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Abstract

Driven by the increasing componentization of scientific
codes, the deployment of high-end system infrastructures
such as the Grid, and the desire to support high level
problem solving primitives, application composition sys-
tems have become prevalent in computational science prac-
tice. We present the adaptive code kitchen which, as the
name connotes, is a loose collection of capabilities to help
realize complex adaptive composition scenarios. These in-
clude function interception, continuation modification, dy-
namic process checkpointing and rollback, and runtime rec-
ommendation. Using these broad primitives, a computa-
tional scientist can specify many ‘recipes’ of adaptivity as
complete control systems around native object codes. Run-
time systems support then enables loading and linking of
native code components, monitoring of performance indica-
tors, consulting a recommender system for algorithmic de-
cisions, and dynamically updating application components
in response to the recommendations. We present the archi-
tecture of the adaptive code kitchen and the key enabling
technologies with brief mention of the applications that will
be investigated henceforth during the course of the project.

1. Introduction

Fueled by rapid advances in high-end computing
infrastructures [14] and problem solving environments
(PSEs) [28], application composition systems [26] are now
prevalent in computational science practice. Diverse areas,
from nuclear physics, to earth science simulation, to bioin-
formatics now benefit from compositional specification and
realization of large-scale computations. Such systems not
only enable the view of scientific applications as a collec-
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tion of distributed executable components but can also re-
actively respond to runtime considerations, e.g., by online
substitution of code modules or dynamic re-wiring of appli-
cation logic. The driving motivation is to make composition
systems cognizant of constantly changing application needs
and resource constraints [1, 19].

The scope of adaptive composition today ranges from
manual, user-guided querying and steering of computa-
tional runs [4] to automatic recommender systems that mine
performance data [27], respond to runtime events, and sub-
stitute algorithms and models suitably. In well-structured
domains of scientific software, such as linear algebra [12],
accurate performance models of solvers over a range of
problem characteristics, memory hierarchies, and architec-
tures are available which can be harnessed to guide compo-
sition decisions. Once a decision to adapt is made, how to
actually perform the adaptation has been investigated from
the perspectives of compiler support for scientific comput-
ing, adaptive programming, and tunability interfaces. Some
approaches, e.g., [7, 8], work at the pre-compiler level and
provide adaptivity around programmed breakpoints by use
of locks and barriers in parallel codes. Others, e.g., [13],
specify adaptivity decisions in terms of operations on inter-
mediate representations [2], also relying on compiler tech-
nology to help abstract distributed program behavior. The
adaptive programming literature views adaptivity as a cross-
cutting concern, akin to aspect-oriented programming [20],
and aims to provide flexible join points between modules,
supporting remapping and manipulation of function invoca-
tions. Yet another approach is the use of an external tunabil-
ity interface, as done in [11], that employs annotations to
indicate alternate execution paths and adaptation controls.

A key determinant of the success of composition sys-
tems is the amount of buy-in solicited, e.g., commitment to
a particular programming paradigm or modeling methodol-
ogy, limitations on the forms of adaptivity that can be sup-
ported, or restrictions on the domain of applicability. We
envision adaptive composition [34] as supporting compo-
nentization over native object codes (language neutrality),



providing arbitrary code expansion, contraction, and sub-
stitution operations (flexible adaptation), and incorporat-
ing runtime recommender systems for algorithm selection
(model-based control). Existing solutions typically empha-
size one or at most two of these aspects and do not provide
an integrated environment to explore adaptivity scenarios
over arbitrary scientific codes. In particular, there is often a
tradeoff between the sophistication of decision support ver-
sus the sophistication of systems support. Approaches that
provide expressive runtime support have traditionally fo-
cused on simple forms of adaptivity decisions, involving re-
source configurations and partitioning strategies. Whereas
approaches that can explicitly model computations at the
level of algorithms and models can indeed perform intel-
ligent dynamic decisions but typically assume a particular
runtime operating environment.

This paper introduces the adaptive code kitchen which,
as the name connotes, is a loose collection of capabili-
ties to help realize complex adaptive composition scenarios.
These include function interception, continuation modifica-
tion, dynamic process checkpointing and rollback, and run-
time recommendation. Using these broad primitives, a com-
putational scientist will be able to specify many ‘recipes’ of
adaptivity as complete control systems around native ob-
ject codes. We posit a broad picture of adaptivity here, one
which is not restricted to identifying partitioning parame-
ters, modifying data decompositions, or parallel scheduling;
instead adaptivity is proposed at a more logical unit of algo-
rithms and object codes. A cookbook of standard adaptivity
schemas will be developed, besides facilities for users to ex-
plore their individual approaches to dynamically reconfig-
ure applications. Runtime systems support will then enable
loading and linking of native code components, monitor-
ing of performance indicators, consulting a recommender
system for algorithmic decisions, and dynamically updat-
ing application components in response to the recommen-
dations.

2. Application Context

We study code composition research issues in the context
of the multi-physics, multi-scale domain of turbulence sim-
ulation, primarily for the many opportunities for adaptive
composition that it affords, and for its relevance to progress
in areas such as atmospheric simulation, aerodynamics, and
earth system science. Multi-physics, multi-scale applica-
tions are by nature dynamic, owing to changing problem
characteristics, the need to spawn auxiliary calculations, au-
tomatic error estimation, and changing loads in a parallel
distributed environment, among other factors. The simula-
tion of turbulence, especially, is one such application encap-
sulating length and time scales over several orders of mag-
nitude. Turbulence manifests in the atmosphere, oceans,

and man made devices which collectively have a large eco-
nomic impact. Hence the accurate prediction of such flows
can have a significant impact on societal well-being. For
instance, a 10% turbulent drag (friction) reduction in air-
planes, ships, and automobiles can have a major impact on
energy consumption.

The current state-of-the-art consists of several meth-
ods and (multi-scale) combinations of them with vary-
ing degrees of approximations and modeling. For in-
stance, a zeroth-order modeling is performed by solving
the Reynolds-averaged Navier-Stokes (RANS) equations in
which only the mean effect of turbulence is taken into con-
sideration. On the other end of the computational spectrum
are direct numerical simulations (DNS) in which all the
scales are resolved. While RANS modeling is a widely used
engineering tool because of its affordability, it suffers from
large uncertainties in complex non-canonical flows. DNS,
being physically accurate, has been used successfully in
simple geometries to advance the fundamental understand-
ing of turbulence. However, it is prohibitively expensive
and quickly becomes intractable as the flow Reynolds num-
ber increases and, in complex engineering geometries with
current day computing power, is projected to remain so for
decades to come. Hence other methods whose complexi-
ties lie between the two extremes have been devised. Large
eddy simulations (LES) resolve the important scales of tur-
bulence and model the smaller dissipative scales which are
more universal and easier to model. In this domain, it is not
uncommon for each calculation to take several weeks to a
month or two for one computation to complete on several
hundred processors. Thus even a small gain in improving
the efficiency of the computation can be quite beneficial.

Typically a full simulation is composed of different com-
ponents starting from the choice of grid, algorithms, numer-
ical discretizations, turbulence models, stability criteria, so-
lution of linear systems, all of which have an influence both
on the accuracy and time-to-solution. While it is obviously
advantageous to employ the most efficient composition, the
interaction between components is typically not known a
priori and often changes during the course of the computa-
tion. For instance, in an evolving turbulent flow, the prop-
erties of the linear system may change over the course of a
simulation and using the same solver settings for the whole
simulation may be sub-optimal.

GenIDLEST [32] is a scalable parallel computational
framework developed by co-PI Tafti for the simulation of
turbulence in complex geometries. It can be used in var-
ious capabilities ranging from DNS to RANS simulations
with auxiliary models for RANS, LES, URANS (unsteady
RANS) and detached-eddy simulations (DES) which uses
a hybrid multi-scale RANS-LES approach. The develop-
ment effort has spanned over a decade and the code is ro-
bust and validated in a number of flows ranging from high
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Reynolds number turbulence to electrokinetic microflows.
GenIDLEST uses a combination of F77 codes at its core
with F90 wrappers for dynamic memory management; it
is instrumented for use with both MPI and OpenMP par-
allelism for distributed as well as shared memory architec-
tures and has a range of features for numerical discretiza-
tions, algorithms, boundary conditions, linear solvers (both
indirect and direct), and post-processing of data. We ground
our work by enabling the adaptive code kitchen capabilities
to compose solvers within the GenIDLEST framework.

3. Research Goals

To realize our vision of a flexible code composition
framework, the adaptive code kitchen focuses on a set of
five inter-related aspects.

1. An integrated framework for composing object
codes, including legacy software. The vast majority
of scientific codes are written in procedural languages
such as FORTRAN and C, compiled into collections
of individual object files with specified binding inter-
faces. These object files must be directly composable
in our framework and must be organizable into groups
of concerted programs alongside task decompositions
and data exchanges. Furthermore, the framework must
support the dynamic insertion of new codes into a run-
ning application. For instance, during the course of
a long running turbulence simulation, a new solver
might become available, and must be substitutable for
the currently active solution method, without interrupt-
ing the computation.

2. A runtime system capable of instrumenting func-
tion interception, continuation modification, and
dynamic process checkpointing and rollback into a
composed (and running) parallel application. Given
a composed application, we must provide rich prim-
itives to harness the state of the running program as
defined by key application parameters, domain vari-
ables, and other qualitative indicators of interest (e.g.,
‘has the Reynolds number changed?’). Checkpoint-
ing capabilities must be specifiable around function in-
vocation boundaries and dynamic rollbacks predicated
on problem properties will be required (e.g., ‘rollback
to the earliest point when the matrix was not so ill-
conditioned’).

3. A runtime recommender system for modeling
adaptive control as sequential decision making
problems with ability to generalize from observed
performance. A recommender system models a se-
quential decision making problem, i.e., of all the de-
cisions made in the current computational run, which

are contributing to the success or failure of the run?
A recommender maintains the utility of algorithmic
choices (actions) as a function of problem parame-
ters and other indicators (states). To perform credit
(or blame) assignment, a recommender must balance
the twin considerations of exploration and exploita-
tion. Exploration is required in order to see whether
there exists a better algorithmic choice than what is
currently considered to be the best. Exploitation is
when we must harness the performance data gathered
thus far to make optimal algorithm choices. As argued
eloquently in [31], we cannot pursue either exploration
or exploitation exclusively without failing at it, and
hence a recommender system must judiciously balance
the two objectives. In addition, a recommender system
must generalize from problems solved so far to prob-
lems that have not been encountered before.

4. A library of adaptivity schemas specifying skele-
tons of how composition and adaptation will oc-
cur. The primitives must be organized into schemas
of adaptivity, giving rise to a diversity of composition
possibilities. We can think of adaptivity in a tempo-
ral as well as spatial sense; temporal when the flow
of control is predetermined but the application can re-
trace its path and redo steps with different choices,
spatial when new flows of control can be dynamically
introduced. Together, it must be possible to realize a
complete control system (e.g., a PID controller) over
the state variables defined by an object code. Given
an adaptivity schema specification, we must be able
to breakdown the specification into aspects of what to
checkpoint, where to checkpoint, when to instrument
rollbacks, and how to measure progress.

5. Interfaces for human-in-the-loop control of execut-
ing scientific codes.

Finally, to impact large-scale scientific applications, we
will provide support for codes executing on both shared-
memory as well distributed-memory platforms. Needless
to say, checkpointing and consistency issues are amplified
here. We require the use of a database for both recording
snapshots of a running computation as well as summariz-
ing performance data from past computations in general-
ized form. Operational details of achieving composition,
e.g., reasoning about impedance mismatches in function in-
vocation formats, are also important.

4. Enabling Technologies

Two key enabling technoligies, also supported by the
NSF Next Generation Software Program, provide the
building blocks necessary for the adaptive code kitchen:
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Figure 1. The system architecture of the
adaptive code kitchen includes both compile-
time and runtime elements. A composer uses
the GUI to compose modules into an applica-
tion which can then be adapted at runtime by
a runtime recommender.

Weaves, a source-language independent parallel frame-
work for object-based composition of unmodified scientific
codes, and recommender systems that mine performance
databases from algorithmic executions to make dynamic de-
cisions about algorithms and models.

4.1 Object Based Composition

The Weaves framework [22], funded in part by NSF CA-
REER grant EIA-0133840, creates a new language indepen-
dent abstraction for object-based composition of unmodi-
fied code modules. Weaves works through reverse-compiler
analysis of compiled object files, enabling the vast reposi-
tory of legacy scientific libraries to be seamlessly used in
a object-based compositional framework, without requiring
that these codes be written in an object-oriented language.

For the purposes of this project, Weaves can create mul-
tiple instantiations (called beads) of code modules similar
in principle to OOP’s objects and classes, which can then
be composed. Formally, a module is any object file or col-
lection of object files defined by the user. Modules have a
data context (the global state of the module scoped within
the object files of the module) and a code context (with po-
tentially multiple entry point and exit point functions). A
bead is an instantiation of a module; multiple instantiations
of a module have independent data contexts, but share the
same code contexts. A weave is a collection of data contexts
belonging to beads of different modules. Unlike processes
which have a single namespace mapped to a single address
space, Weaves thus allows users to define multiple names-

paces within the same address space. A string is a thread
of execution that operates within a single weave. Similar
to the threads model, multiple strings may execute within a
single weave. However, a single string cannot operate un-
der multiple weaves at the same time. Finally, a tapestry is
a set of weaves, which describes the structure of the com-
posed application. The physical manifestation of a tapestry
is typically a single process. The design of Weaves bears
a strong resemblance to the OO framework of Mentat pro-
posed in [15]; however, Mentat requires creating code ob-
jects in an OO language wheres Weaves can create an object
based framework from code written in any language.

Fig. 1 depicts the design process in the Weaves frame-
work and how it dovetails with the rest of the elements
of the adaptive code kitchen. The design process involves
two entities: a programmer who implements the modules
(shown as object files in Fig. 1) and a composer, who uses
a graphical user interface to instantiate beads and define the
various weaves and strings. The result of the GUI com-
position is a tapestry configuration file, which is used to
load and execute the composed application (represented as
‘LLL compile-time’ in Fig. 1). Each composed applica-
tion also has a module called a monitor that is automatically
linked with the composed application, and provides a pow-
erful run-time interface to query the state/statistics of the
composed application and modify its structure by creating
new beads, defining weaves, and instantiating strings at run-
time. The Weaves framework has reached prototype capa-
bility, supporting the vast majority of UNIX platforms and
language compilers that use the ELF format. While Weaves
originated as a compiler technology to support scalable net-
work emulation (the focus of grant EIA-0133840), it has
now been extended to support compositional modeling of
scientific codes. These applications include the Sweep3D
benchmark for discrete-ordinates neutron transport, collab-
orating ELLPACK partial differential equation solvers, and
checkpoint and run-time migration of parallel grid applica-
tions. For more details refer to [22, 34].

4.2 Runtime Recommender Systems

Recommender systems aid in the automatic or semi-
automatic selection of algorithms in a PSE; for instance,
given a problem in numerical quadrature and performance
constraints on its solution, a recommender system helps se-
lect the best (or nearly best) algorithm [25]. Recommender
systems are very useful when domain knowledge is imper-
fect and where our understanding of the factors influencing
algorithm applicability is incomplete. One of the main re-
search issues here is understanding the fundamental mech-
anisms by which knowledge about scientific problems and
algorithms is created, validated, and communicated. A typ-
ical approach to designing recommender systems is to first
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organize a database of problem populations and algorithm
executions, and subsequently mine this database to under-
stand the selective superiority of algorithms. Supported in
part by NSF CAREER grant EIA-9984317, this idea has
been recently extended in many important ways – mining
recommendation spaces with continuous-valued attributes,
a recommendation portal with database and experiment
management support for performance data analysis, and au-
tomatic mining of recommendation spaces, providing sup-
port for algorithm selection at runtime, knowledge-based
compositional modeling, and harnessing domain knowl-
edge of physical properties underlying problems. See [34]
for more details.

There are two main approaches to prototyping recom-
mender systems. In the offline approach, we organize a
benchmark database of realistic test problems and algorithm
executions, mine this database to generalize from the per-
formance data, and use the results of mining to guide selec-
tion of appropriate algorithms and software (for future prob-
lems). The end-goal is to use supervised machine learning
and data mining algorithms to empirically capture the rela-
tionship between problem characteristics, algorithm param-
eters, and algorithm performance [33]. Assuring adequate
coverage of the training dataset and carefully generalizing
to new problems are crucial here. In the online approach,
the data collection phase is interleaved with the mining pro-
cess, so that we can proactively choose problems that will
accurately and efficiently sample desired regions of the rec-
ommendation space. In this approach, algorithms based on
reinforcement learning [31] are especially useful. As men-
tioned earlier, the exploration phase of these algorithms ju-
diciously samples new recommendation choices to improve
their learning, and the exploitation phase is used in a pro-
duction context (i.e., to drive real-time selection of algo-
rithms). In addition to the issues of dataset coverage and
generalization, these algorithms must also perform sequen-
tial credit assignment in a cascading series of decisions.

5. Building the Adaptive Code Kitchen

The three main research tasks studied currently are to be
able to provide componentization over native object codes,
support arbitrary code expansion, contraction, and substitu-
tion operations, and incorporate runtime recommender sys-
tems in model-based control scenarios. Each of these tasks
is elaborated upon below.

5.1 Load and Let Link

The first research task underlying the adaptive code
kitchen to develop a framework for agile and flexible run-
time loading and composition of native code components.
Just as object files are linked at compile-time to generate

a program executable, we seek to link modules at runtime
to obtain a program image (denoted as ‘LLL runtime’ in
Fig. 1). In doing so, we seek to maintain the reified struc-
ture inherent in an executable’s constituent object files even
after runtime composition. Furthermore, to support arbi-
trary code-base expansion and contraction [29], we must
be lenient toward undefined references, and provide a de-
fault flow of control that may be used to monitor and asyn-
chronously modify the composition.

Our solution approach is to extend the Weaves frame-
work to allow runtime control over addition and modifica-
tion of individual functions and variables in modules, which
is instrumental in letting applications dynamically add,
prune, or modify their functionality, content, and structure.
Rather than rigorously require resolution of all references
for successful completion, we accommodate undefined or,
more aptly, dangling references, which is conducive to ar-
bitrary code-base expansion and contraction. Applications
may thus specify their own runtime handlers to switch ref-
erences and tune dynamic composition to their needs. This
is similar in spirit to late-binding mechanisms [23] except
that handlers may be explicitly specified by the application,
may be different for different references, and (safely) de-
fault to undefined values. In addition, our minimal defini-
tion of modules allows the framework to flexibly work with
other high-level frameworks and models for reification and
reflection [9, 24, 30]. Some aspects of our mechanism may
be even more productive when coupled with strategies for
dynamic state and stack manipulation [16, 17].

It is important to contrast what is proposed here against
traditional binary loaders (GNU ld) which are typically
monolithic systems-level libraries. The interfaces they ex-
pose and the functionalities they offer are not enough to sup-
port the flexibility demands of the adaptive code kitchen.
Contemporary late binding mechanisms for binaries toler-
ate dangling functional references only as long as they are
not accessed. But when such accesses do happen in ab-
sence of compatible definitions, they result in anomalous
behavior (further, dangling references to data elements are
not allowed). In order to maintain the modular structure at
runtime, we require that objects be loaded separately before
application composition. This can result in some modules
being loaded with several dangling references not just to
functions but also to data elements. Again, typical loaders
do not provide an explicit interface to connect a reference
to an arbitrary definition. Hence, we will design our own
tool—‘load and let link (LLL)’—for dynamic loading and
linking of modules that offers extra control through simple
interfaces (APIs).

We have designed a preliminary prototype implementa-
tion of LLL [21] that works on 32-bit x86 architectures run-
ning GNU/Linux. As discussed previously, it relies heav-
ily on the executable and linkable file format (ELF) used by

5



most UNIX systems. It recognizes shared object (.so) files
as loadable modules. Shared objects can be easily created
from most relocatable objects (.o) compiled with position
independent options (e.g., -fPIC for gcc). Using shared
objects with position independent code can result in some
extra instructions vis-a-vis normal compilation. However,
the associated performance and memory overheads are as
low as in regular dynamic libraries. LLL currently can be
customized to use either POSIX threads (pthreads) or GNUs
user-level threads package (Pth), and a port to the x86 64
architecture is currently underway.

5.2 Primitives for Runtime Composition

The second research task envisaged here is to provide
broad primitives for realizing adaptive composition scenar-
ios. Before we present the functional aspects, it is important
to point out that the ELF instrumentation techniques that are
at the core of the Weaves framework can, to a large extent,
automate the process of analyzing native code objects (mod-
ules). Such analysis will be crucial to the engineering of
adaptivity schemas later (by unraveling certain source level
details without requiring the source codes).

5.2.1 Function Interception

One of the basic goals of our framework is to support
procedure-level decomposition of a compiled object file
so that procedure calls within a module become control
points at which the application’s execution can be steered.
Therefore, the basic construct required in the framework is
a method for intercepting, or catching, the function calls
made within an application. There are a variety of pro-
grams and projects that support intercepting function calls
within an application [5, 18]. Our framework is different
from these projects in that it intercepts function calls at the
location the calls are made. Through our LLL facility, this
primitive will wrap any desired function call with pre- and
post-handlers. These handlers become programs that cap-
ture dynamic state snapshots of the application and can even
determine whether to continue execution with the originally
composed application or to perform some other computa-
tion.

It is imperative that function interception be imple-
mented at the caller end, since the callee might be located
in a dynamic module that is not currently available. The
original function call location in effect becomes a place-
holder (or “link point,” in the vernacular of the aspect ori-
ented programming literature) that the framework can con-
nect to arbitrary procedures during runtime. Similarly, the
interception mechanism can divert function returns as well
using return handlers that can perform various housekeep-
ing duties, before eventually returning to the original caller.

This is useful when the outcome of the function call must
be queried, including the return value or any values returned
via pass-by-reference parameters. This allows us to mas-
sage any return values before they are passed back to the
calling module to, for example, fix type differences or in-
fluence the caller (via a recommender).

5.2.2 Continuation modification

When a function call is intercepted or the return of a func-
tion is intercepted, the framework could pass control of the
application to the recommender system so that it may make
any required adaptive control decisions. We envisage the
recommender as registering either pre- or post-callbacks for
desired functions, to be triggered whenever these function
symbols are invoked or a return is made from them. Given a
reference to the current invocation stack entry in the frame-
work, the recommender system can: lookup or manipulate
parameters through ELF analysis, remap the function call,
search the remaining invocation stack, and checkpoint or
rollback the process. In other words, we have expressive
access to the current state of the application and can mod-
ify continuations suitably. For instance, all references to a
direct solver can be changed into references to an iterative
solver based on a runtime consistency check.

We also envisage a complete set of controls that allow the
application to query and manipulate the parameters passed
to procedure calls. The instantaneous values of parameters
passed to a function at runtime can give insight into whether
an application is making gainful progress or to whether any
adaptive decisions should be made to improve the results
or performance. For example, tracking the current relative
error of a numerical routine might reveal characteristics of
the problem that suggest that switching to a different routine
might improve convergence.

5.2.3 Dynamic process checkpointing and rollback

The most valuable primitive studied here is the ability to
arbitrarily ‘rollback’ the execution of an application to a
previous state. Scenarios requiring this capability are cov-
ered later. Our framework utilizes the DejaVu library, a
distributed snapshot and fault tolerance library for perform-
ing dynamic process rollback. DejaVu, supported by ongo-
ing NSF grant CNS-0325534, supports online, incremen-
tal, process checkpointing of all static and dynamic mem-
ory and all file and network I/O. A function symbol can be
registered with our framework to be checkpointed so that
every time an invocation of that function occurs, a check-
point is saved just prior to executing the function. Func-
tion invocations are not checkpointed by default because
to do so at such a fine granularity is expensive. Instead,
the recommender should determine an appropriate mix be-
tween coarse-grained and fine-grained checkpointing rela-
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tive to the application. Each checkpoint operation returns a
unique identifier that is stored within the respective function
invocation record. This identifier can then be used to sup-
port predicate-based rollback and recovery, e.g., to rollback
to the earliest cataloged instance when a given variable was
within bounds.

An important criteria for a process checkpointing library
used in an adaptive computing framework is that it must
support the ability to maintain ‘non-volatile’ memory re-
gions. Therefore, within the DejaVu library there is support
for handling partial memory rollbacks. A dedicated mem-
ory allocator within DejaVu creates memory regions whose
contents are not reverted during a rollback. This feature is
important in, for instance, maintaining the entire function
invocation stack so that the recommender can implement
remappings after rolling back to a starting state.

The above approach to checkpointing directly carries
over to shared-memory and distributed shared memory
paradigms. In cluster computing environments, a high de-
gree of problem decomposition across processors requires
some level of care in implementing checkpointing mecha-
nisms. Our approach here is to insert a barrier in the func-
tion interception pre-handlers so that all processes synchro-
nize around this point, at which time each process can in-
strument a local checkpoint. Truly asynchronous distributed
checkpointing mechanisms that maintain global consisten-
cies are an active area of research and outside the scope of
this project.

5.3 Adaptivity Schemas

The capabilities described thus far endow a recom-
mender system with potential to serve as a full-fledged con-
troller for the algorithmic solution of scientific problems.
As illustrated in Fig. 1, we can view the recommender as
an overseer of the computation, either passively monitoring
choices made (by existing compositions) and learning the
utilities of algorithms for different states or actively mak-
ing exploratory choices to learn about algorithm superior-
ity. The former requires only the use of the function inter-
ception primitive, whereas the latter requires continuation
modification and (potentially) dynamic process rollback.

An adaptivity schema is a skeleton that specifies the con-
trol points at which the recommender can observe and influ-
ence the composition but does not specify the actual choices
themselves. A schema thus suggests a high-level mode of
problem solving [3], not unlike parameter sweeps [10] and
algorithmic bombardment [6], and is pertinent in specific
application contexts. A selection of adaptivity schemas has
been presented elsewhere [34] and hence we do not elabo-
rate on these further in this paper.

6. Ongoing Work

The basic LLL and runtime composition primitives
have been implemented and applications of these in the
GenIDLEST context are underway. In the context of tur-
bulence simulation, we envisage the use of the adaptive
code kitchen at three basic levels. At the algorithmic level,
there are a multitude of possibilities depending on the type
of flow: steady flow, time-dependent flow, compressible
high-speed flow, incompressible low-speed flow, and vari-
able density flow. At the model level, there are again nu-
merous possibilities that describe the behavior of turbulence
which is not resolved by the calculation (RANS, LES, and
DES). Finally, at the solver level, linear system solution ac-
counts for about 80-90% of the total computational time in
the computations planned here. In dynamic computations
(moving grids or changing physics) the characteristics of
the linear system may also change with time. We plan to
materialize the adaptive schema skeletons from [34] to ad-
dress all the above opportunities and use the realized com-
positions to simulate leading edge film cooling flows for gas
turbine blades.
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