
Maintainable and Reusable Scientific Software Adaptation

Democratizing Scientific Software Adaptation

Pilsung Kang
Flash Solution Software Development

Samsung Electronics, Korea
pils.kang@samsung.com

Eli Tilevich, Srinidhi Varadarajan, and
Naren Ramakrishnan

Center for High-End Computing Systems
Dept. of Computer Science, Virginia Tech

Blacksburg, VA 24061, USA
{tilevich,srinidhi,naren}@cs.vt.edu

ABSTRACT
Scientific software must be adapted for different execu-
tion environments, problem sets, and available resources to
ensure its efficiency and reliability. Although adaptation
patterns can be found in a sizable percentage of recent sci-
entific applications, the traditional scientific software stack
lacks the adequate adaptation abstractions and tools. As
a result, scientific programmers manually implement ad-
hoc solutions that are hard to maintain and reuse. In this
paper, we present a novel approach to adapting scientific
software written in Fortran. Our approach leverages the
binary object code compatibility between stack-based im-
perative programming languages. This compatibility makes
it possible to apply a C++ Aspect-Oriented Programming
(AOP) extension to Fortran programs. Our approach ex-
presses the adaptive functionality as abstract aspects that
implement known adaptation patterns and can be reused
across multiple scientific applications. Application-specific
code is systematically expressed through inheritance. The
resulting adaptive functionality can be maintained by any
programmer familiar with AOP, which has become a staple
of modern software development. We validated the expres-
sive power of our approach by refactoring the hand-coded
adaptive functionality of a real-world computational fluid
dynamics application suite. The refactored code expresses
the adaptive functionality in 27% fewer ULOC on average
by removing duplication and leveraging aspect inheritance.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement; D.2.13 [Reusable Soft-
ware]: [Reusable libraries]; D.3.3 [Language Constructs
and Features]: [Frameworks, Patterns]

General Terms
Languages, Management

Keywords
scientific software, program adaptation, aspect-oriented pro-
gramming, software maintenance

1. INTRODUCTION
The execution model in the majority of computing do-
mains has been consistently becoming more dynamic. In
a dynamic execution model, the exact execution steps are
known only at runtime, as determined by input parameters
and resource allocation. A significant portion of enterprise
software, for example, is written in managed languages
such as Java and C#. These languages not only dispatch
methods dynamically to support polymorphism, but also
heavily rely on dynamic class loading and Just-in-Time
compilation. The default execution semantics is frequently
adapted by means of Aspect-Oriented Programming [20], a
programming paradigm that provides abstractions and tools
to systematically augment or even completely redefine the
semantics of method invocations and object construction.
The AOP functionality can also be executed dynamically
to adapt an application’s semantics based on some runtime
conditions.

Several researchers have recently identified dynamic adapta-
tion as capable of benefiting scientific software [9, 21]. Our
own experiences of collaborating with scientific programmers
confirm that the traditional execution model of scientific
applications—build, run, change, run anew—no longer pro-
vides the flexibility required to accommodate the advanced
needs of modern scientific applications. Such applications
operate over ever-expanding data sets and require significant
algorithmic sophistication to reach the needed performance
levels.

Unfortunately, the traditional scientific software stack is
tailored toward static execution. A significant portion of
scientific applications are still written in Fortran, which
despite all of its latest extensions still remains a glorified
“formula translator” offering few facilities to support any
execution dynamicity. The execution path of a typical
scientific application is predetermined at compile time and
rarely changes in response to any runtime events. To the
best of our knowledge, no mainstream AOP extension has
ever been developed for Fortran.

Based on our ongoing collaboration with scientific program-
mers, we have observed a trend in which esoteric solutions to



dynamic adaptation are crafted for individual applications,
leading to adaptations that are neither maintainable nor
reusable. Although such solutions are recurring, their non-
systematic implementation practices incur a significant soft-
ware maintenance burden. Therefore, there is great poten-
tial benefit in implementing such dynamic adaption patterns
more systematically and taking advantage of the state-of-
the-art tools and techniques created for that purpose.

In this paper, we present a solution to the problem outlined
above by adapting Fortran programs by means of AOP,
representing common adaptation patterns of scientific com-
puting as reusable aspects. In lieu of a viable aspect ex-
tension for Fortran, our approach leverages the capabilities
of AspectC++ [29], a popular C++ AOP extension. Thus,
while a scientific programmer can continue maintaining the
core functionality of a scientific application in Fortran, the
adaptation logic is implemented in AspectC++ and auto-
matically woven with the original Fortran code.

Our approach provides two main benefits. First, since
Fortran remains the lingua franca of scientific computing,
programmers can continue to develop and maintain their
applications in this language. Second, all the adaptability
functionality is implemented in AspectC++, which supports
advanced software modularization and reusability princi-
ples through inheritance and abstraction. Since AOP is
rapidly becoming an integral programming methodology in
industrial software development, using a mainstream AOP
language extension vastly increases the number of program-
mers who can maintain and evolve the added adaptation
functionality.

To demonstrate that our approach is general and can benefit
a substantial portion of scientific applications, we have
expressed a core set of common adaptation patterns as As-
pectC++ abstract aspects. By subclassing and concretely
implementing these aspects, programmers can easily put in
place sophisticated application-specific adaptation scenarios
for scientific applications.

We report on our experiences of applying these scenarios to
a real world scientific application—a suite of computational
fluid dynamics applications. The resulting implementation
shares identical performance characteristics with the origi-
nal, non-reusable version that uses a special-purpose library
to introduce the adaptation functionality. Our version,
however, is more concise. On average, by using aspect inher-
itance we were able to reduce the amount of uncommented
lines of hand-written code by as much as 27%. Thus, with
our approach, the required adaptability functionality can be
implemented more concisely, making it easier to maintain
and reuse.

Based on these results, our work makes the following con-
tributions:

• An approach to rejuvenate scientific applications: Adapt-
ing scientific applications provides efficiency, stability,
or increased accuracy advantages. Our approach pro-
vides a systematic method to adapt scientific programs
written in Fortran, thus allowing them to benefit from
the mentioned adaptation advantages.

• An approach to reuse adaptation code: By expressing
recurring adaptation patterns as abstract aspects that
can be extended, our approach provides a reusable and
customizable library of adaptations that can be used
by different scientific applications.

• Democratizing the writing of scientific adaptation func-
tionality : By exposing the adaptation functionality as
standard AOP code, our approach increases the pop-
ulation of programmers who can write and maintain
such code. Thus, while adapting scientific applications
still requires expertise in the scientific domain at hand,
implementing the functionality no longer requires in-
timate knowledge of the intricacies of Fortran. This is
because adaptation functionality is introduced through
AOP.

The rest of this paper is organized as follows. Section 2
summarizes common algorithmic level adaptation patterns
in scientific computing. Section 3 outlines the complexities
of engineering modern scientific software. Section 4 de-
scribes our systematic method for applying aspect-oriented
abstractions to Fortran code. Section 5 describes how we
implemented adaptation patterns as reusable aspects and
applied them to a realistic scientific application. Section 6
evaluates the software engineering benefits of our approach
and discusses limitations. Section 7 compares our approach
to the related state of the art, and Section 8 presents
concluding remarks.

2. ADAPTATION PATTERNS IN
SCIENTIFIC COMPUTING

In this section, we present adaptivity schemas, common
adaptation patterns of scientific computing, whose aspect-
oriented implementation we describe in Section 5.

Since most execution time is spent on loops, they are a prime
target of compiler optimization or parallelization techniques
[6]. Adapting scientific programs also focuses on loops in
most iterative computations—typically the end of a loop
exhibits stable system state and consistent intermediate
results. Hence, by placing adaptation code at the end of a
loop, coherent results can be assessed without disturbing the
ongoing computation. Furthermore, since parallel scientific
programs typically synchronize concurrent execution at the
end of a loop, an adaptation can reuse the barriers to achieve
synchrony.

2.1 Overview of Adaptivity Schemas
Adaptivity schemas [31] codify common adaptation patterns
that occur in modern scientific applications. These patterns
specify the scenarios under which the execution of scientific
codes can benefit from being adapted dynamically. We
demonstrate the concept of adaptivity schemas by describing
three realistic use cases.

2.1.1 Control Systems
A Control Systems schema controls the algorithm of a
scientific computation whose execution behavior can be
affected by configuring the algorithm’s parameters. The con-
trol system of such a computation can be realized through



Control 
module

Algorithm
outputinput

adjusted 
parameter

system 
state

Computation loop

(a) Control systems

Switching 
module

Algorithm 2

outputinput

algorithm 
change

system 
state

Algorithm 1

Computation loop

(b) Algorithm switching

Spaces mining 
module

Algorithm
outputinput

new search
point

intermediate 
results

Computation loop

search 
space

(c) Recommendation spaces mining
Figure 1: Adaptivity Schemas

adaptation that adjusts the parameters to better match
the dynamic characteristics of the computational progress.
For example, Hovland and Heath [16] demonstrate how
the relaxation parameter of the Successive Over-Relaxation
(SOR) algorithm can be controlled through automatic differ-
entiation. Figure 1a shows the schematic view of the Control
Systems adaptivity schema.

2.1.2 Algorithm Switching
An Algorithm Switching schema describes those scenarios
when the algorithm in place turns out to be inadequate to
meet the requirements; the problem is then solved by dy-
namically switching to an equivalent algorithm. Switching
algorithms can ensure greater accuracy or efficiency when-
ever numerical or physical properties of the computation in
progress change. For example, the LSODE [26] solver, used
in ordinary differential equation systems, keeps its computa-
tion stable by switching between stiff and non-stiff methods
over the region of integration. Hardwiring the switching
procedure, however, often leads to using a conservative
implementation as a means of preventing thrashing between
the two categories of algorithms. A more flexible adaptivity
implementation can take multiple runtime conditions into
consideration when switching algorithms, thereby achieving
greater computational stability without incurring the risk of
thrashing.

2.1.3 Active Mining of Recommendation Spaces
An Active Mining of Recommendation Spaces schema de-
scribes those scenarios when adjusting algorithmic param-
eters dynamically can achieve greater levels of stability,
efficiency, or accuracy. Choosing “sufficient” values heuristi-
cally may lead to sub-optimal results for different execution
platforms. As the problem to be solved becomes more
complex, the search space of algorithmic parameters can
increase significantly to accommodate a greater number of
processing units. This, in turn, can also negatively affect
the accuracy of the resulting computation. The inadequacy
of manual tuning and searching approaches for large search
spaces motivates automated search and recommendation
mechanisms. The active mining of recommendation spaces
schema can selectively sample the parameter search space
by analyzing the observed results, recommend a new set
of parametric choices to be used in next loop iterations of
computation, and keep repeating these steps until a desired
function is minimized.

3. ENGINEERING ADAPTABLE
SCIENTIFIC SOFTWARE

Next, we shed some light on the realities of engineering
modern scientific software.

3.1 Separating Concerns
The requirements imposed on modern scientific software are
often so complex that they can be met only by means of
a true collaboration between scientific programmers and
computing experts. There are also complex social issues
at play. Scientific programmers are often domain experts—
scientists and engineers—who are extremely knowledgeable
in their respective domains but may lack a deep understand-
ing of computing or experience with modern developments
in Software Engineering. In fact, scientific programmers
are unlikely to be particularly enthusiastic about learning
languages other than Fortran and to have familiarity with
advanced software construction methodologies such as AOP.
At the same time, the software engineers collaborating
with scientific programmers to provide advanced adaptation
functionality are likely to be eager to employ advanced
software construction tools and techniques.

Thus, the approach described here aims at facilitating a
productive collaboration of programmers from different com-
munities. AOP becomes a technological solution to a set
of social issues intrinsic to the construction of modern sci-
entific applications. Specifically, our approach enables a
smooth separation of concerns, allowing the core algorithmic
functionality and its adaptivity schemas to be expressed in
different languages by their respective domain experts. In
other words, following our approach makes it possible for
scientific programmers and computing experts to collaborate
harmoniously while playing on their respective home turfs.

Using AOP in our context is a means of achieving a high
degree of separating concerns. The fundamental concerns of
modern scientific software are appropriately abstracted and
separately implemented, and then assembled together in a
highly adaptable scientific application.

3.2 Need for Portable Adaptations
The approach presented here was motivated by a real life
scenario. Previously, we used a special-purpose adapta-
tion library to implement the adaptivity schemas described
above [18, 19]. Because the library’s implementation was
anchored to 32-bit Unix environments, the adaptivity func-
tionality was no longer available on 64-bit systems, which



nowadays are standard platforms for the majority of scien-
tific applications. It is this lack of portability that made
us realize that more standardized and mainstream software
engineering solutions must be introduced to obtain portable
adaptations. Indeed, AspectC++ naturally supports both
32-bit and 64-bit architectures, so that the same adaptation
source code can be applied to different architectures through
a simple recompilation.

3.3 Complexity
Despite the known advantages of AOP in reducing the
complexity of implementing cross-cutting concerns, specify-
ing and reasoning about pointcuts can incur a significant
burden on novice AOP programmers. Fortunately, the
adaptation schemas we want to support tend to have quite
straightforward pointcuts (e.g., initialization functions, par-
allel communication functions, etc.). Indeed, these join
points tend to be quite intuitive. As such, they should be
easily expressible not only by computing experts, but also
by scientific programmers comfortable with using regular
expressions.

4. ADAPTING FORTRAN PROGRAMS VIA
C++ ASPECTS

A typical scientific application is written in Fortran and uses
the Message Passing Interface (MPI) [11]. This standard
for programming distributed memory systems entails the
SPMD (Single Program, Multiple Data) style, with all
processes executing the same program with different data.
Aspect-Oriented Programming provides powerful abstrac-
tions for implementing and applying the Adaptivity Schemas
described above. Unfortunately, there is no AOP extension
developed for Fortran. In the following, we describe the
approach we developed that makes it possible to implement
adaptivity schemas in AspectC++ and apply them to extant
Fortran applications.

Using AOP provides two advantages. First, the adaptive
functionality is implemented externally to the main code
base and introduced at compile time, so that the Fortran and
AspectC++ functionality can be maintained independently.
Second, the language facilities of AOP provide greater op-
portunities for code reuse by means of aspect inheritance.

4.1 Integrating Fortran with AspectC++
Our approach leverages the binary compatibility between
imperative languages compiled to the executable linkage
format (ELF) [2]. What this entails is that functions in
all imperative languages are compiled to interchangeable
binary representations, as long as they use compatible data
types for their parameters. Although there are differences
in how advanced language features are implemented, the
implementations of base features look identical at the binary
level. For example, a Fortran function foo taking an INTEGER

parameter is compiled identically to a C++ static function
foo taking a pointer int parameter, with the only difference
in how the compiled methods are named (i.e., Fortran
methods are typically compiled to end with an underscore).

To work with AspectC++, Fortran code needs C/C++
equivalents, as AspectC++ uses source-to-source translation
for weaving. We expose as such C++ equivalents only

those portions of Fortran code that need to directly interface
with aspects, specifically AspectC++ pointcuts. To expose
function entry and exit pointcuts, we automatically (see
Subsection 4.3) generate C wrappers, with wrapper C func-
tions having the compatible signatures with the wrapped
Fortran functions. AspectC++ can then add functionality
(i.e., advice) to the original Fortran programs by means of
the execution pointcuts.

4.2 Function Call Redirection
Once a desired portion of Fortran code is exposed via
C wrappers to work as AspectC++ pointcuts, the func-
tion calls originally made to those wrapped functions in
a given application need to be replaced with the calls to
the corresponding C wrappers. Without this replacement or
redirection of function calls, the C wrapper functions would
not be called in the application, and thus the associated
adaptation advice code would not be executed either.

To redirect the invocations of the original Fortran func-
tions to call the corresponding C wrappers instead, we
use function call interception, a common technique with
several implementations [15, 24]. Specifically, we use link-
time wrapping, which is commonly supported on most Unix-
based systems.

Link-time wrapping is provided by the system linker and
wraps a function by changing its symbol name. At program
link time, the linker globally renames the wrapped function,
but the programmer is responsible for implementing the
wrapper function. For example, the GNU linker, when
passed the option ‘–wrap foo’ to wrap the function foo,
substitutes __wrap_foo for the foo references to generate the
output. The linker also creates the __real_foo symbol for the
original foo function, which can be used by the programmer
to make a call to the original implementation of foo instead
of the wrapper.

An alternative function call redirection implementation can
use LD PRELOAD, an environment variable that specifies
dynamic libraries (commonly referred to as dynamic shared
objects (DSO)) to be loaded into an application’s address
space early at load time, so that the system dynamic linker
looks up the definitions for unresolved symbols (e.g., ex-
ternally declared functions). However, that implementation
works only with shared objects, thus limiting its applicabil-
ity.

4.3 Generating Fortran to C Wrappers
To implement a Fortran to C wrapper code generator, we
extended F2PY [1], a Fortran to Python interface genera-
tor. The generated C code wraps Fortran functions/sub-
routines using the link-time wrap method. Essentially, in
generating a C wrapper such that its signature matches
that of a wrapped Fortran function/subroutine, our wrap-
per generator converts each Fortran argument type with
its corresponding C type (e.g., Fortran real to C float)
and uses pointer types to reflect Fortran’s pass-by-reference
parameter passing convention. We also exploit the fact
that most Fortran compilers (e.g., GNU, Intel, and IBM
compilers) on Unix-based systems support mixed-language
programming by appending an underscore to function names



! Only the ITSOR subroutine signature is shown
SUBROUTINE ITSOR (NN,IA,JA,A,RHS,U,WK)
INTEGER IA(1),JA(1),NN
DOUBLE PRECISION A(1),RHS(NN),U(NN),WK(NN)
...

END

/* C itsor_wrapper.c */
#ifdef __cplusplus
extern "C" {
#endif
// wrap the real ITSOR routine
void __wrap_itsor_ (int *nn, int *ia, int *ja,
double *a, double *rhs, double *u, double *wk)

{
return __real_itsor_(nn,ia,ja,a,rhs,u,wk);

}
#ifdef __cplusplus
}
#endif

Figure 2: The ITSOR subroutine and its C wrapper code
generated by our wrapper generator

when exporting symbols to linkers; our wrapper generator
creates function names accordingly.

Figure 2 shows an example Fortran subroutine code1 and its
C wrapper generated by our wrapper generator. Here, the
wrapper function, __wrap_itsor_, simply returns by making
a call to the wrapped Fortran function, ITSOR, through
its actual symbol name, __real_itsor_. The surrounding
extern "C" linkage macro makes the C wrapper callable in
C++ code, unaffected by C++ name mangling.

Figure 3 illustrates the overall structure of our approach that
weaves AspectC++ aspects with extant Fortran scientific
applications. First, the needed pointcuts in a Fortran pro-
gram are exposed as C functions through link-time wrapping
and automated wrapper generation. The adaptation code
expressed as AspectC++ advice structures is then woven
at the exposed pointcuts. Finally, all the woven code is
compiled and linked together with the original Fortran code,
thus enhancing the original Fortran program with adaptive
behavior.

5. IMPLEMENTING ADAPTIVITY
SCHEMAS IN ASPECTC++

In this section, we describe our implementation of adap-
tivity schemas in AspectC++. Each implementation is
showcased by an application to an HPC program called
GenIDLEST [30], a computational fluid dynamics (CFD)
simulation code written in Fortran 90 with MPI to solve the
time-dependent incompressible Navier-Stokes and energy
equations. The current version of GenIDLEST comprises
about 78K lines of Fortran code located in 382 separate
source files. The applications demonstrate how a Fortran
scientific program can be adapted by woven adaptation code
to enhance its capabilities in various aspects of simulation
such as stability, accuracy, and performance.

1
ITSOR in ITPACK, http://rene.ma.utexas.edu/CNA/ITPACK.

5.1 Obtaining Execution Environment
Information

Most of the time, a parallel adaptation code needs runtime
execution information, such as the size of the execution en-
vironment on which the application runs and the process ID.
The adaptation code can use the information in performing
its adaptation logic in such a way that the same code can
make individual process behave differently depending on the
process’ unique status in the execution environment. In
order to obtain the information at runtime, the adaptation
code needs to interpose itself after initialization of the par-
allel environment is completed and perform such operations
as to access the environment’s information.

Figure 4 shows a baseline AspectC++ implementation for
obtaining the MPI execution environment information. For
an adaptation code to determine its rank (myRank) and the
number of all processes (numProcs) when executed as an MPI
application, it weaves an after advice at the Fortran MPI
initialization function, mpi_init, exposed via its C wrapper,
so that the getParEnvInfo function is executed to fetch the
necessary information. The virtually declared getParEnvInfo

can be overridden to include other necessary operations
to obtain extra application-specific information about the
execution environment. For example, if an application uses
multiple groups to organize tasks among the participating
processes, the adaptation code can gain such grouping infor-
mation through the MPI group and communicator routines
to correctly perform its adaptation logic based on its status
in the group. In some of our work, we use getParEnvInfo to
execute application-specific initializations.

In the presentation of our work that follows, the adaptation
pattern implementations assume the code in Figure 4.

5.2 Control Systems Schema
Figure 5 shows the AspectC++ implementation of the con-
trol systems schema. The checkSystemState virtual pointcut,
which is to be concretely specified by subclasses, designates
an interface through which a desired portion of the dynamic
computation states can be retrieved. For Fortran programs
we are targeting in this paper, this pointcut expresses the C
wrappers that expose Fortran functions/subroutines selec-
tively chosen by the programmer to access system state.

The after advice is used at the checkSystemState pointcut
to interpose adaptation code, where parameters of the used
algorithm are adjusted with regard to changes in program
state. The state information is fetched through the As-
pectC++ tjp->result() API after the execution of the des-
ignated Fortran pointcut function, and is then passed to
adjustParam. The virtually declared adjustParam function
is to be implemented by extending subclasses that embody
application-specific adaptation strategies to control program
state.

As an application of the AspectC++ implementation of the
control systems schema, we extend the schema code to im-
plement a simulation stability control logic, which is similar
to our previous work [18] where we used a composition tool
called Adaptive Code Collage (formerly called Invoke) to
plug separately written adaptation code into GenIDLEST



Application 

written in Fortran 

AspectC++ 

Weaver

C wrapper for 

pointcut functions

Weaved C++ 

aspect code

Adaptation code 

in AspectC++

Adaptive 

application

C wrapper 

generator

Compiler / 

Linker

� expose pointcuts � weave aspect

� compose an application

applicationLinker

Figure 3: Weaving adaptation aspect code through AspectC++ by exposing Fortran functions in C wrappers

protected:
// parallel/MPI environment info
int myRank;
int numProcs;

public:
// intercept parallel environment init function
pointcut parInitFunc() = "% __wrap_mpi_init_(...)";
// get the environment info
virtual void getParEnvInfo() {

MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
MPI_Comm_size (MPI_COMM_WORLD, &numProcs);

}
// obtain parallel/MPI exec env info
advice execution(parInitFunc()) : after() {

getParEnvInfo();
}

Figure 4: AspectC++ code for obtaining MPI execution
environment information

aspect ControlSystems {
public:
// pointcut at system state function
pointcut virtual checkSystemState() = 0;
// adjust system parameters
virtual void adjustParam(void* state) = 0;
// adjust parameters to adapt to system state
advice execution(checkSystemState()) : after() {

void* state = tjp->result();
adjustParam(state);

}
};

Figure 5: Control systems schema implementation in As-
pectC++

without modifying the original source code. As the stability
of the GenIDLEST simulation depends on the time step size
used, we monitor Courant-Friedrich-Levi (CFL) numbers to
check if the simulation is proceeding towards convergence or
is becoming unstable. The adaptation code automatically
adjusts the time step parameter to allow the computation
to proceed in a stable manner.

Figure 6 shows the time step control code for GenIDLEST,
in which the ControlSystems aspect class is extended by
TimestepControl. The Fortran function specified as a point-
cut is get_convcfl, which returns a global convection CFL
number. Inside adjustParam, the time step parameter is
accessed through get_dt and is updated with a new value
through set_dt. The adaptive logic employed here is a
simple multiplicative increase/decrease algorithm with up-
per (CFL_U_THRESHOLD) and lower (CFL_L_THRESHOLD) threshold

#define CFL_THRESHOLD 0.5
#define DT_DAMPING_FACTOR 0.5

aspect TimestepControl : public ControlSystems {
// CFD convection CFL
pointcut checkSystemState() =

"% __wrap_get_convcfl_(...)";

void adjustParam(void* state) {
double dt, new_dt;
dt = get_dt();
// control timestep to keep CFL within bounds
if (*(double*)state >= CFL_THRESHOLD) {
new_dt = dt * DT_DAMPING_FACTOR;
set_dt(&new_dt);

}
else if (*(double*)state < CFL_THRESHOLD/2.0) {
new_dt = dt * (1.0 + DT_DAMPING_FACTOR);
set_dt(&new_dt);

}
}

};

Figure 6: Timestep adaptation aspect to improve the
stability of GenIDLEST simulations

values for the CFL number, such that, if the observed
CFL number becomes out of the bounds defined by the
thresholds, the time step value is increased or decreased by
a preset factor (DT_DAMPING_FACTOR).

5.3 Algorithm Switching Schema
Most scientific programs use an integer parameter value to
specify an algorithmic option to be used in computation.
For example, the LSODE solver accepts from the user an
integer value for a numerical method among a set of stiff and
non-stiff algorithms for a given problem. Hence, this allows
a program component to switch to a different algorithmic
option by changing the parameter. We implement the
algorithm switching schema based on this convention.

Figure 7 shows our AspectC++ implementation of the schema
expressed in the AlgoSwitching aspect class. The virtual
globalComm pointcut needs to be specified by extending classes
such that some global operation is designated as a place for
aspect code insertion. Since algorithm switching needs to be
performed synchronously across all the processes to avoid
races that can cause inconsistent results, it is important
to correctly define this pointcut in subclasses. Functions
that execute global communications while placed near the
computation loop would be a good target for this pointcut



aspect AlgoSwitching {
public:
// intercept global communication for advice
pointcut virtual globalComm() = 0;
// recommend switching based on some metric
virtual bool recommendSwitching() = 0;
// return a new algorithmic option
virtual int getNewMethod() = 0;
// perform switching
virtual void switchMethod(int method) {

MPI_Bcast(&method,1,MPI_INT,0,MPI_COMM_WORLD);
}

advice execution(globalComm()) : after() {
int newMethod;
// root process initiates switching
if (myRank == 0) {
if (recommendSwitching()) {

newMethod = getNewMethod();
}

}
switchMethod(newMethod);

}
};

Figure 7: Algorithm switching schema implementation in
AspectC++

as we described in Section 2.

The recommendSwitching function returns a bool value for dy-
namic adaptive decisions about algorithm switching, which,
depending on applications, can either be automated by an
adaptive procedure or be initiated by the domain expert
based on analysis of observed results. getNewMethod returns
an integer that specifies an algorithmic option for switching.
Subclasses need to provide a concrete definition for each of
these functions.

The after advice executes switching operations after the
globalComm pointcut function completes. The root process
makes the switching decision by calling recommendSwitching

and getNewMethod, and the decision is then broadcast to
all the processes by the switchMethod function through the
MPI_Bcast global communication. Since MPI_Bcast synchro-
nizes the execution of all the processes to perform correct
switching, it can cause overhead in application performance.
However, as the operation “piggybacks” onto the existing
global communication specified as globalComm so that these
separate barriers are placed close together, the combined
overhead becomes smaller and the potential performance
slowdown can be mitigated. Subclasses are expected to over-
ride switchMethod and include application-specific operations
necessary to completely realize algorithm switching, since
the baseline implementation of switchMethod only communi-
cates the switching decision among processes.

As an application of the algorithm switching schema to
GenIDLEST, we implemented flow model switching to im-
prove the simulation accuracy. In CFD simulations, the
predicted heat transfer and flow characteristics depend on
the selection of the appropriate flow model such as laminar
or turbulent models. Since the physics of the simulated
flow cannot be known a priori, improper choice of flow
models may cause inaccurate results, in which case stopping
the current execution and resuming the simulation with
a correct model is required. To avoid such cases and
make a simulation proceed without stop, our application

// code for Unix signal (SIGUSR1) handling
bool user_stop = false;
static void sigusr1_handler(int sig);
static void install_sigusr1_handler();

aspect FlowModelSwitching : public AlgoSwitching {
public:
// use calc_cfl() to execute adaptation
pointcut globalComm() = "% __wrap_calc_cfl_(...)";
// override to install a signal handler
void getParEnvInfo() {
AlgoSwitching::getParEnvInfo();
install_sig_handler(); // SIGUSR1 handler

}
// set user_stop at user’s request
bool recommendSwitching() {
bool recommend = false;
if (user_stop) recommend = true;
return recommend;

}
// accept switching decision via UI
int getNewMethod() {
int newMethod;
// user interface code for switching decision
...
return newMethod;

}
// effect flow model switching
void switchMethod(int newMethod) {
AlgoSwitching::switchMethod(newMethod);
setNewMethod(&newMethod);
user_stop = false;

}
};

Figure 8: Flow model switching aspect to improve the
accuracy of GenIDLEST simulations

implements flow model switching based on the AlgoSwitching

aspect code.

Figure 8 shows the flow model switching implementation in
AspectC++. The adaptation logic is similar to our previous
work in [18], where a switching decision is dynamically made
by the user with domain knowledge and Unix signals are
used to initiate and effect model switching onto running
MPI processes. For the pointcut function to interpose adap-
tation operations, we use the calc_cfl subroutine located
at the end of the time integration loop, which uses MPI
reduction operations to calculate CFL numbers. Base class’s
getParEnvInfo is overridden to install a Unix signal handler,
which sets the user_stop flag at the user’s request sent via
a signal, so that recommendSwitching returns true at the
next iteration of time integration. getNewMethod takes the
user’s switching decision through a user interface provided
by the root process and switchMethod performs switching
by setting the model parameter with the value passed from
getNewMethod. After switching is complete, user_stop is reset
to false.

5.4 Active Mining of Recommendation
Spaces Schema

Figure 9 shows our AspectC++ implementation of the rec-
ommendation spaces mining schema. The aspect is designed
to execute each step of point selection in search space,
exploration of a selected point, evaluation, and search space
update at the loop end in consecutive iterations. The after

advice for parInitFunc executes initialization for search and
exploration such as obtaining search space information in
the advice code for parInitFunc. DTYPE and MPI_DTYPE are



aspect Mining {
protected:
bool srchComplete, explrComplete;
DTYPE *srchPnt, *curPnt;
unsigned int count, dim;

public:
pointcut virtual globalComm() = 0;
// functions for managing search space
virtual DTYPE * getSpace() = 0;
virtual DTYPE * getSearchPnt() = 0;
virtual bool updateSpace(DTYPE * pnt) = 0;
// functions for performing exploration
virtual void beginExplore() = 0;
virtual bool checkExplore() = 0;
virtual bool evalExplore() = 0;
... // perform initialization

// mine search space at every iteration
advice execution(globalComm()) : after() {

count++; if (srchComplete) return;

if (explrComplete) {
srchPnt = getSearchPnt();
explrComplete = false;
// use new parameters in next iterations
beginExplore();

} else {
explrComplete = checkExplore();
if (!explrComplete) return;

DTYPE *dPnt = curPnt;
// root process makes decision
if (myRank==0) {

if (evalExplore()) dPnt = srchPnt;
}
MPI_Bcast(dPnt,dim,MPI_DTYPE,0,MPI_COMM_WORLD);
curPnt = dPnt;
if (!updateSpace(srchPnt)) srchComplete = true;

}
}

};

Figure 9: Mining of spaces schema implementation in
AspectC++

macros to support multiple data types (e.g., int and double)
of parameters that define search space, and are required to
be defined with a specific type in subclasses.

The after advice placed at globalComm begins exploration of
search space by selecting a new point from a given space
(getSearchPnt). The virtually declared beginExplore needs
to be concretely specified in subclasses such that a running
computation is updated to use newly selected parameter
values in next iterations. The computational progress and
its properties in the exploration step are regularly checked
by checkExplore at the loop end, which needs to be specified
by subclasses to decide when to stop exploration. After ex-
ploration completes, the root process compares the explored
point with the previous point, determines which to use
for the ongoing computation (evalExplore) based on some
metric such as execution time, and broadcasts its decision.
Finally, the search space is updated with the exploration
result and a new round of search begins in the next iteration.

As an application of the mining schema aspect to GenIDLEST,
we implemented dynamic parameter tuning of algorithmic
parameters in AspectC++, which is also similar to our
previous work [19] where we used Adaptive Code Collage
(ACC). In this application, a 3-dimensional integer parame-
ter that represents the size of the data structure used in the
GenIDLEST preconditioning code, called cache sub-blocks,

aspect ParamsTuning : public Mining {
private:
bool blkXdone, blkYdone, blkZdone;
double exeTm, curBlkTm1, curBlkTm2, expBlkTm;
int minXblk, maxXblk, ...;

public:
int *getSearchPnt() {
int *tmpNblk = new int[SPACEDIM];

if (!blkXdone) { ... //search in X direction }
else if (blkXdone && !blkYdone) { ... //Y }

... //set tmpNblk with new sub-block numbers
return tmpNblk;

}
...

bool checkExplore() {
bool exploreStatus = false;
endTm = getTimeStamp(); exeTm = endTm-startTm;
//4-stage procedure for dynamic tuning
int stage = count%NSTAGE;
switch (stage) {
case 1: curBlkTm1 = exeTm; break; //1st measure
case 2: curBlkTm2 = exeTm; //2nd measure

setParams(srchPnt); //now set new params
break;

case 3: expBlkTm = exeTm; //new params exe time
exploreStatus = true; break;

default: break;
}
startTm = getTimeStamp();
return exploreStatus;

}
};

Figure 10: Dynamic parameter tuning aspect to improve
the performance of GenIDLEST simulations

is dynamically tuned through a staged optimization proce-
dure to match the memory hierarchy of a given execution
platform

Figure 10 shows a part of the tuning aspect implementation,
where we list only the most relevant part of the tuning logic.
To find a candidate point in the cache sub-block parameter
space, getSearchPnt searches in each of the 3-dimensional
space that is bounded by current minimum and maximum
values. Although not entirely shown, in order to balance the
trade-off between tuning cost and application performance,
the actual implementation uses a set of optimization schemes
to effectively reduce the search space size during the process.

The checkExplore function uses a 4-stage procedure to eval-
uate a new cache sub-block parameter value (i.e., the search
point being explored) and compare with a previous value
using execution times spent to complete a preset number
of loop iterations. Based on measured timings for each
of the new and previous parameter values, the evalExplore

function decides which one out of the two to use for the
running computation and updates the parameter search
space accordingly.

6. EVALUATION
We evaluate our AspectC++ adaptation aspects with re-
spect to code reusability, software complexity, and perfor-
mance overhead, and compare our implementations with
hand-written code. Specifically, we compare our AspectC++
implementation with the manually written adaptation code
described in our previous work [18, 19]. Finally, we discuss



Hand-coded AspectC++

Adaptation aux logic total aux logic total (gain)

Timestep control 17 31 48 9 20 29 (40%)
Model switching 20 68 88 13 53 66 (25%)
Dynamic tuning 25 172 197 13 154 167 (15%)

Table 1: ULOC comparison of the GenIDLEST adaptation
implementations between the hand-coded and
AspectC++ implementations

some of the limitations of our approach.

6.1 Reusability
A desirable software design objective is code reusabiltiy,
which allows using the same code fragments in multiple
scenarios either within the same application or across dif-
ferent applications. The ability to reuse code improves
programmer productivity, as the programmer does not have
to implement the same functionality multiple times. This,
in turn, leads to a smaller code size, which reduces the
maintenance burden and the risks of introducing software
defects.

In object-oriented programming, an important technique to
promote code reusability is class inheritance. Common func-
tionality is encapsulated in a base class that is extended by
subclasses which add only the unique functionality. In AOP,
aspects can inherit from each other. In our GenIDLEST
adaptation implementation, we use inheritance to extend
adaptivity schema aspects, thereby reducing the total size
of the adaptive code.

Table 1 compares the amount of uncommented lines of
source code (ULOC) written by a programmer between the
AspectC++ and hand-coded implementations. ‘aux’ repre-
sents auxiliary code that is not relevant to an adaptation
logic implementation (designated as ‘logic’ in the table),
such as header includes, helper functions, and linkage macros
to resolve name mangling between Fortran and C/C++.
The hand-coded implementations also need to use the ACC
framework’s APIs to setup the introduction of adaptation
code to GenIDLEST.

The AspectC++ versions take less code to implement than
the hand-coded ones in all cases. The code reduction ranges
between 15% for the most complex dynamic tuning adapta-
tion and 40% for the simple time step control adaptation.
The adaptive functionality for the auxiliary part can be
implemented in fewer lines of code by using AspectC++ and
our C wrapper generator. The hand-coded implementation
also requires some hand-written code to properly instantiate
the ACC framework.

In addition, AspectC++ implementations use fewer lines of
hand-written code by inheriting schema aspects. As code
becomes complex and its size grows, the table shows that
the gain becomes smaller because the pointcuts defined in
all adaptation implementations specify a limited number of
join points such as loop ends. Therefore, application-specific
adaptation schemes that involve multiple join points can
benefit more from subclassing schema aspects.

Hand-coded AspectC++

Adaptation aux logic (next max) aux logic (next max)

Timestep control 2 3 (0) 0 3 (0)
Model switching 2 5 (0) 2 3 (2)
Dynamic tuning 1 25 (6) 1 14 (13)

Table 2: Complexity comparison of the GenIDLEST adap-
tation implementations between the hand-coded
and AspectC++ implementations using maxi-
mum MCC numbers

6.2 Software Complexity
AOP refactoring enables greater modularity of program
components by modularizing cross-cutting concerns while
preserving the external behavior. Thus, AOP reduces soft-
ware complexity and thereby increases maintainability and
productivity. To measure the software complexity of our
AOP-based adaptation implementations, we use McCabe
Cyclomatic Complexity (MCC) [23], a metric that directly
measures the number of linearly independent paths through
the program’s source code. The MCC number is indicative
of the effort the programmer has to expend to understand a
codebase.

Table 2 compares maximum MCC numbers between the
AspectC++ and hand-coded adaptation implementations.
The ‘next max’ number is the MCC number of the func-
tion that shows the second biggest MCC number. For
the time step control adaptation, the complexities of both
implementations is the same. The auxiliary part in the
hand-coded version has MCC of 2. For the flow model
switching adaptation, the complexity of auxiliary code is
the same in both implementations, as both use the Unix
signal handling functions. However, the complexity of the
adaptation logic code becomes reduced because of the or-
ganized structure inherited from the algorithm switching
schema aspect code. This effect becomes significant in the
dynamic tuning implementation, which is the most complex
code of all adaptations. The maximum MCC number is
greatly reduced from 25 in the hand-coded implementation
to 14 in the AspectC++ version, while the second largest
MCC number for the AspectC++ implementation is bigger
than the hand-coded one. This is mostly because the
hand-coded implementation intermingles codes, such as that
for the timing and parameter space updating functionality,
with many conditional statements. In contrast, the As-
pectC++ implementation follows the organized structure in
the mining base class, thereby keeping the overall complexity
balanced across different functions.

6.3 Performance Overhead
To measure the performance cost caused by imposing adap-
tation operations onto GenIDLEST, we perform GenIDLEST
simulations on two cluster systems, called Anantham and
System G, respectively. Each node of Anantham is a 64bit
Linux (kernel version 2.6.9) machine with a 1.4GHz AMD
Opteron 240 dual-core CPU and 1GB of memory, intercon-
nected with 100Mbps Ethernet. The MPI runtime used is
MPICH 2.1 with GCC 4.2.5. System G consists of dual-
socket 2.8GHz Intel Xeon E5462 quad-core SMP machines
interconnected with 40Gbps InfiniBand. The operating
system on System G is the 64bit Linux 2.6.27 kernel and



GenIDLEST with Aspects

Original Timestep Model Dynamic
Cluster GenIDLEST Control Switching Tuning

Anantham 9441 9448 (.1%) 9473 (.3%) 9519 (.8%)
System G 4105 4110 (.1%) 4124 (.4%) 4134 (.7%)

Table 3: Execution time (seconds) and overhead measure-
ments of the GenIDLEST adaptation implemen-
tations using a pin fin array problem for 500 time
steps.

the MVAPICH 2.1 MPI system was used with GCC 4.3.2. A
pin fin array was used as an example CFD problem, which is
decomposed into 16 blocks such that each block is processed
by one MPI process (i.e., the number of parallelism is
16). On Anantham, 8 nodes with two processors each
were used, while on System G, 4 nodes with 4 processors
each were used. In the experiments, each application-
specific adaptation logic is disabled and only the base class
operations are performed, so that the overhead caused only
by the pattern implementations are measured.

Table 3 shows the total execution time it took to run
the entire GenIDLEST simulation, using both the hand-
written and AspectC++-based adaptation approaches. To
extract the adaptation overhead, these execution times are
compared to that of the original GenIDLEST program.
Since the time step control adaptation is the simplest and
does not use any global operations, its overhead is the
smallest of all on both platforms. For adaptations that use
more complex patterns that execute global operations, such
as algorithm switching and mining, the incurred overhead
grows. However, the performance cost of adaptation aspects
is quite small, incurring 0.8% across the platforms. This
overhead is comparable to that incurred by the hand-written
versions implemented using the ACC framework.

6.4 Limitations
The key limitations of our approach stem from the semantic
differences between Fortran and C++, and to effectively
adapt Fortran programs, we necessarily had to limit the
subset of the Fortran language with which we want to be
able to interface through AspectC++.

A current engineering limitation of our tool infrastructure is
a lack of support for composite types. A Fortran composite
data type is a global structure that can be mapped to some
C++ global variable. As long as both the C++ and Fortran
parts of an application conform to the ELF specification,
a Fortran composite data type can be mapped to some
C++ structure to ensure that both structures have the same
layout. Thus, to use composite types with our approach, the
programmer has to define an appropriate C++ counterpart
for a Fortran complex data type, which can be tedious and
error-prone if done manually. As a specific example, the
Fortran complex data type does not have a native counterpart
despite the presence of complex types in the C++ Standard
Template Library.

We also had to carefully choose which features of AspectC++
we want to support. Our approach requires that only
Fortran functions be exposed through wrappers to interface

with C++ aspect code. We then leverage the AspectC++
execution pointcut through which the programmer can spec-
ify callee-site join points at the execution of wrapped Fortran
function calls. The resulting callee-site weaving is easier to
implement than caller-site weaving (e.g., the call pointcut);
only one exposure point is required for each intercepted
Fortran function, whereas the caller-site weaving has to
examine the entire Fortran codebase to find every call-site
for each intercepted function that must be exposed at all the
call-sites. As a result, our callee-site weaving approach may
be insufficiently powerful in the case of complex adaptations
requiring complete context information, which may be un-
available from the exposed signature-only Fortran function
data.

While AspectC++ supports other kinds of pointcuts, they
would not be applicable for the needed adaptations. In ad-
dition, some of the AspectC++ pointcuts simply cannot be
used due to the fine-grained differences in semantics between
Fortran and C++, which restrict the range of applicability
of certain AspectC++ features. For instance, AspectC++
offers class and namespace matching mechanisms to specify
join points with the granularity of C++ classes or structures.
However, it is not immediately obvious how one can apply
them to Fortran, which does not have a direct counterpart
to C++ classes.

As it turns out, even using a limited subset of AspectC++
features makes it possible to flexibly adapt Fortran programs
at the function level, whereby separately developed Fortran
and C++ programs work in concert to achieve a common
goal of implementing adaptable scientific software.

7. RELATED WORK
In this section, we briefly survey related work in the litera-
ture of AOP and scientific computing, and contrast our work
with them.

7.1 Multilingual Systems
Other approaches to integrating Fortran with C/C++ fo-
cused on language translation. For instance, there are
Fortran 77 to C translators such as f2c [10]. Language
interoperability tools include Chasm [27] and middleware
such as Babel [22] and component technologies such as
Common Component Architecture [4]. These technologies
support multiple languages but require either specific API
conformance or the use of special interface definition lan-
guages. These approaches are too heavy weight for the
purposes of this work.

7.2 AOP for Scientific Computing
Although scientific computing was one of the initial applica-
tion domains of AOP [17], the AOP methodologies and ab-
stractions have not been deeply investigated in the scientific
computing area. This is mostly due to the fact that scientific
applications are typically written in Fortran or C/C++ for
performance and scalability reasons, while a large body of
the AOP research is based on Java-based implementations.
However, it is encouraging that the overhead of Java (e.g.,
garbage collection overhead) is becoming acceptable for
computationally intensive tasks with the increasing hard-
ware parallelism [3], which can lead to broader recognition



of sophisticated software engineering methodologies such
as AOP in the scientific and high-performance computing
domains.

Harbulot et al. [13] tackle the code-tangling issue in parallel
scientific programs, where computation code is intermingled
with parallelization code in such a way that further software
changes become difficult. Their work applies AOP refac-
toring to separate the parallelization concern in a scientific
application into a single aspect, thus achieving modularity.
Han et al. [12] showcase AOP applications to cluster com-
puting software. Their work modularizes several additional
functionalities for the MPI library, such as fault-tolerance
and routing between heterogeneous clusters, into aspect
code and uses AspectC++ to combine them with MPI,
thereby creating an enhanced version of MPI. Aslam et
al. [5] implement an aspect-oriented language for Matlab,
a dynamic programming language popular in scientific pro-
gramming. They apply their language to Matlab programs
to implement typical AOP use cases such as performance
profiling and data annotations. These AOP applications
are contrasted with our work which aims to adapt program
behavior to enhance an application’s capabilities by tackling
language interoperability issues.

7.3 AOP for Parallel Programming
Several AOP research work treat parallelization as a sep-
arate concern, so that a parallel version of an application
can be generated from a serial code in a modular way
by plugging in separately developed parallel aspect code
through AOP frameworks. Bangalore [7] uses AspectC++
to implement parallelization patterns and components such
as data distribution and message passing on top of existing
sequential programs, thus achieving modular development
of parallel programs. Sobral [28] uses AspectJ for incre-
mentally developing parallel applications with serial Java
programs. Harbulot and Gurd [14] develop a join point
model and a compiler for recognizing loops, which are a
prime target of parallelization, so that aspect code can be
interposed at the loop level.

There are AOP frameworks that use annotations to ex-
press concurrency aspects, which is similar to the OpenMP
model [25] that uses compiler directives to express paral-
lelism. For example, both the JBOSS AOP framework2 and
recent versions of AspectJ 3 provide the @Oneway annotation
to fire void methods in a separate thread that will run
asynchronously in a task-parallel fashion. The aspect-based
approach in [8] is similar to ours in that it presents reusable
aspect-based implementations of a set of common concur-
rency patterns, such as futures, barrier, and synchronization.
However, their work implements concurrency patterns on
shared-memory platforms, while ours focuses on adaptation
patterns in scientific computing on parallel platforms in a
distributed-memory environment. Also, their aspect imple-
mentations based on AspectJ targets programs written in
Java, a language ingrained with OO mechanisms already.
In contrast, our work attempts to apply sophisticated OO
abstractions to Fortran programs, in which OO mechanisms
are rare, by selectively exposing the code as aspect pointcuts.

2http://www.jboss.org/jbossaop
3http://www.eclipse.org/aspectj

8. CONCLUSION
In this paper, we presented a novel approach that expresses
recurring adaptation functionality patterns of scientific com-
puting as reusable aspect-oriented code. Our approach uses
cross-language adaptation implemented using code gener-
ation and an aspect library. We evaluated the software
engineering benefits of our approach by obtaining the ULOC
and cyclomatic complexity metrics from the original (hand-
coded) and our (aspect-based) versions of a computational
fluid dynamics scientific application. The results of the
evaluation show that using aspects can reduce the amount
of code needed to implement the adaptivity functionality by
as much as 27% on average. We have also verified that using
our approach does not incur an unreasonable performance
overhead.

Overall, the software engineering benefits of our approach
include improved maintainability, more structured design,
and greater automation. Greater reusability enabled by our
approach also allows scientific programmers to subclass the
schema aspects provided by our library, thereby reducing
the programming effort. Future work directions will focus
on providing a more complete library of adaptivity schema
aspects to support additional adaptivity schemas [31].

Facing the unprecedented challenges of modern scientific
applications requires the adoption of state-of-the-art soft-
ware engineering techniques and approaches. In that light,
the maintainability advantages offered by AOP can offer
viable solutions to these challenges. The ideas presented in
this paper can inform the designs that transfer the lessons
gleaned from constructing and maintaining mainstream soft-
ware systems to help address the challenges of emerging
scientific software.

9. ACKNOWLEDGMENTS
The authors would like to thank Dr. Danesh K. Tafti in the
department of mechanical engineering at Virginia Tech for
his help in letting us use his GenIDLEST CFD simulation
software for this research. We acknowledge the support of
US National Science Foundation grant CNS-0615181.

10. REFERENCES
[1] F2PY: Fortran to Python interface generator.

http://cens.ioc.ee/projects/f2py2e/.

[2] Tools Interface Standards (TIS) Committee.
Executable and Linking Format (ELF) Specification,
1995.

[3] B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbe,
F. Huet, and G. Taboada. Current State of Java for
HPC. Technical Report RT-0353, INRIA, 2008.

[4] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolinski.
Toward a Common Component Architecture for
High-Performance Scientific Computing. In HPDC ’99:
Proceedings of the 8th IEEE International Symposium
on High Performance Distributed Computing, page 13,
Washington, DC, USA, 1999. IEEE Computer Society.

[5] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren.
AspectMatlab: An Aspect-Oriented Scientific
Programming Language. In AOSD ’10: Proceedings of
the 9th International Conference on Aspect-Oriented



Software Development, pages 181–192, Rennes and
Saint-Malo, France, 2010.

[6] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler
Transformations for High-Performance Computing.
ACM Comput. Surv., 26(4):345–420, 1994.

[7] P. V. Bangalore. Generating Parallel Applications for
Distributed Memory Systems using Aspects,
Components, and Patterns. In ACP4IS ’07:
Proceedings of the 6th Workshop on Aspects,
Components, and Patterns for Infrastructure Software,
Vancouver, British Columbia, Canada, 2007.

[8] C. A. Cunha, J. L. Sobral, and M. P. Monteiro.
Reusable Aspect-Oriented Implementations of
Concurrency Patterns and Mechanisms. In AOSD ’06:
Proceedings of the 5th International Conference on
Aspect-Oriented Software Development, pages
134–145, Bonn, Germany, 2006.

[9] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes,
A. Petitet, R. Vuduc, R. Whaley, and K. Yelick.
Self-Adapting Linear Algebra Algorithms and
Software. Proceedings of the IEEE, 93(2):293–312,
Feb. 2005.

[10] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L.
Schryer. A Fortran to C converter. Technical Report
149, AT&T Bell Laboratories, 1995.

[11] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the
Message-Passing Interface. MIT Press, Cambridge,
MA, 1999.

[12] H. Han, H. Jung, H. Y. Yeom, and D.-Y. Lee. Taste of
AOP: Blending Concerns in Cluster Computing
Software. In CLUSTER ’07: Proceedings of the 2007
IEEE International Conference on Cluster Computing,
pages 110–117, Washington, DC, USA, 2007. IEEE
Computer Society.

[13] B. Harbulot and J. R. Gurd. Using AspectJ to
Separate Concerns in Parallel Scientific Java Code. In
AOSD ’04: Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development,
pages 122–131, Lancaster, UK, 2004.

[14] B. Harbulot and J. R. Gurd. A Join Point for Loops in
AspectJ. In AOSD ’06: Proceedings of the 5th
International Conference on Aspect-Oriented Software
Development, pages 63–74, Bonn, Germany, 2006.

[15] M. A. Heffner. A Runtime Framework for Adaptive
Compositional Modeling. Master’s thesis, Blacksburg,
VA, USA, 2004.

[16] P. D. Hovland and M. T. Heath. Adaptive SOR: A
Case Study in Automatic Differentiation of Algorithm
Parameters. Technical Report ANL/MCS-P673-0797,
Mathematics and Computer Science Division,
Argonne National Laboratory, 1997.

[17] J. Irwin, J.-M. Loingtier, J. R. Gilbert, G. Kiczales,
J. Lamping, A. Mendhekar, and T. Shpeisman.
Aspect-Oriented Programming of Sparse Matrix Code.
In ISCOPE ’97: Proceedings of the Scientific
Computing in Object-Oriented Parallel Environments,
pages 249–256, London, UK, 1997. Springer-Verlag.

[18] P. Kang, N. K. C. Selvarasu, N. Ramakrishnan, C. J.
Ribbens, D. K. Tafti, and S. Varadarajan. Modular,
Fine-Grained Adaptation of Parallel Programs. In
Proceedings of the 9th International Conference on

Computational Science, pages 269–279, Baton Rouge,
Louisiana, USA, May 2009.

[19] P. Kang, N. K. C. Selvarasu, N. Ramakrishnan, C. J.
Ribbens, D. K. Tafti, and S. Varadarajan. Dynamic
Tuning of Algorithmic Parameters of Parallel Scientific
Codes. In Proceedings of the 10th International
Conference on Computational Science, pages 145–153,
Amsterdam, The Netherlands, May 2010.

[20] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), volume 1241, pages 220–242.
Springer-Verlag, Finland, June 1997.

[21] D. K. Kim, Y. Jiao, and E. Tilevich. Flexible and
Efficient In-Vivo Enhancement for Grid Applications.
In CCGRID ’09: Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 444–451, Washington,
DC, USA, 2009. IEEE Computer Society.

[22] Lawrence Livermore National Laboratory.
http://computation.llnl.gov/casc/
components/babel.html.

[23] T. J. McCabe. A Complexity Measure. In ICSE ’76:
Proceedings of the 2nd International Conference on
Software Engineering, page 407, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

[24] D. S. Myers and A. L. Bazinet. Intercepting Arbitrary
Functions on Windows, UNIX, and Macintosh OS X
Platforms. Technical Report CS-TR-4585,
UMIACS-TR-2004-28, Center for Bioinformatics and
Computational Biology, Institute for Advanced
Computer Studies, University of Maryland, 2004.

[25] OpenMP Architecture Review Board. OpenMP
Application Program Interface, Version 3.0, May 2008.
http://www.openmp.org.

[26] K. Radhakrishnan and A. C. Hindmarsh. Description
and Use of LSODE, the Livermore Solver for Ordinary
Differential Equations. Technical Report
UCRL-ID-113855, LLNL, 1993.

[27] C. E. Rasmussen, M. J. Sottile, S. S. Shende, and
A. D. Malony. Bridging the Language Gap in
Scientific Computing: the Chasm Approach.
Concurrency and Computation: Practice &
Experience, 18(2):151–162, 2006.

[28] J. Sobral. Incrementally Developing Parallel
Applications with AspectJ. IPDPS ’06, 0:95, 2006.

[29] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
AspectC++: An Aspect-Oriented Extension to the
C++ Programming Language. In CRPIT ’02:
Proceedings of the 40th International Conference on
Tools Pacific, pages 53–60, Darlinghurst, Australia,
2002. Australian Computer Society, Inc.

[30] D. Tafti. GenIDLEST - A Scalable Parallel
Computational Tool for Simulating Complex
Turbulent Flows. In Proceedings of the ASME Fluids
Engineering Division, volume 256. ASME-IMECE,
Nov. 2001.

[31] S. Varadarajan and N. Ramakrishnan. Novel Runtime
Systems Support for Adaptive Compositional
Modeling in PSEs. Future Gener. Comput. Syst.,
21(6):878–895, 2005.


