
Discovering Life Cycle Assessment Trees
from Impact Factor Databases

Naren Sundaravaradan and Debprakash Patnaik and Naren Ramakrishnan
Department of Computer Science

Virginia Tech, Blacksburg, VA 24061

Manish Marwah and Amip Shah
HP Labs

Palo Alto, CA 94304

Abstract

In recent years, environmental sustainability has re-
ceived widespread attention due to continued deple-
tion of natural resources and degradation of the envi-
ronment. Life cycle assessment (LCA) is a methodol-
ogy for quantifying multiple environmental impacts of
a product, across its entire life cycle – from creation
to use to discard. The key object of interest in LCA is
the inventory tree, with the desired product as the root
node and the materials and processes used across its life
cycle as the children. The total impact of the parent in
any environmental category is a linear combination of
the impacts of the children in that category. LCA has
generally been used in ‘forward’ mode: given an inven-
tory tree and impact factors of its children, the task is
to compute the impact factors of the root, i.e., the prod-
uct being modeled. We propose a data mining approach
to solve the inverse problem, where the task is to infer
inventory trees from a database of environmental fac-
tors. This is an important problem with applications in
not just understanding what parts and processes con-
stitute a product but also in designing and developing
more sustainable alternatives. Our solution methodol-
ogy is one of feature selection but set in the context of a
non-negative least squares problem. It organizes numer-
ous non-negative least squares fits over the impact fac-
tor database into a set of pairwise membership relations
which are then summarized into candidate trees in turn
yielding a consensus tree. We demonstrate the applica-
bility of our approach over real LCA datasets obtained
from a large computer manufacturer.

Introduction
In recent years, environmental sustainability has received
wide attention due to continued depletion of natural re-
sources and degradation of the environment. The growing
threat of climate change has led industry and governments
to increasingly focus on the manner in which products are
built, used and disposed – and the corresponding impact of
these systems on the environment. Another imperative for
increased interest in sustainability is the plethora of new en-
vironmental regulation across the globe, including voluntary

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or mandatory eco-labels for disclosure of environmental im-
pacts such as toxic effluents, hazardous waste, and energy
use.

The most common approach to quantifying broad envi-
ronmental impacts is the method of life cycle assessment
(LCA) (Baumann and Tillman 2004; Finkbeiner and others
2006), which takes a comprehensive view of multiple envi-
ronmental impacts across the entire lifecycle of a product
(from cradle to grave). LCA can, for example, be used to
answer questions like: “which is more environmentally sus-
tainable, an e-reader or an old-fashioned book?” (Goleman
and Norris 2010).

An LCA inventory for a product can be represented as a
tree, as shown in Fig. 1 for a desktop computer, with the
product as the root of the tree, and the materials and pro-
cesses used across its life cycle as its children. Each node
of the tree is associated with various environmental impact
factors as shown in Table 1. This table shows only three fac-
tors, but in practice the total number of impact factors in
many commercial databases (Frischknecht and others 2005;
PE International 2009; Spatari and others 2001) can run into
a few hundred. Similarly, the number of components (rows)
in Table 1 could run into hundreds or even thousands. Each
of the impact factors follows the tree semantics, i.e., the im-
pact factor of a parent node (e.g. desktop computer in Fig. 1)
is a linear combination of the impact factors of its children.
The coefficients of the linear combination denote the amount
of each component/process that was involved in constructing
the root node.

Assessing environmental impacts requires the creation of
vast databases containing lists of products, components and
processes which have been historically assessed, with spe-
cific environmental impact factors attached to each entry in
the list. The objective of this paper is to construct LCA trees
automatically, given a parent node and such an impact factor
database. Note that although the impact factors of all nodes
(including the parent) are known, there is no easy way to in-
fer the parent-child relationships from the database. To see
why automated discovery of LCA trees is useful, we con-
sider the following two use cases: (1) Assessment valida-
tion: manufacturers may put carbon labels (the impact fac-
tors) on their products, but not necessarily publish any un-
derlying information. No method in the field exists today
to validate the claims other than elaborate/expensive man-

Table 1: Impact factors of some nodes in the desktop computer LCA tree

Sewage treatment Radioactive waste Impacts on vegetation
(m3 waste water) (kg waste) (RER m2 ppm h)

eco-toxicity land filling photochemical ozone formation
Electricity 113.98 6.0638E-5 1.9741
Steel 1726.5 4.8377E-5 11.778
CD-ROM Drive 56106 1.0936E-3 109.59
HDD 27314 7.369E-4 66.808
Power Supply 40160 2.039E-3 224.44
Circuit Board 593750 1.0298E-2 983.24
Aluminium 2035.5 3.1756E-4 34.727
ABS Plastic 1838.7 7.2846E-7 25.36

HDD	

Desktop	 Computer	

CD-‐ROM	 Drive	
Power	 Supply	

Disposal	

…	
Electricity	

Steel

Steel
Circuit Board Aluminum ABS Plastic

Figure 1: An example of a desktop LCA tree.

ual audits. In such cases, discovering the LCA trees could
determine whether the disclosures are reasonable; (2) Sus-
tainable re-design: it is usually too expensive and time-
consuming for a supplier to estimate the impact of a product
(parent) based on all its children, so a node in the impacts
database approximately equivalent to the parent (root) is se-
lected and the footprint computed without knowledge of its
LCA tree. While this does give us a total footprint of the par-
ent, it does not give any insight into a “hotspot” analysis, i.e.,
which components/processes (children) are the most signif-
icant contributors to the total footprint – information that
could be vital in improving the sustainability of the product.

Our primary contributions are: i) identification and formu-
lation of the LCA tree discovery problem; ii) a methodology
to organize numerous non-negative least squares fits over the
impact factor database into a set of pairwise membership re-
lations which are then summarized into candidate trees in
turn yielding a consensus tree; iii) successful demonstration
of our approach to reconstruct six trees from a database of
impact factors provided by a large computer manufacturer.

Problem Formulation
The LCA tree discovery problem can be formulated as fol-
lows. Given an impact factor database L (a k×p real matrix
between k nodes N = {n1, . . . , nk} and p impact factors
M = {m1, . . . ,mp}) and a specific node ni ∈ N , the task

is to reconstruct the tree of containment relationships rooted
at ni and having elements fromN −ni, such that the impact
factor vector (of length p) of ni is a positive linear combina-
tion of the impact factor vectors of its children. Since, there
are many possible fits we specifically want to find nodes that
make a high contribution across many of the impact factors.
Note that technically a node can be a child of itself, e.g.,
desktop computers may be used in building a desktop com-
puter, however, such scenarios are not addressed in this pa-
per.

Essentially, the leaves of the LCA tree can be viewed as
defining a subspace (in impact factor space) and the vec-
tors at the internal nodes and the root node lie in this sub-
space. The leaf vectors may not form a true basis and, fur-
thermore, due to impreciseness in measurements the internal
nodes and root vectors may not be exact linear combinations
of the leaf vectors. Due to the positivity constraint, classi-
cal rank-revealing decompositions such as QR (Smith and
others 1989) do not directly apply here. Techniques such as
non-negative matrix factorization (NMF) do guarantee posi-
tivity of factors but will identify a new basis rather than pick-
ing vectors from L to use for the basis. The most directly
applicable technique is non-negative least squares regres-
sion (Lawson and Hanson 1974) but this has to be combined
with a feature selection methodology that aids in pruning out
nodes that are unlikely to constitute the object of interest.

Traditional feature selection methods (Koller and Sa-
hami 1996; Peng, Long, and Ding 2005) for classification
problems utilize mutual information criteria between fea-
tures and target classes of interest to identify redundant and
irrelevant features. Feature selection for regression, such
as implemented in packages like SAS, follows stepwise
(backward- or forward-) procedures for identifying and scor-
ing features. Since the space of subsets is impractical to nav-
igate in completeness, most such methods utilize heuristics
to greedily choose possibilities at each step. Our problem
here is unique due to two considerations: associativity and
substitutability. First, because life cycle inventories consti-
tute concerted groups of components that are composed into
a larger product, we require an ‘associative’ approach to fea-
ture selection, i.e., some components are relevant only when
other components are present. As a result, the feature selec-
tion methodology must be able to reason about conditional
relevance of features and clusters of related features in addi-

tion to predictive ability toward the target attributes (here,
the impact factors). Second, as described earlier, compo-
nents have a notion of ‘substitutability’ among themselves
and it is ideal if the feature selection methodology is geared
toward recognizing such relationships.

Methods
Our overall methodology for inferring LCA trees is given in
Fig. 2. We now present the conventions and steps underlying
this approach. As stated earlier, letN = {n1, . . . , nk} be the
set of nodes and M = {m1, . . . ,mp} be the set of impact
factors. L is the k × p impact factor matrix where Lij is the
value of impact factor j for node i.

Since the underlying core of LCA tree discovery is the
search for good non-negative least squares (NNLS) fits, we
will develop some machinery for reasoning about them.
Given the root node na we aim to find an NNLS fit for the
impact factors of na by considering the nodes in a set A
as potential children of na. Let f : N × 2N −→ {0, 1}
such that f(na, A) = 1 if and only if the nodes in A can be
children of na by an NNLS fit. In practice, we will impose
specific criteria for the accuracy of this fit and, consequently,
the definition of f .

Generators:

NNLS Fits: i

j

Root

Children …

Impact Factor Database:

Minimal set
of child nodes

Distribution of
NNLS fit constraints:

Nodej

N
od

e i

Clustering:

Sampling

Sample Candidate
Trees:

Impact factors

N
od

es

…

Generate
Consensus Tree:

Transitive
Reduction: Multi-level Tree

Figure 2: Methodology for discovering LCA trees.

First, when we reconstruct the impact factors for the root
node using the discovered tree and compare them to the

given impact factors, we will impose a parameter ε, the al-
lowable error for an impact factor. Second, we will require
at least η impact factors to conform to this error threshold.
The value of η is determined by assessing the general quality
of the NNLS fit by performing fits on various known trees.
Let NNLS : N × 2N −→ N be the NNLS function that
performs a fit with the given nodes and returns the number
of impact factors satisfying the ε error criteria. We say that
f(n,A) = 1 if NNLS(n,A) ≥ η.

A generator of a node na is defined to be a set of nodes A
such that f(na, A) = 1 and for all B ⊂ A, f(na, B) = 0.
In other words, the set A of nodes gives a good NNLS fit
for the node na but if we remove any node from A the fit
violates our criteria.

Example of generators
Let us consider an example with 9 nodes and 268 im-
pact factors. The parent node is a LiC6 electrode. This
parent has 5 ‘true’ children (which are a subset of the
given 9 nodes) while the other 3 nodes are irrelevant
nodes (recall that the 9th node is the parent). This is il-
lustrated in Figure 3. We will consider η = 214 and
ε = 0.15. The following sets of nodes are extracted
as generators: {664, 1056, 7224}, {411, 1056, 7224} and
{364, 1056, 7224}. However, {664, 1056, 7224, 9272} and
{364, 1056, 7224, 9272} are not generators because al-
though NNLS will produce a fit we can still remove node
9272 from these fits to produce the sets {664, 1056, 7224}
and {364, 1056, 7224}.

70
63

: L
iC

6 E
lec

tro
de

 (n
eg

ati
ve

)

271: Copper Carbonate

364: Acetylene

411: Heat (chemical plant)

664: Electricity (medium voltage)

1056: Aluminum (production mix)

1171: Aluminum (sheet rolling)

7224: Lithium

9272: Facilities (metal refinery)

Figure 3: Illustrative example for our methodology.

Finding one generator
Since a generator captures the minimality of subsets nec-
essary to have an NNLS fit at a desired level of accuracy,
we organize the search for generators in a level-wise fash-
ion. First, we concentrate on finding just one generator. It is
clear that if we regress with NNLS using all nodes as chil-
dren (which includes the correct children), we will obtain an
acceptable fit. Hence, an idea that readily suggests itself is
to begin with the set of all nodes and incrementally remove
nodes to see if the fit continues to satisfy the desired criteria.
If it does, we continue removing nodes until we encounter a
generator. Algorithm 1 presents this algorithm. It is written
to be more expressive, in particular to require a set of nodes
in the fit and to search for the (minimal) generator that con-
tains the given set of nodes.

Algorithm 1 FindGenerator(n,F ,L)
Require: A parent node, n; a set of nodes to fix, F ; a set of nodes,

L ⊃ F
Ensure: Final list of nodes L′

1: h← head of L
2: T ← tail of L
3: if h has been visited then
4: L′← L
5: else if h ∈ F then
6: L′← FindGenerator(n,F ,append h to end of T)
7: else
8: fits← f(n, T)
9: if h /∈ F and fits = true then

10: L′← FindGenerator(n,F ,T)
11: else
12: h← mark h as visited
13: L′← FindGenerator(n,F ,append h to end of T)

Table 2: Sampled distribution of constraints between NNLS
fits for the running example.

271 364 411 664 1056 1171 7063 7224 9272

271 40 0 0 0 40 0 0 40 0
364 0 40 0 0 40 0 0 40 0
411 0 0 40 0 40 0 0 40 0
664 0 0 0 40 40 0 0 40 0

1056 0 0 0 0 40 0 0 40 0
1171 0 0 0 0 40 40 0 40 0
7063 0 0 0 0 0 40 40 40 0
7224 0 0 0 0 0 40 0 40 0
9272 0 0 0 0 0 40 0 40 40

Organizing the search for generators
Generators give us a good idea about the possible set of
nodes we ought to consider. But the nodes in a generator are
inextricably tied to the other nodes and thus it is instructive
to get some understanding of how nodes co-exist in genera-
tors. Note that a generator is not itself a solution because we
only require the fit to satisfy η, which is not the maximum
number of impact factors that satisfy the error threshold. In
addition, we need several generators to understand how two
nodes are related to each other. Specifically, for each node ni
we use Algorithm 1 τ times to find generators containing ni.
The resulting distribution is tabulated as matrix D. Table 2
depicts this matrix for our running example with τ = 40;
we immediately notice similar rows in the table. We see that
fixing 7224 or 7063 produces the same distribution of nodes
within the generators indicating that the two ought to be kept
together. But, a weaker match is found between the rows for
271 and 1056. The next stages of the algorithm will exploit
these similarities by clustering similar distributions so that
we can start removing disimilar nodes first before we try to
remove similar nodes.

Finding candidate trees
We now cluster the rows of the distribution matrix D into κ
groups, with an eye toward balanced clusters. Recall that the
rows ofD denote conditional distributions and we are hence
aiming to identify similar conditioning contexts. The result-
ing list of clusters C is then subject to several processing
steps, as shown in Algorithm 2. The first step, the Remove-

Algorithm 2 CandidateTree(n,C)
Require: A parent node, n; a list of clusters C
Ensure: A list of reduced clusters C4

1: C1← RemoveFixed(n,C)
2: C2← IncreaseFits(n,C1)
3: C3← IncreaseFits(n,C2)
4: C4← RemoveFixed(n,C3)

Fixed stage, is described in detail in Algorithm 3. Here we
are aiming to prune the list of clusters. In this stage, we as-
sess the currently possible number of fits and aim to remove
clusters such that the number of fits does not change. Note
that this is a fairly stringent requirement unlike our previous
stage where we were searching for generators. Next, we in-
voke the IncreaseFits algorithm, described in Algorithm 4.
Here we are aiming to do a finer-grained pruning of clusters
by considering the removal of nodes within clusters. Note
that we consider such pruning only if the cluster sizes are
greater than 1. Finally, we perform another RemoveFixed
stage, to cleanup any extraneous clusters. The result of these
steps is a set of clusters with possibly different numbers of
elements across them.

Algorithm 3 RemoveFixed(n,C)
Require: Parent node n; a set of clusters C
Ensure: A set of reduced clusters C′

1: t← NNLS(n,C)
2: C′← ∅
3: for each c ∈ C do
4: if f(n,C − {c}) = t then
5: C′← C′ ∪ {c}

Algorithm 4 IncreaseFits(n,C)
Require: Parent node n; a list of clusters C
Ensure: A list of reduced clusters C′

1: c← unvisited cluster in C
2: T ← C − {c}
3: t← NNLS(n,C)
4: if all c ∈ C has been visited then
5: C′← C
6: exit
7: if |c| >= 2 then
8: Mark c as visited
9: s← select s ∈ c s.t. NNLS(n, T ∪ s) is minimum

10: t′← NNLS(n, T ∪ s)
11: if t′ ≥ t then
12: IncreaseFits(n,C − s)
13: else
14: IncreaseFits(n,C)
15: else
16: IncreaseFits(n,C)

Determining the consensus tree
Algorithm 5 describes our approach to identify a final con-
sensus tree. We first calculate the average number of clusters
found in the candidate trees. For each cluster, we select the
number of nodes to be the mean sizes of clusters found in

candidate trees. Finally, we pick the most frequent nodes in
each cluster as our final tree.

Algorithm 5 ConsensusTree(S)
Require: Set of candidate trees S
Ensure: Consensus tree T
1: avgC ← average number of clusters in S
2: C ← select avgC (rounded) most frequent clusters
3: Zi← mean number of nodes (rounded) cluster ci ∈ C
4: T ← for each cluster ci ∈ C select Zi most frequent nodes in

the cluster

Finding multi-level trees
Our final consideration pertains to trees with multiple lev-
els, such as shown in Fig. 1. We breakdown the problem of
finding multi-level trees to finding a consensus tree, find-
ing trees within the set of nodes discovered, superposing all
found trees, and computing their transitive reduction (Aho
and others 1972). Essentially, this ‘flattens’ out the multi-
level tree into a single tree and uses containment relation-
ships within the nodes of this unified tree to reconstruct the
hierarchy.

Experimental Results
We present experimental results in inferring LCA trees for
six products where reference trees are available (obtaining
good evaluation datasets is cumbersome in this domain due
to proprietary concerns and difficulties in manually organiz-
ing the relevant information). In the LCA dataset considered
here, we are given 76 nodes and 268 impact factors. For each
product for which we would like to reconstruct an LCA tree,
we consider all remaining 75 nodes as potential children.

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

1,
07

4
1,

15
4

1,
16

7
1,

16
9

1,
69

1
1,

81
7

1,
85

5
1,

96
8

1,
98

3
2,

11
5

2,
28

1
2,

28
8

7,
00

8
7,

01
5

7,
01

7
7,

02
0

7,
04

9
7,

10
2

10
,1

58
10

,1
60

10
,7

90
10

,8
05 60

6
1,

18
1

1,
82

6
1,

84
4

6,
65

2
10

,8
04

Pe
rc

en
ta

ge

true positive
false positive
false negative

(a) Desktop

 0%
 5%

 10%
 15%
 20%
 25%
 30%
 35%
 40%
 45%
 50%

28
1

1,
05

6

1,
17

1

7,
22

4

1,
94

3

Pe
rc

en
ta

ge

true positive
false positive
false negative

(b) LiC6

 0%
 2%
 4%
 6%
 8%

 10%
 12%
 14%
 16%
 18%
 20%

27
1

30
8

1,
84

4

7,
21

8

41
1

1,
07

4

1,
08

8

1,
78

3

1,
83

4

2,
28

1

7,
11

6

Pe
rc

en
ta

ge

true positive
false positive
false negative

(c) LiMn2O4

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

1,
07

2
1,

07
4

1,
15

4
1,

17
4

1,
17

8
1,

81
7

1,
82

6
1,

82
9

7,
10

1
10

,7
98 38

2
1,

11
0

1,
78

3
7,

00
8

7,
08

3
10

,1
58

10
,7

90

Pe
rc

en
ta

ge

true positive
false positive
false negative

(d) CDROM

Figure 4: Median impact factor contributions of true child
nodes, false positives and false negatives.

The questions we seek to answer are:

1. How accurate are the nodes correctly selected by our ap-
proach (true positives) compared to the reference trees?

2. For nodes that are selected in error (false positives), can
we characterize them further in terms of substitutability?

3. What is the median contribution to impact factor vectors
of nodes selected by our approach vis-a-vis missed nodes
(false negatives)?

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

Pr
ec
isi
on

Recall

LiC6
PSU

CDROM
Desktop

Figure 5: Interpolated Precision-Recall Plot.

In the study presented here, we use the following param-
eter settings: ε = 15%, η = 80%, κ = 25, and we ex-
perimented with τ values of 40 and 80. Runs against our
database for τ = 40 typically take approximately 1 hour for
each discovered tree with a proportional increase for τ = 80.
The overall statistics for the number of true nodes and of dis-
covered nodes for each tree is listed in Table 3. As we can
see a large fraction of nodes are discovered correctly with
some extraneous and missed nodes. Fig. 5 plots a curve of
the precision vs recall for various settings of top-k results
in tree reconstruction. As this figure shows, we are able to
achieve a very good balance between both criteria using our
methodology.

Next, we undertook a qualitative study with LCA do-
main experts to help categorize three types of errors in our
methodology: (i) nodes that were not discovered, but are
generally believed to have a small contribution to the over-
all system so much so that these might not even have been
included by another LCA practitioner. The error from these
nodes may be reasonable to ignore (’reasonable’). (ii) nodes
which were discovered and not on the reference tree, but are
very similar in properties to the another node on the refer-
ence tree. An example of this might be discovering a node of
one type of plastic where the known tree contained a differ-
ent but very similar type (in terms of impact factors) of plas-
tic. These represent examples of nodes which could easily
have been substituted into the existing tree without chang-
ing the form or purpose of the tree, and are therefore rea-
sonable to accept within the discovered tree (’substitutable’).
(iii) nodes which were discovered and not on the known tree,
and bear no resemblance to any nodes on the known tree; or
nodes which are on the known tree and have a large con-
tribution to the parent’s impact factors but not discovered.
These are nodes which have no explanation for being part
of the tree, or nodes which should have been discovered and
are not (‘unusual’). This last category is the most significant
example of error in our methodology. As can be seen from
Table 3, there are at most one or two nodes in the ‘unusual’
category across trees of different sizes.

Finally, Fig. 4 depicts the median error across impact fac-
tor contributions for the true child nodes selected by our
approach vis-a-vis false negatives and false positives. The
nodes that our approach misses have minuscule contribu-

tions compared to other nodes whereas the false positive
nodes have significantly higher contributions and are hence
objects for further study by the LCA specialist. This plot
hence shows that our approach does not overwhelm the spe-
cialist with possibilities and at the same time is able to nar-
row down on most of the important nodes without difficulty.

Table 3: Overall tree reconstruction statistics where discov-
ered #nodes = true positives + incorrect nodes.

Tree Name Known
#nodes

Disc-
overed
#nodes

True
+ve

Incorrect nodes

Substi-
tutible

Reson-
able

Un-
usual

LiC6 5 5 4 1 0 0
PSU 6 6 6 0 0 0
CDROM 18 17 10 5 0 2
Desktop 37 28 21 5 1 1
Battery, Lilo 19 13 10 1 0 2
LiMn2O4 11 12 7 2 1 2

Tree for PSU
Due to space limitations, we showcase in detail the recon-
structed tree for PSU (power supply unit), an electronics
module. Interestingly, both the reference and computed trees
here fit all 268 impact factors. The results are shown in
Fig. 4. Here, we reconstruct 5 out of 6 child nodes with a
setting of τ = 40. With a higher sampling τ = 80 we are
able to reconstruct all 6 nodes with almost exact replication
of coefficients.

Table 4: PSU LCA tree with 6 children.

40 Samples 80 Samples
Known Nodes Known

Coeff.
Found Coeff. Found Coeff.

1154: Steel low-
alloyed

0.572 Y 0.577 Y 0.572

1174: Sheet rolling
aluminum

0.572 Y 0.529 Y 0.572

10806: fan at plant 0.074 Y 0.083 Y 0.074
7018: plugs inlet... 1.0 N - Y 1.004
7116: cable ribbon 0.194 Y 0.223 Y 0.193
10804: printed wir-
ing...

0.604 Y 0.602 Y 0.602

Discussion
As motivated in the introduction, we have automatically dis-
covered LCA trees from a database of environmental im-
pact factor information. In particular, we have been able to
reconstruct, with satisfactory accuracy, the components and
processes underlying complex artifacts such as the desktop
computer HDD. Our novel formulation of alternating rounds
of NNLS fits and clustering/pruning has proved to be accu-
rate in reconstructing LCA trees.

Future work revolves around several themes. First, we
would like to incorporate other domain-specific information

(e.g., textual descriptions of components and products) to
further steer the reconstruction of LCA trees. Second, we
would like to formally characterize the nature of approxi-
mate solutions and the tradeoffs in the various guarantees
that can be provided. Finally, we would like to develop a
broader semi-supervised methodology for the inference of
LCA trees.

To summarize, the current state-of-the-art requires a sys-
tem designer to specify the quantity and content of each
component within the system, and then link these to rel-
evant impact factors manually. Using the approach of tree
discovery outlined in this paper, this problem has been suffi-
ciently simplified so that a designer is able to automatically
reconstruct trees and estimate the associated quantities and
impacts. Beyond eliminating one of the most costly steps of
traditional LCA, the proposed methodology actually stream-
lines the LCA process: by hiding the computational com-
plexity and labor from the designer, environmental assess-
ments can become more widely accessible to practitioners
who do not possess specialized domain expertise. We con-
sider this a key first step in our vision of empowering prod-
uct and system designers to estimate the environmental foot-
prints associated with any arbitrary system.

References
Aho, A. V., et al. 1972. The transitive reduction of a directed graph.
SIAM Journal on Computing 1(2):131–137.
Baumann, H., and Tillman, A. 2004. The Hitchhiker’s Guide to
LCA: An orientation in Life Cycle Assessment Methodology and
Application. Studentlitteratur Sweden.
Finkbeiner, M., et al. 2006. The New International Standards for
Life Cycle Assessment: ISO 14040 and ISO 14044. The Intl. Journ.
of Life Cycle Assessment 11(2):80–85.
Frischknecht, R., et al. 2005. The Ecoinvent Database: Overview
and Methodological Framework. The Intl. Journ. of Life Cycle As-
sessment 10(1):3–9.
Goleman, D., and Norris, G. 2010. How green is my
ipad? http://www.nytimes.com/interactive/2010/04/04/opinion/
04opchart.html?hp.
Koller, D., and Sahami, M. 1996. Toward optimal feature selection.
In ICML’96, 284–292.
Lawson, C. L., and Hanson, R. J. 1974. Solving Least Square
Problems. Englewood Cliffs NJ: Prentice Hall.
PE International. 2009. GaBi - Life Cycle Assessment (LCE/LCA)
Software System. http://www.gabi-software.com.
Peng, H.; Long, F.; and Ding, C. 2005. Feature selection based on
mutual information: Criteria of max-dependency, max-relevance,
and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell.
27:1226–1238.
Smith, J., et al. 1989. All possible subset regressions using the
QR decomposition. Computational Statistics & Data Analysis
7(3):217–235.
Spatari, S., et al. 2001. Using GaBi 3 to perform Life Cycle As-
sessment and Life Cycle Engineering. The Intl. Journ. of Life Cycle
Assessment 6(2):81–84.

