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Abstract

Event detection in online social media has primarily focused

on identifying abnormal spikes, or bursts, in activity. How-

ever, disruptive events such as socio-economic disasters, civ-

il unrest, and even power outages, often involve abnormal

troughs or lack of activity, leading to absenteeism. We

present the first study, to our knowledge, that models ab-

senteeism and uses detected absenteeism instances as a basis

for event detection in location-based social networks such as

Twitter. The proposed framework addresses the challenges

of (i) early detection of absenteeism, (ii) identifying the locus

of the absenteeism, and (iii) identifying groups or commu-

nities underlying the absenteeism. Our approach uses the

formalism of graph wavelets to represent the spatiotemporal

structure of user activity in a location-based social network.

This formalism facilitates multiscale analysis, enabling us

to detect anomalous behavior at different graph resolutions,

which in turn allows the identification of event locations and

underlying groups. The effectiveness of our approach is e-

valuated using Twitter activity related to civil unrest events

in Latin America.

1 Introduction.

Social microblogs such as Twitter and Weibo are expe-
riencing explosive growth, with billions of users globally
sharing their daily status updates online. For exam-
ple, as of September 30, 2016 Twitter had more than
317 million average monthly active users (78% of whom
were using mobile devices)1. Various studies have shown
that Twitter is a viable ‘social sensor’, and thus holds
great promise for detecting and forecasting significant
societal events [16]. In recent years, a significant body
of research [1, 10, 11, 16, 17, 23, 24] has focused on
modeling bursts and increases of user activity on social
media.

However, real world events are not only correlated
with burst signals, but can also lead to unusually low
levels of activity in social networks. An example of this
phenomenon is shown in Figure 1, where a protest in

∗Virginia Tech.
†SUNY Albany.
1http://www.statista.com/statistics/282087/number-of-

monthly-active-twitter-users/

Figure 1: Detected group absenteeism in Natal, Brazil
beginning at 6:00 PM on June 17, 2013. This absenteeis-
m event coincides with a large protest that happened in
the region.

the city of Natal, Brazil, began at 5:00 PM (local time)
at the Museum of the Republic, with people gradually
joining the demonstration. On Twitter, there was an
uncharacteristic lull in activity or group absenteeism
behavior in the area for the two hours from 6:00 PM
to 8:00 PM that day.

Developing a better appreciation of this phe-
nomenon of unusually calm behavior online holds enor-
mous potential for understanding localized, disruptive,
societal events. In this paper we focus on absenteeism as
a key phenomenon of interest and develop novel group
anomaly detection algorithms for this purpose. An ab-
senteeism event in a social network can be defined as an
event which is characterized by a significant lull in activ-
ity such as a sudden, sharp decrease of Twitter volume
within a short period of time (and which may precede
a major burst in activity as people react to the even-
t). This paper presents the first study to systematically
investigate group anomalies in location-based social net-
works, and has the added advantage of accommodating
both absenteeism and bursts. To appropriately incorpo-
rate absenteeism concepts into our detection approach,
we must first address the following questions:

• How can we define/adapt anomaly detection algo-
rithms to capture not just bursty situations but also
those that involve absenteeism?

• At what scale should we model the absenteeism ac-
tivity and how can we isolate the locus of interest?

• What is the most efficient way to select abnormal



groups that are spatially and temporally localized?

• How do we model an absenteeism signal for event
detection?

A graph wavelet approach offers several outstanding
advantages to study the above questions, including
scalability, localization, low computational complexity,
and compactness in defining groups. In this formalism,
the data objects are embedded in a general graph
as vertices. By employing wavelet transforms on the
graph, we can construct a wavelet function with a graph
structure. We propose the use of a graph anomaly index
that depends on the graph structure in conjunction
with an absenteeism score vector in order to define
whether a graph is abnormal. When a graph is deemed
to be exhibiting abnormal behavior, we can calculate
its wavelet coefficient to identify the central node and
its coverage area. This approach will enable us to
select abnormal groups at different scales. Such group
anomaly detection methods are varied and proven to be
effective in detecting events such as protest marches.

Our contributions are thus:

• To the best of our knowledge this is the first
study to utilize group absenteeism as a basis for
event detection. By studying different types of
group anomalies, both bursts and absenteeism, we
demonstrate that these anomalies are indicative of
key disruptive events such as protests.

• We incorporate graph wavelets as a mechanism to
detect the most anomalous subgraphs at different
scales. We demonstrate the power of this approach
for social media analytics.

• We define a graph anomaly index that can be used
to determine whether a graph is abnormal. We
then apply the graph wavelet to locate the central
node and identify the abnormal groups.

2 Related work

Group Anomaly Detection. Anomaly detection
in graphs has been well studied using outlier detection
methods [2]. When considering group concepts, two di-
rections have been explored [3], namely anomalies in un-
labeled/plain graphs [12] and those in attributed graph-
s. In plain graph anomaly detection, since the only
information provided is its structure, features such as
distances and communities [21] have been employed to
define graph anomalies. In one interesting study [9], ad-
ditional metrics such as vertices, edges, degree, weight,
and connected components are incorporated into the
detection framework. In attributed graphs, features re-
garding node behaviors make it possible to create a rich-
er graphical representation, which is usually connected

with one or more real-world applications. Other stud-
ies, for example [25] define groups based on the nature
of the role, and model normal groups that follow the
same pattern with respect to their role mixture rates.

Event Detection. Traditional approaches focus
on capturing the spatiotemporal burstiness of keyword-
s [11]; Kalman filtering to track the geographical trajec-
tories of hot spots of tweets related to earthquakes [16];
detecting topics of interest that are coherent within spe-
cific geographic regions [6, 10, 24]; applying clustering-
based approaches to search for emerging clusters of doc-
uments or terms using predefined similarity metrics that
consider factors such as term co-occurrences and social
interactions [1, 17, 23]; and using the notion of com-
pactness of a graph [14] to detect events.

Graph Wavelets. One of the key challenges fac-
ing our research is the need to adapt a detection pro-
cedure to encompass both missing and bursty activity
groups. To address this issue, we incorporate spectral
graph wavelets [8] into our algorithm. This strategy
has previously been found to be quite effective for mul-
tiscale community mining [22]. Wavelet methods based
on spectral graph theory have been applied to a wide
array of data mining tasks such as community detec-
tion, anomaly detection [4], and other machine learning
problems [5, 7, 15, 18, 20].

3 PROBLEM SETTING

3.1 Notation We are given an undirected, weighted
graph G(V,E; f), where V = {v0, v1, ..., vN−1} repre-
sents the set of N cities and E refers to the connec-
tions between neighboring cities. W is a matrix of
non-negative weights associated with each edge, where
eij ∈ E. The function, f : V → RN operates on the
vertices of graph G, and f(n) stands for the value on
the vertex vn. Graph G’s adjacency matrix A is of size
N ×N , where each element aij is represented as:

(3.1) aij =

{
wij when eij ∈ E

0 otherwise

Here, A is symmetric since aij = aji. Let di =
∑
vj∈V

aij

be the sum of all edge weights that are incident on
vi, and D be the diagonal matrix denoted as D =
diag{d1, d2, . . . , dN}. A Laplacian matrix L is defined
as L = D−A. It is a symmetric matrix and has real
eigenvalues λi such that 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤
λN−1 = λmax. The complete set of L’s normalized
eigenvectors χi for i = 0, 1, 2, ..., N − 1 is described as:

(3.2) Lχi = λiχi



The set of eigenvalue and normalized eigenvector pairs
is denoted as:

(3.3) σ(G) := {(λl, χl)}N−1l=0 .

σ(G) is also called the graph spectrum of G.

3.2 Problem Statement We focus on the problem
of group anomaly detection from online social networks,
based on the absenteeism behavior observed in user ac-
tivity in geographically proximal communities or group
of cities. Conventionally, this problem can be described
as following: given a graph G(V,E; f t), where f t repre-
sents absenteeism score vector at time interval t, select
a subset P ⊆ V , such that

P = arg min
P⊆V,P is compact

∑
vk∈P

f(k)(3.4)

Defining compactness of the selected subset P is, of
course, the key issue here. A general solution to this
problem involves employing a combinatorial optimiza-
tion method; by defining a constrained objective func-
tion over a network one can identify a subset of vertices
which minimize the corresponding function [14]. There-
fore, Equation 3.4 can be modified as:

P = arg min
P⊆V

∑
vk∈P

f(k) + λµ(P ),(3.5)

where µ(P ) is the compactness penalty function of P
(e.g., the sum of distances among all pairs of the vertices
in P [14]), and λ is the regularization parameter.
However, such methods suffer from the following issues:

1. Definition of the compactness function µ(P ) is
subjective.

2. Determination of an appropriate regularizer λ is
difficult, as we do not have sufficient training data
for this purpose.

3. To solve this objective function is often a NP-
hard problem [14], which makes it impractical in
many real world applications. Sometimes, even
the approximate solutions are of high computation
complexity, if there are any.

In contrast, our approach proposes a novel group
anomaly algorithm for social networks that is based
on spectral graph wavelet theory. The graph wavelets
focus on the intrinsic geometric structure of the graph
by transforming each vertex vi ∈ V , and mining
the topological information of both local and global
centered vertices to support a multiscale analysis. In
addition, the graph wavelet approach identifies anomaly

groups that are automatically compact, and provides a
fair method at a low computational cost in terms of
complexity for identifying abnormal group behavior in
broad application scenarios.

4 ALGORITHMS

4.1 Graph Fourier Transform Given a signal f
defined on graph G, its graph Fourier transform is
considered as the projection of f on the complete set
of {χl}N−1l=0 , and is written as [8]:

(4.6) f̂(l) =< χl, f >=

N∑
i=1

χ∗l (i)f(i)

Since {χl}N−1l=0 is complete, f can be recovered by its

graph Fourier transform coefficients f̂(l) as [8]:

(4.7) f(n) =

N−1∑
l=0

f̂(l)χl(n)

Here, f̂(l) is the coefficient of component χl.

4.1.1 Eigenvector χl. As an analog with classical
signal processing, the eigenvector χl is also referred
to as the frequency of G by some researchers. In
the latter part of this paper, χl will be referred to as
the eigenvector or frequency, alternatively. However,
unlike the traditional frequency concept in classical
signal processing fields, the frequency of G is a set
of discreet vectors with length of |V |. Interestingly,
like the classical signal Fourier transform, the Parseval
relation [19] still holds, i.e.,

(4.8) ||f̂ ||22 = ||f ||22

Equation 4.8 means that the energy in the vertex
domain and frequency domain is equal for any graph
signal f . Without loss of generality, we assume ||f ||2 =
1.

4.1.2 Eigenvalue λl. According to the definition of
eigenvalue λl in Equation 3.2, the following equation
holds:

(4.9) χTl λlχl = χTl Lχl =
∑

emn∈E
wmn[χl(m)− χl(n)]2

Since χl is normalized, and ||χl||2 = 1,

(4.10) χTl λlχl = λl =
∑

emn∈E
wmn[χl(m)− χl(n)]2

From equation 4.10, we can see that λl summarizes al-
l the eigenvector deviations on any directly connected



Figure 2: Example graph G1 where all edges’ weights
are 1.

vertices vm and vn in G. Since each term in the summa-
tion of the right-hand side is non-negative, the eigenvec-
tors associated with smaller eigenvalues are smoother;
i.e., the component differences between neighboring ver-
tices are small [19]. As the eigenvalue increases, larg-
er differences in neighboring components of the graph
Laplacian eigenvectors are present. Hence, for larger
λl, its corresponding eigenvector, χl(n), has larger de-
viation among connected vertices. According to the def-
inition of Laplacian matrix L, it is easy to verify that
λ0 = 0 since L · ~1 = 0 · ~1, where ~1 = {1, 1, 1, ..., 1},
and χo(n) =

~1√
N

. Thus, χo(n) =
~1√
N

means that χo(n)

is constant on each vertex, and that there is no devia-
tion among any two vertices in χ0(n). For this reason,
χ0(n) is considered as the least abnormal componen-
t of G. Similarly, χN−1(n) is considered as the most
abnormal component of G.

Figure 2 shows an undirected graph G1 where
each edge’s weight is 1. Figure 3(a) shows G1’s six
eigenvectors distributions along each vertex. We can
see that χ0 is constant on very vertex, and has the
smallest deviations along each edge. χ5 has the largest
deviations, and the difference of χ5 along each edge is
larger than any other eigenvector on average.

4.2 Global Anomaly Index To quantify the
anomaly of a vector f defined on a graph G, it’s nec-
essary to incorporate the intrinsic structures of G and
f . As discussed above, f̂(l) represents the coefficient of

frequency χl, and f̂2(l) is considered as the energy of
frequency χl. In addition, according to equation 4.10,
λl represents the deviation of frequency χl along all the
connected vertices. Therefore, in this paper, we define
the anomaly index of χl in f as:

(4.11) γf (l;G) = λlf̂
2(l) = λl < f, χl >

2

γf (l;G) depends on two parts: frequency χl’s deviation

sum λl, and its energy f̂2(l). If the energy f̂2(l) is
small, even if λl is large, the anomaly index of χl
might be small. Obviously, γf (0;G) is always 0 since
λ0 = 0. Further, we use the maximal value of γf (l;G)
to represent the global anomaly of f on G:

(4.12) γf (G) = max
0≤l≤N−1

γf (l;G).

(a)

(b)

(c)

Figure 3: (a): Eigenvector distribution along each
vertex in graph G1. (b): anomaly index γf (l) of
f1 = [2, 3, 4, 3, 2, 1] on graph G1. (c): anomaly index
γf (l) of f1 = [2, 3, 4, 3, 2, 1] and f2 = [2, 2,−3, 4, 3, 1] on
graph G1, where γf1 = 0.905, and γf2 = 0.073, labelled
in red ovals.

Here, γf (l;G) refers to the anomaly extension of χl
in f defined on G, instead of implying the anomaly
extension of vertex vl. For brevity, γf (l;G) and γf (G)
are shortened as γf (l) and γf , respectively, when G is
known.

Figure 3(b) plots the anomaly index γf (l) of f1
on graph G1, where f1 = [2, 3, 4, 3, 2, 1]. The six
markers on the dashed blue are the six eigenvalues of
G. The yellow line is |f̂(l)|, and the pink line is the
anomaly index, with γf (l) for frequency χl. Because

γf (l) depends on both λl and its power f̂2(l), for the
yellow line, even though χ0 has the strongest power, its
deviation λ0 = 0, thus γf (0) = 0. On the other hand, χ5

has the largest deviation but its power |f̂(5)|2 is small,
which makes γf (5) is also small. Considering that χ4

has a high deviation (eigenvalue) and a strong power of
frequency, it has the largest anomaly index. To compare
the influence of different f on anomaly index, we show
an example in Figure 3(c). Setting f1 = [2, 3, 4, 3, 2, 1]
and f2 = [2, 2,−3, 4, 3, 1], we plot their anomaly index

γf and energy |f̂(l)| respectively. The blue curves stand
for anomaly indices and the orange curves stand for
|f̂(l)|. The solid line stands for f1, and the dashed line
stands for f2. As we can see, for high frequency χl, f1
has a larger power than f2, and hence a higher anomaly



(a) G2 (b) G3

Figure 4: f = [1, 2, 5, 2] on two graphs G2 and G3.

Figure 5: Anomaly indices of G2 and G3.

index than f2, where γf1 = 0.905 and γf2 = 0.073. This
is consistent with that f1 has larger deviations than f2.

As we discussed before, the anomaly index depend-
s on graph structure and f . As shown in Figure 3(c),
different f might have very different anomaly index be-
cause the power of χl distribution is different. Similarly,
for the same signal f on two different graphs, it might
have very different anomaly indices. Figure 4 shows
two graphs with the same f = [1, 2, 5, 2]. Figure 5 il-
lustrates the anomaly index of f on G2 and G3, where
γf (G2) = 0.073 and γf (G3) = 0.235. (This is because
in G3 because there is no edge connecting v2 and v3,
the difference between f(2) and f(3) is not considered
as an anomaly.)

Remarks: In this subsection, we have introduced
the anomaly index γf (l;G) to measure the anomaly of
χl in f defined on G by combing the spectrum structure
of G and f . γf (l;G) depends on two parts: (1) the
eigenvalue which reflects the deviations of χl; (2) the

|f̂(l)|2 which represents the power of χl in f . γf (l;G)
reflects the anomaly index of χl. We use the maximal
value of γf (l;G) to define the anomaly index of f , which
denotes the global anomaly index of f on G.

4.3 Graph Wavelets Classic wavelet formalisms
have been referred to as mathematical microscopes be-
cause of their capability to depict signal anomalies at
different scales. In the case of complex networks, graph
wavelets render the graph with good localization proper-
ties both in frequency and vertex (i.e. spatial) domains.
Their scaling property allows us to zoom in/out of the
underlying structure of the graph.

Recall that, from Equation 4.6, the anomaly pat-
tern f̂(l) represents the anomaly components of f from
the whole graph perspective. However, information con-

cerning the vertex-location cannot be identified from the
Fourier transform. To address this issue, Hammond et
al. [8] proposed constructing wavelet transforms func-
tions over the vertices using weighted graphs, described
in the following steps:

1. Define a continuous generating kernel functions
g(x) on R+;

2. Then, select a central vertex a ∈ V and scale s, set
the frequency coefficients as g(sλl)χ

∗
l (a) for each

frequency component χl;

3. Finally, sum up all those frequency components χl.

In this way, the graph wavelet at central vertex a is
constructed as:

(4.13) ψs,a(n) =

N−1∑
l=0

g(sλl)χ
∗
l (a)χl(n)

After setting up the graph wavelet, the wavelet coeffi-
cients for f can be defined as

(4.14) Wf (s, a) =< ψs,a, f >=

N−1∑
l=0

g(sλl)f̂(a)χl(n)

Similar to classical wavelets, graph wavelets obey fol-
lowing three properties, which are presented in detail
in [8].

1. Reconstruction. When the kernel function g(x)
satisfies the admissibility condition and g(0) = 0,
f(n) can be reconstructed by the wavelet coeffi-
cients.

2. Discretization and Wavelet Frames. For prac-
tical applications, the scale s of graph wavelet ψs,a
should be sampled with a finite number of scales.
Given a real valued function h(x) satisfying

(4.15) ĥ(ω) =

√∫ ∞
ω

|ĝ(ω′)|2
ω′

dω′,

where ĝ and ĥ are the classical Fourier transform
of g(x) and h(x), the scaling function φa(n) can be
generated as:

(4.16) φa(n) =

N−1∑
l=0

h(λl)χ
∗
l (a)χl(n)

Accordingly, the scaling coefficients are defined as

(4.17) Sf (a) =< φa, f >



(a) wavelet ψs1,a (b) wavelet ψs2,a (c) f(n) vs vertices (d) Wf (s, a) vs scale s

Figure 6: Graph wavelet scale and graph wavelet coefficient.

Using scale set Θ := {sj}Jj=1, the discretized graph

wavelet set {ψsj ,a}Jj=1
N−1
a=0 , and scaling function

set {φa}N−1a=0 constitute a frame [8]. f ∈ RN can
be reconstructed from those NJ + J wavelet and
scaling coefficients as
(4.18)

f(n) =

vN−1∑
a=v0

[

J∑
j=1

Wf (sj , a)ψs,a(n) + Sf (a)φa(n)].

For brevity, we assume that

(4.19) φa(n) = ψs0,a(n),

(4.20) Sf (a) = Wf (s0, a).

Therefore, equation 4.18 can be written as

(4.21) f(n) =

vN−1∑
a=v0

J∑
j=0

Wf (sj , a)ψs,a(n).

In the later part of this paper, we do not differen-
tiate between scaling coefficient and wavelet coeffi-
cient. A detailed algorithm and treatment concern-
ing the choice of Θ can be found in [8].

3. Localization in vertex domains. Given a
central vertex va and its graph wavelet ψs,a(n),
suppose the kernel function g is K + 1 times
continuously differentiable, let vn be an vertex of
G with dG(n, a) > K, then there exist constants D
and β, such that

(4.22)
|ψs,a(n)|
||ψs,a||

≤ Dβ

for all s < β. dG(n, a) is the shortest path dis-
tance, which is the minimum number of edges in
any path that connect vertices vn and va [8]. Equa-
tion 4.22 shows for any vertex vn that is far away

from center vertex va (dG(n, a) > K),
|ψs,a(n)|
||ψs,a|| is

upper bounded by Dβ. In other words, for vertex

Algorithm 1 Group Anomaly Detection using Graph
Wavelets

1: Input: graph and absenteeism score vector G(V,E; f l) at

time interval l, wavelet threshold ωth.

2: Output: abnormal burst group set Ibur and absenteeism
group set Iabs.

3: compute graph spectrum σ(G);

4: set graph wavelets ψs,a(n) and scales set {sj}Jj=0 for all
a ∈ V ;

5: for all center node a ∈ V and sj ∈ {sj}Jj=0 do

6: compute Wf (sj , a);
7: if Wf (sj , a) ≥ ωth then

8: add group K(sj , a) to Ibur
9: end if

10: if Wf (sj , a) ≤ −1 ∗ ωth then

11: add group K(sj , a) to Iabs
12: end if

13: end for

14: return abnormal burst group Ibur and absenteeism group
set Iabs.

vn which is far away form vertex va, its wavelet val-
ue is linearly attenuated by scale s. When the scale
s is small, their wavelet value of marginal vertices
will be vanished quickly. The marginal vertices are
those which satisfy equation 4.22. All the other ver-
tices are called kernel vertices, denoted by K(s, a).
Obviously, ∀vn ∈ K(s, a), dG(n, a) ≤ K. Thus
K(s, a) is automatically compact. Figure 8 shows
two graph wavelets centered on the same vertex a,
but with two different scales, ψs1,a and ψs2,a, where
s1 < s2. The length of the vertical bar on each ver-
tex denotes its graph wavelet value. The highlight-
ed areas denote the kernel vertices (dG(n, a) ≤ 1),
and the others are marginal vertices. We can see
that the wavelet values on marginal vertices in Fig-
ure 6(a) are smaller than those in Figure 6(b). Fig-
ure 6(c) is f ’s distribution along each vertex, and
Figure 6(d) shows the wavelet coefficients with cen-
ter node a for different scales, which indicates that
Wf (s2, a) has the largest value, and Wf (s3, a) with
the smallest.



4.4 Group Anomaly Detection via Graph
Wavelets According to Equation 4.22, when s is small,
the weights of the marginal vertices are severely attenu-
ated. Essentially, Wf (s, a) is equivalent to the sum of f
with large weights on kernel vertices, and small weights
on marginal vertices. When f is of uniformly large neg-
ative/positive values on kernel vertices, then Wf (s, a)
will be a large negative/positive value with scale s.

The localization property of graph wavelets makes
them appropriate for group anomaly detection since
they automatically identify the kernel vertices from
marginal vertices. These kernel vertices form a com-
pact subset since each one of them is close to the
same center vertex a, which avoids the compactness
constraint condition in Equation 3.5, thus reducing
its computational complexity greatly. We propose our
group anomaly detection algorithm based on graph
wavelets in Algorithm 1. It iterates NJ + J times,
where each iteration selects a vertex as the center node,
and computes the wavelet coefficient Wf (sj , a) with
J+1 scales. When Wf (sj , a) is larger than some pre-set
threshold ωth, it considers the corresponding kernel
vertices, K(a), as an abnormal burst group. Similarly,
when Wf (sj , a) is smaller than −ωth, it considers K(a)
as an abnormal absenteeism group. Using the fast
algorithm for computing graph wavelets [8], the total
computational complexity in Algorithm 1 would be
O(J |V |2).

Remarks:

1. Graph wavelets form a frame where the function
f can be reconstructed by their coefficients. As
long as the scale level J is high enough, f can be
well decomposed into the frame basis. Thus, using
graph wavelets to exploit the structure of functions
defined on graphs is much more reasonable.

2. Graph wavelets transform selected kernel vertices,
K(s, a), that are close to the central vertex a, and
attenuate the impact of other marginal vertices
that are far away from a. The abnormal group se-
lected by graph wavelet approach is automatically
compact, and circumvent high computational com-
plexity, which makes is easily adaptable to a wide
variety of application scenarios.

3. Graph wavelets are able to identify abnormal
burst groups and absenteeism groups simultaneous-
ly without extra computation cost.

5 EXPERIMENTAL RESULTS

5.1 Data Collection and Preprocessing The s-
tudy described in this paper uses tweets geolocated to

(a) (b)

Figure 7: (a) Brazil’s 5-nearest-neighbor graph: 5321
cities, where all edges’ weights are 1. (b) Brazil’s z-score
distribution on July 31, 2013. The color bar shows the
scale of z-score.

Latin America and collected over a period of two years
(Jan 2013 to Dec 2014). We query Datasift’s streaming
API to collect tweets that also have meta-information
including geographical coordinates, Twitter places, user
profile location, and ‘mentions information’ about loca-
tions present in the body of the tweet. In cases when
no geographical location was found in the tweet text, we
proceed to process the geographical coordinates and the
self-reported location string in user’s profile metadata.

5.2 Experimental Setup
Graph Setup. Each city vi’s location is represent-

ed by its geographical coordinate pair lati and loni.
Instead of using the real physical distance, we define
the distance of any two cities vi and vj as dij =√

(lati − latj)2 + (loni − lonj)2. We setup graph G as
a k neighbors graph, which means each city is only con-
nected to its k-nearest-neighbors. In this paper, we set
k = 5, and all the edges’ weights in G are 1. Figure 7(a)
shows Brazil’s 5 nearest-neighbor graph with 5321 cities.

Absenteeism Score. Considering that the tweet
volume X varies vastly among cities, instead of using
X itself, we use the normalized value of z-score as
absenteeism score, which is defined as:

(5.23) z-score =
X − µ
σ

where µ is the mean value of the previous 30 day tweets
volume and σ is the corresponding standard deviation.
As shown in Figure 7(b), different node colors denote
different z-score values.

Kernel function g(x) and scaling function
h(x). Our choice for the wavelet generating kernel func-
tion, g(x), and scaling function h(x) is motivated by our
goal to achieve scale-dependent localization. We follow
the kernel function setting in [8], which behaves as a
monic power near the origin, and has power law decay



(a) wavelet ψs1,a (b) wavelet ψs2,a

Figure 8: Graph wavelets with center city v83. s1 =
1.31, s2 = 0.68.

for large x. g(x) and h(x) are set as:

(5.24) g(x) =

 x for x < 1
s(x) for 1 ≤ x ≤ 2

2x−1 for x > 2

where s(x) = −5 + 11x− 6x2 + x3.

(5.25) hx = 1.385 exp(−(
20x

0.6λmax
)4)

The scale set {sj}Jj=1 is selected to be equally logarith-
mically spaced between the minimum and maximum s-
cales s1 and sJ , which are defined in [8]. We set J = 6
in the experiment. Figure 8 shows two different scaled
wavelets on Brazil’s 5-nearest-neighbor graph. Compar-
ing Figure 8(a) with Figure 8(b), we can see that, when
scale increases, more cities (with deeper color) are se-
lected. We also try another kernel function, i.e. the
Mexican hat function, and find that as long as the ker-
nel function monotonicity is the same, the differences in
wavelet coefficients are negligible.

Anomaly index γf (G) and ωth. We claim that
the event frequency η is linear to γf (G), described as

(5.26) η = k0 ∗ γf (G) + k1

We use historical data to train k0 and k1 by a least
squares approach. Once we know k0 and k1, given a
new γ′f (G), the event number is estimated as m = dη′e.
Subsequently the threshold ωth is set as the mth largest
Wf (sj , a), for all a ∈ V , 0 ≤ j ≤ J .

5.3 Performance The data for this experiment was
gathered for three countries experiencing major protest
events, namely Brazil, Mexico and Venezuela, from Jan
2013 to Dec 2014. Taking the Gold Standard Report
(GSR) [13] as representing ground truth, we applied our
new graph wavelet approach as follows. For each day,
we determine whether there are any anomalies detected.
If there are, for each anomaly, we identify the group of

Table 1: The performance of graph wavelet vs. a
baseline method and a vanilla Z-score approach.

Country Method Precision Recall F-measure

Brazil Baseline 0.052 0.104 0.060

Z-score 0.117 0.307 0.159

Graph wavelet 0.404 0.262 0.292

Mexico Baseline 0.074 0.124 0.090

Z-score 0.221 0.147 0.168

Graph wavelet 0.397 0.384 0.408

Venezuela Baseline 0.078 0.053 0.059

Z-score 0.197 0.197 0.189

Graph wavelet 0.292 0.554 0.355

anomalous cities and compare this set with the GSR
to determine if the selected cities actually experienced
protest events on that day and thus show how many
of the model’s predictions matched the ground truth
and how many did not. (Note that there are many
causes of absenteeism besides civil unrest but here we
are attempting to determine if our detected events can
serve as a signal for such protest events.) We use
recall, precision, and the F-measure to evaluate the
model’s performance. To evaluate the effectiveness of
our new graph wavelet approach, we also compared the
results with those obtained using intuitive approaches
such as frequency based random assignment, referred to
here as the baseline model, and z-score based selection
methods. The baseline model was built according to
the historical protest records for each city and thus the
model’s predictions of the future occurrence of protests
were based on frequency. The z-score approach entails
selecting the group of cities whose z-score crosses the
threshold with |z-score| > 3.

We compared the performance of these three models
over the two year test period; the overall results are
shown in Table 1. Generally speaking, the new graph
wavelet approach exhibited better precision, recall, and
F-measure scores than the baseline model across all
three countries. The mean F-measure for the graph
wavelet detection across models and countries is greater
than that achieved by either of the other prediction
models. Interestingly, the graph wavelet approach
appears to operate at different efficiency levels for each
country. The false positives from this study are likely
to be useful themselves as they could be indicators of
other types of events, e.g., natural disasters, holidays,
blackouts, and other situations.

6 Discussion

Previous research has demonstrated the importance of
burst detection in Twitter. In this study, we argue
that group absenteeism can also be vital for detecting
disruptive societal events. Modeling absenteeism is
crucial because it can serve as a surrogate signal for



event detection. Unlike traditional event detection
methods, which identify real time events only after
they have occurred because the burst signal must first
be identified, an absenteeism signal can be observed
much earlier, thus providing greater foresight into future
events. Our approach addresses this shortcoming by
successfully modeling the ‘lull before the storm’. This
means that our proposed approach offers a significant
advantage over current strategies that focus solely on
modeling spike or burst related patterns for event
detection. In the future, we will investigate the impact
of k when setting up the k-nearest-neighbors graph, and
the scale level J as well. We also plan to extend the
absenteeism detection approach to other social media
platforms.
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