings
are unknown, e.g., the ICDM data involves 529 papers, 203
reviewers, and only 6267 bids. In ICDM’07, the given bids
are between 1 and 4, indicating preferences as follows: 4=
“High”, 3=“OK”, 2=“Low” and 1=“No” and we aim to make
predictions in the same space.

We distinguish predicted ratings from known ones, by us-
ing the notation r̂ui for the predicted value of rui. To eval-
uate the models we assess RMSE over 100 random 90-10
training-test splits. We hasten to add that we do not ad-
vocate the myopic view of RMSE [4] as the primary crite-
rion for recommender systems evaluation. We use it in this
section primarily due to its convenience for constructing di-
rect optimizers. In the next section we will evaluate perfor-
mance according to criteria more natural to CPAP. We also
note that small improvements in overall RMSE will typi-
cally translate into substantial improvements in bottom-line
performance for predicting reviewer-paper preferences.

The model we learn is of the form:

r̂ui = µ + bu + bi + p
T
u qi +
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and we proceed to explain each of the terms below.

2.1 Baseline model
Much of the variability in the data is explained by global

effects, which can be reviewer- or paper-specific. It is im-
portant to capture this variability by a separate component,
thus letting the more involved models deal only with genuine
reviewer-paper interactions. We model these global effects
through the first three terms of Eq. 1, i.e., µ + bu + bi. The
constant µ indicates a global bias in the data, which is taken
to be the overall mean rating. The parameter bu captures
reviewer-specific bias, accounting for the fact that different
reviewers use different rating scales. Finally, the paper bias,
bi, accounts for the fact that certain papers tend to attract
higher (or, lower) bids than others. We learn optimal values
for bu (u = 1, . . . , m) and bi (i = 1, . . . , n), by minimizing
the associated squared error function with just these three
terms (along with some regularization to avoid overfitting).
The resulting average test RMSE is 0.6286.

A separate analysis of each of the two biases shows re-
viewer effect (µ+ bu, with RMSE 0.6336) to be much more
significant than paper bias (µ + bi, RMSE 1.2943) in re-
ducing the error. This indicates a tendency of reviewers
to concentrate all ratings near their mean ratings, which is
supported by examination of the data.

While the baseline model could explain much of the data
variability, as evident by its relatively low associated RMSE,

it is useless for making actual assignments. After all, it gives
all reviewers exactly the same order of paper preferences.
Thus, we are really after the remaining unexplained vari-
ability, where reviewer-specific preferences are getting ex-
pressed. Uncovering these preferences is the subject of the
next subsections.

2.2 A factor model
Latent factor models (e.g., [3]) comprise a common ap-

proach to collaborative filtering with the goal to uncover
latent features that explain observed ratings. The premise
of such models is that both reviewers and papers can be
characterized as vectors in a common f -D space. The in-
teraction between reviewers and papers is modeled by inner
products in that space, the fourth term of Eq. 1. Here,
pu ∈ R

f and qi ∈ R
f are the factor vectors of reviewer u

and paper i, respectively. The resulting average test RMSE
is slowly decreasing when increasing the dimensionality of
the latent factor space. E.g., for f = 50 it is 0.6240, and
for f = 100 it is 0.6234. Henceforth, we use f = 100.

2.3 Subject categories
While latent factor models automatically infer suitable

categories, much can be learned by known categories at-
tributed to both papers and reviewers. ICDM’07 submis-
sions specify a number of predefined categories as primary
and secondary topics for a given paper. We model the en-
tered matching between paper i and category c by:

σic =

8

<

:

1 c ∈ primary(i)
1
2

c ∈ secondary(i)
0 otherwise

The value assignment (1 for “primary”, 0.5 for “secondary”)
is derived by cross validation and is quite intuitive. Simi-
larly, we use the following for matching reviewers with their
desired categories:

θuc =

8

<

:

1 c ∈ interest(u)
− 1

2
c ∈ no interest(u)

0 otherwise

Notice that in ICDM’07, reviewers could specify lack of in-
terest (or inability to) review papers from certain categories
(this is different from conflicts of interest, discussed later).

In the fifth term of Eq. 1, the weights wc indicate the sig-
nificance of each category in linking a reviewer to a paper,
and are learnt automatically by minimizing the squared er-
ror on the training set. It is plausible that, e.g., a mutual
interest in some category A, will strongly link a reviewer to
a paper, while a mutual interest in another category B is less
influential on papers choice. Table 1 depicts results of this
analysis, showing differences in orders of magnitude in the
ability of different categories to correctly predict associations
of reviewers to papers. Note in particular that there is no
obvious monotonic relationship between the weight imputed
to categories and the number of papers/reviewers associated



Table 1: Subject categories, inferred weights, number of reviewers (with expertise in that category), and
number of papers (assigned to the category). For brevity, only a few categories are shown.

Category Weight # reviewers # papers

(wc) primary (secondary)
Healthcare, epidemic modeling, and clinical research 0.395121 31 7 (7)
Security, privacy, and data integrity 0.334821 23 12 (6)
Handling imbalanced data 0.284398 24 6 (10)
Mining textual and unstructured data 0.245319 66 38 (30)
Mining in networked settings: web, social and computer networks, 0.206318 62 44 (29)

and online communities
Novel data mining algorithms in traditional areas (such as classification, 0.089248 91 147 (71)

regression, clustering, probabilistic modeling, and association analysis)
Dealing with cost sensitive data and loss models 0.03453 12 4 (4)
Algorithms for new, structured, data types, such as arising in 0.006015 60 21 (25)

chemistry, biology, environment, and other scientific domains

with the category. When adding subject categories to the
baseline and factor models, the resulting RMSE is 0.6197.

2.4 Paper-paper similarities
We inject paper-paper similarities into our models in a

way reminiscent of item-item recommenders [6]. The build-
ing blocks here are similarity values sij , which measure the
similarity of paper i and paper j. The similarities could be
derived from the ratings data, but those are already covered
by the latent factor model. Rather, we derive the similarity
of two papers by computing the cosine of their abstracts.
Usually we work with the square of the cosine, which better
contrasts the higher similarities against the lower ones.

In the sixth term of Eq. 1, the set R(u) contains all papers
on which u bid. The constant α is for regularization: it is
penalizing cases where the weighted average has very low
support, i.e.

P

j∈R(u) sij is very small. In our dataset it was
determined by cross validation to be 0.001. The parameter
γ sets the overall weight of the paper-paper component. It is
learnt as part of the optimization process (cross-validation
could have been used as well). Its final value is close to 0.7.
When this term is combined with the overall scheme, the
RMSE drops down further to 0.6038.

2.5 Reviewer-reviewer similarities
We craft reviewer-reviewer similarities suv analogously to

paper-paper similarities, measured as the number of com-
monly co-authored papers as reported in DBLP. We point
out that DBLP data might be incomplete, and co-authorship
does not imply similarity of research interests. Nevertheless,
our main contribution here is to show how to incorporate
reviewer-reviewer similarities in Eq. 1 and more sophisti-
cated ways to define suv can be readily plugged in. By in-
tegrating this factor, the RMSE is 0.6015.

2.6 Conflicts of interest (CoI)
A final source of data is conflicts of interest for certain (pa-

per, reviewer) combinations, e.g., the reviewer might be the
former advisor of the author. Many conferences define what
it means to have a CoI and solicit this information explicitly
during the bidding phase. We do not aim to model/predict
new CoIs but show in the next section how they are incor-
porated to avoid making erroneous assignments.

3. OPTIMIZING PAPER ASSIGNMENT
Our predicted preference matrix can now be supplied as

input to any of the assignment algorithms discussed in [2].
We chose the Taylor algorithm [7] as a representative exam-

ple because it was used during ICDM’07 and thus enables a
baseline comparison with an approach that does not perform
any preference modeling. It can incorporate global confer-
ence constraints such as the desired number of reviewers for
each paper (kp), and a desired maximum number of papers
for each reviewer (kr). (For ICDM’07, these values are 3
and 9, respectively.) Denoting the predicted ratings matrix
as R, the goal is to optimize the assignments matrix A [7]:

argmax
A

trace
“

RT A
”

= argmax
A

X

u

X

j

RujAuj , (2)

where Auj ∈ [0, 1] ∀u, j,

and
X

j

Auj ≤ kp, ∀u,

and
X

u

Auj ≤ kr, ∀j.

Here, the objective criterion—trace
`

RT A
´

—captures the
global affinity of all reviewers across all their assigned pa-
pers. CoIs can be modeled by hardwiring the desired entries
of A (to zero) and taking them ‘out of play’ in Eq. 2.

This integer programming problem is reformulated into an
easier-to-manage linear programming problem by a series of
steps, using the node-edge adjacency matrix, where every
row corresponds to a node in A, and every column repre-
sents an edge [7]. This reformulation is a bit more com-
plicated, but essentially renders the problem solvable via
methods such as Simplex or interior point programming. In
particular, as Taylor shows in [7], because the reformulated
constraint matrix is totally unimodular, there exists at least
one globally optimal assignment with integral (and due to
the constraints, Boolean) coefficients.

4. EXPERIMENTAL RESULTS
We have already shown the ability of our modeling to

better capture reviewer-paper preferences. But do the im-
proved models translate into better assignments? Note the
key distinction between recommendations and assignments.
To evaluate assignment quality, we extend the train-test
methodology from above. In other words, both the predic-
tion algorithm and the assignment algorithm cannot see the
originally given preferences within the test set. We use the
training set to learn model (1), predict all ratings using this
model, and feed these predictions as input to (2). While the
resulting assignment will be spread across the training and
test sets, we will specifically evaluate those made from the
test set and determine whether the reviewer had rated them
as ‘No,’ ‘Low,’ ‘OK,’ or ‘High.’ This methodology mimics



the real life scenario where the given reviewer ratings (cor-
responding to the training set) are limiting the possibilities
of the assignment algorithm, but by revealing more ratings
through our prediction phase, we aim to gain the flexibility
to provide better assignments. As the proportion of the test
set increases, we take away more available preferences, which
simulates an increasingly harsher assignment environment.

However, before using Taylor’s model (2), it is important
to balance the rating scale of various reviewers. For exam-
ple, some reviewers are very enthusiastic and tend to give
mostly high ratings, while others are more cautious and give
low ratings. While our preference modeling captures such
variance, it is unnecessary for the assignment phase since
Taylor’s model would concentrate only on reviewers with
high ratings, which is undesirable. Thus, we suggest two
alternative per-reviewer normalization strategies:

1. Subtract the per-reviewer mean from each predicted
rating to find the residual rating for each potential as-
signment combination. (Henceforth dubbed as Resid.)

2. Calculate normalized ratings for each reviewer, so
that the sum of each reviewer’s predicted ratings is 1.
(Henceforth dubbed as Norm.)

Regardless of the chosen normalization scheme, we add the
normalized predicted rating to the original preferences (if
it is part of the training data) or to the mean rating value
(2.5) (for test data; recall that this is between the ‘Ok’ and
‘Low’ ratings). This forms our final input matrix R, which
we feed into Taylor’s optimization algorithm.

We evaluate many train-test splits, averaging 100 random
trials for each split. The baseline is Taylor’s original al-
gorithm, where all missing ratings, including those in the
test set, are treated as “unknowns.” We compare this base-
line against the two aforementioned alternatives, Resid and
Norm, with an identical handling for missing ratings. Specif-
ically, we look at the proportion of assignments from the test
set that fall in the ‘No,’ ‘Low,’ ‘OK,’ and ‘High’ categories.

Table 2: Evaluating assignments: observe the dra-
matic improvement from the baseline (Taylor) to our
methods (Norm and Resid).

Method Test Ratings
set ‘No’ ‘Low’ ‘OK’ ‘High’

Taylor 30% 59.9% 0.1% 30.2% 8.5%
Taylor 40% 63.3% 1.4% 22.5% 12.7%
Taylor 50% 63.6% 2.6% 17.4% 16.4%
Norm 30% 16.5% 0.4% 25.3% 54.2%
Norm 40% 11.9% 5.1% 23.8% 59.2%
Norm 50% 13.2% 5.5% 25.2% 56.1%
Resid 30% 11.1% 3.2% 24.6% 61.0%
Resid 40% 10.9% 3.2% 24.5% 61.3%
Resid 50% 11.2% 4.0% 24.1% 60.6%

The results presented in Table 2 were fairly consistent
across different test set proportions. As illustrated here, the
predominant number (around 60-65%) of test assignments
made using the original preference matrix (Taylor) fall in
the unpreferred (“No”) category, mirroring experiences dur-
ing ICDM’07 organization1. On the other hand, when im-
1The assignments were manually re-wired afterward.

puting the missing ratings using either Resid or Norm, the
balance completely changes in favor of higher quality pref-
erences. Resid makes about 60% of test assignments out of
the highest quality ratings (“High”), and only about 12%
of test assignments are bad (“No”). Norm is close, but not
quite as good as Resid, a difference that should be further
investigated over additional datasets. Overall we find that
the results strongly support our contention that assignment
quality can be increased by providing more flexibility with
additional ratings from which to choose.

5. DISCUSSION
Why does our approach work? Especially with harsh

train-test splits? If we view a reviewer’s preferences as a
partial order over papers, we can think of our approach
as ‘straightening’ out the partial order into a total order
that is consistent with multiple sources of data. We in-
tend to provide theoretical justification for our empirical re-
sults using this viewpoint. The second new aspect to our
work is the integration of recommendation and optimiza-
tion/constraint satisfaction. In the future we seek to study
how recommenders help aid optimization routines by pro-
viding additional ‘cues’ or flexibilities in constraint satisfac-
tion/search. Besides CPAP, this has applications to com-
bined recommendation-optimization scenarios such as tar-
geted marketing and advertising under resource constraints.
Finally, to gain qualitative user feedback, we intend to field
the recommendation/assignment capabilities presented here
in a real conference management system and gain further
insights into the issues involved.

6. ACKNOWLEDGEMENTS
We thank Prof. Xindong Wu, Steering Committee chair

of IEEE ICDM for permission to use bidding and auxiliary
data from ICDM’07.

7. REFERENCES
[1] C. Basu, H. Hirsh, W. Cohen, and C. Nevill-Manning.

Technical paper recommendation: a study in combining
multiple information sources. Journal of AI Research,
pages 231–252, 2001.

[2] D. Conry, Y. Koren, and N. Ramakrishnan.
Recommender systems for the conference paper
assignment problem. Technical report, arXiv:
0906.4044v1, 2009.

[3] T. Hofmann. Latent semantic models for collaborative
filtering. ACM TOIS, 22:89–115, 2004.

[4] S. McNee, J. Riedl, and J. Konstan. Being accurate is
not enough: how accuracy metrics have hurt
recommender systems. In CHI Extended Abstracts,
pages 1097–11101, 2006.

[5] D. Mimno and A. McCallum. Expertise modeling for
matching papers with reviewers. In Proc. KDD’07,
pages 500–509, 2007.

[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW’01, pages 285–295, 2001.

[7] C. J. Taylor. On the optimal assignment of conference
papers to reviewers. Technical Report MS-CIS-08-30,
University of Pennsylvania, 2008.


