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Fig. 1. An overview of BiSet. Entities are represented in lists. In the space between each neighboring pair of lists, BiSet adds a
“in-between” layer, displaying edges. BiSet bundles edges based on biclusters and allows users to directly manipulate bundles. The
bundles can reveal task-oriented semantic insights about coordinated relationships. BiSet also applies accumulated highlighting to
entities, bundles and edges to indicate highly shared entities and relationships.

Abstract— Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might
want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships,
such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations
to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of
coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset.
Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer
task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer,
“in-between”, to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal
their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With
a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

Index Terms—Bicluster, coordinated relationship, semantic edge bundling

1 INTRODUCTION

Analysts often face difficult challenges in exploring complex relations
and identifying meaningful ones for sensemaking [39]. Current vi-
sual analysis tools emphasize individual relationships and just display
simple ones. This makes it hard for analysts to see more complex re-
lationships (e.g., coordinated relationship). Coordinated relationships
are grouped relations between sets of entities of different types (e.g.,
three people who all visited the same four cities). Due to the complex-
ity, compared with simple relationship, coordinated relationship needs
more cognitive effort for exploration.

Existing techniques that display individual relationships, such as
between lists of entities, require repetitious manual selection and sig-
nificant mental aggregation in cluttered visualizations to find coordi-
nated relationships. For example, Jigsaw [19] provides a List View
to support exploring relationships between lists of entities (e.g., peo-
ple, location, date, organization, etc.). In the List View, Jigsaw applies
visual links between related entities to show their connections and con-
trols the shading of colors for entities to indicate their co-occurrence.
With these visual encodings, in Jigsaw, users can recognize relations
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between entities without much effort, but these relations are limited
to simple individual ones (e.g., a person visited three cities). Users
have to repetitiously click entities, visually check and mentally com-
pare their linked entities to identify coordinated relationships. Since
Jigsaw’s List View does not provide clear visual clues on coordinated
relations, users have to manually test all possible entities before they
finally find a meaningful one. This potentially forces users to solve a
combinatorial problem of selection without much support. Thus, due
to deficient clues to direct user selections, tools like Jigsaw have lim-
ited capabilities to support exploring coordinated relationships.

Visual analytics can potentially better support this by computation-
ally finding complex relationships and revealing them in context. This
enables analysts to see complex relations with other data (e.g., enti-
ties in lists). Specifically, we can compute coordinated relationships
with biclustering algorithms and display them in context using edge
bundling. In this case, edge bundles can reveal semantic insights from
coordinated relationships, which is meaningful from a task-oriented
perspective. The reason is that edges are bundled using semantic edge
bundling that is based on results of biclustering algorithms, rather than
using spatial edge bundling which is based on spatial proximity to sim-
plify visual representations.

Biclustering algorithms compute coordinated relationships as bi-
clusters. A bicluster can be considered a grouped relationship between
two sets of entities, where each entity in one set is connected with all
in another. Figure 2 shows an example of a bicluster that indicates
a coordinated relation between three people and four locations. It is
clear that a bicluster can bundle edges that link pairs of related entities,
and group entities that belong to the same coordinated set. Biclusters
provide a conceptual format to present coordinated relationships in an



organized manner. To take advantage of this for sensemaking, a five-
level design framework for bicluster visualizations has been proposed
in [49]. However, existing techniques are inefficient to support explor-
ing coordinated relationships, and few attempt to adapt biclusters to
facilitate this by following the design framework. Thus, it is still chal-
lenging to design a technique that can take advantage of biclusters and
make them usable to support coordinated relationship explorations.

Fig. 2. An example of a bicluster, indicating a coordinated relationship
between three people and four locations. (A) presents all connections
between each pair of related entities from the two domains. (B) shows
the result of bundling edges in this bicluster. (C) demonstrates the result
of both bundling edges and grouping entities in this bicluster.

To address such challenges, we present BiSet, a visual analytics
technique to support interactively exploring coordinated relationships
with biclusters. Our key contributions in this paper are as follows:

1) We formalize coordinated relationships as biclusters and algo-
rithmically mine them from a dataset.

2) We visualize the biclusters in context as bundled edges between
sets of related entities. These bundles enable analysts to infer semantic
insights about potentially coordinated activities.

3) We make bundles as the first class objects and add a new layer
“in-between” lists to contain these bundle objects. We allow users to
direct manipulate bundles for organizing entities represented in lists.

4) We apply interactions to both edge bundles and entities for re-
vealing and organizing relevant information in a bidirectional way.
Users can interact with edge bundles to forage and organize relevant
entities and, vice versa, for sensemaking purposes.

5) We present a usage scenario to demonstrate how BiSet can sup-
port the coordinated relationship exploration in text analytics.

2 RELATED WORK

Four key aspects are involved in BiSet: biclustering, list layout, visual
link and edge bundling, which outlines the discussion of related work.

2.1 Biclusters and Bicluster-Chains
Biclustering attempts to find both subsets of entities and subsets of
dimensions with the restriction that for each identified subset of en-
tities, they identically behave within the corresponding subset of di-
mensions [36]. Biclusters are computational results from biclustering
algorithms that identify coordinated relations between two entity sets.
An entity set refers to a set of unique objects from a specific domain
(e.g., people) extracted from a dataset (e.g., documents).

Relationship between two entity sets. Given two entity sets E and
F, a (binary) relationship R (E, F) between E and F is a subset of
E×F (the Cartesian product of E and F ). We say that E is connected
to F. There are different ways to model relationship R in different sce-
narios. In text analytics, R can be determined by word co-occurrence
in documents or semantic meanings identified with natural language
processing. For example, person X is related to city Y , since they are
mentioned in the same document or based on semantic meanings of
some sentences that indicate person X visited city Y .

Bicluster. We define a bicluster (E ′, F ′) on R (E, F) as a set E ′ ⊆ E
and a set F ′ ⊆ F such that E ′×F ′ ⊆ R. That is, there is a relationship
between each element of E ′ with every element of F ′. We use |E ′|+
|F ′| to denote the size of a bicluster (E ′, F ′) where |E ′| and |F ′| are
the cardinality of E ′ and F ′. In addition, bicluster (E ′, F ′) is thin if
there is only one entity in either E ′ or F ′.

Closed bicluster. A bicluster (E ′,F ′) is closed if:

(i) For every entity e ∈ E−E ′, there is some entity f ∈ F ′ such that
(e, f ) /∈ R, and

(ii) For every entity f ∈ F−F ′, there is some entity e∈ E ′ such that
(e, f ) /∈ R.

Algorithms for bicluster mining typically aim to find closed biclus-
ters. These algorithms (e.g., CHARM [56] and LCM [51]) function
level-wise with regard to one domain (e.g., E), wherein they attempt to
mine closed biclusters involving one entity of E, then closed biclusters
involving two entities of E, and so on. The key parameter influencing
such mining is the size of a bicluster in terms of the other domain (e.g.,
F), also referred to as the minimum support threshold. The setting of
this parameter is done heuristically by users; a low threshold will yield
a plethora of biclusters whereas a stringent (high) threshold will yield
few (or no) biclusters. Typically, users begin with a high threshold and
gradually lower it until it yields a sufficient number of biclusters [56].
In this paper, we use CHARM and LCM, although any biclustering
algorithm can be utilized in BiSet.

Biclusters logically aggregate multiple individual relations to form
coordinated sets, so they provide an opportunity to visually bundle
edges between entities. Bicluster-based edge bundles organize edges
in a semantic manner, potentially revealing semantic insights. For ex-
ample, four suspicious people may collude about a terrorist attack,
since they are all related to the same three terrorist organizations. This
is different from spatial edge bundling that bundle edges based on spa-
tial proximity to reduce visual clutter [58].

Fig. 3. An example of a bicluster-chain consisting of two biclusters.
(A) presents all edges between related entities. (B) shows that the two
biclusters connect together as a chain by their shared phone numbers.

Bicluster-chains. Based on shared entities, if there are any, multi-
ple biclusters (consisting of different pairs of domains) can connect to
form bicluster-chains. With compositional mining methods [29, 54],
bicluster-chains can be identified from a dataset. Figure 3 shows an
example of a bicluster-chain with two biclusters. One shows coordi-
nated relations between three people and four phone numbers, and the
other presents relations between three phone numbers and four loca-
tions. They share three phone numbers. One possible semantic insight
revealed from this chain is: three people may visit the same four cities,
since they called each other via four phone numbers, and phone calls
from three of these numbers were all reported at the four cities.

A five-level design framework for bicluster visualizations has
been proposed based on five hierarchical levels of relationships poten-
tially existing in a dataset [49]. Keywords corresponding to the five
levels are: entity, group, bicluster, chain and schema. Entity-level
relations refer to those between two individual entities, while group-
level relations are relations between one individual entity and a group
of entities. Bicluster-level and chain-level relations represent two lev-
els of coordinated relations: biclusters and bicluster-chains. The lat-
ter is more complex than the former, since a bicluster-chain consists
of multiple biclusters. Schema-level relations indicates database-like
patterns in a dataset, which reveals the overview of a dataset. Relations
in higher levels (e.g., bicluster-level and chain-level ) are usually con-
structed based on those in lower levels (e.g., entity-level and group-
level ), so relations in lower levels provide a critical support for the
exploration and interpretation of those in higher levels. These five lev-
els of relations systematically present the space of relationship, which
works as an important guideline for us to follow. Specifically, it guides
us to identify potential tasks that BiSet needs to support, by consider-
ing the implicit linkage of these five levels.



2.2 Visualizations for Exploring Coordinated Relations
List and matrix views are two layouts that can potentially support ex-
ploring coordinated relationships. Two corresponding visualization
techniques are parallel coordinates [28] and scatterplot matrix [6]. The
former uses spatial position to present attributes as individual axes at
once, while the latter embeds multiple scatterplots in a matrix layout
that shows all pairwise combinations of attributes [37]. They are use-
ful for discovering correlation, which potentially can be adapted for
exploring coordinated relationship. Brushing is a common interaction
technique in both of them to explore correlation [4, 45] and it helps
users manually find correlations by selecting a group of records in an
axis or in a region. However, similar to the problem of Jigsaw’s List
View, users are not clearly directed to know where they should brush.
Moreover, brushing is designed for selecting a group of entities, rather
than an individual one, so it is hard to use this to support users to
delve into detailed information of a coordinated relation. Thus, nei-
ther parallel coordinates nor scatterplot matrix, without any adaption,
can effectively support visual exploration of coordinated relationship.

List (or list view) holds a similar concept to that of parallel coor-
dinates which manages entities in lists by domains. Instead of using
brushing to select a group of entities, in a list view, users usually select
individual entities. ConTour [38] and Jigsaw [19] are two examples
that applied a list layout to support meaningful relations discovery.
The problem with Jigsaw’s List View is that its visual representation
is explicit but interaction is implicit. Different from Jigsaw, ConTour
suffers from the problem of implicit visual representation. ConTour
highlights related entities when users hover an entity. This serves as
explicit visual clues to direct users’ attention to some potential targets.
However, ConTour does not show visual links between related entities.
Just with color changes, it is hard for users to visually discriminate
one coordinated relationship from another, especially when there are
many and some of them overlap each other. ConTour applies recursive
nesting to reduce such visual clutter, but it requires entity duplication,
which may confuse users. BiSet is inspired by the good parts of both
Jigsaw and ConTour, which provides both visual links and visual clues
to guide users for coordinated relationship exploration.

Matrix is a preferred layout for exploring coordinated relationship
(in bicluster-level ) that has been well explored in bioinformatics do-
main (e.g., BicAt [3], Bicluster viewer [22], BicOverlapper 2.0 [43],
BiGGEsTS [18], BiVoc [21], Expression Profiler [31] and GAP [55]).
By reordering and duplicating rows and columns, biclusters can be vi-
sually revealed in a matrix [21, 22]. However, similar to the problem
of ConTour, row and column duplication in a matrix may cause more
confusion than entity duplication in a list. In addition, interacting with
entities in a matrix is not as easy as that in a list. Thus, compared with
list, matrices are not flexible enough to support coordinated relation-
ship exploration (e.g., drilling down to details of relations), although
it can provide a visual representation for such relationship.

Node-link diagrams in the context of multivariate or heteroge-
neous networks can also be used to visualize coordinated relationships.
For example, PivotPaths [12] applies a modified node-link diagram to
support relationship exploration in heterogenous networks. It sepa-
rates a 2D space into three regions to contain entities from different
domain (e.g., authors, articles and keywords). This explicitly sepa-
rates nodes in a node-link diagram into different groups based on do-
mains, which is similar to a list view. Entities in the middle region
are horizontally aligned. Edges are presented to show connections be-
tween entities in two neighboring domains. By following edges, users
can manually discover coordinated relationships in PivotPaths (e.g.,
finding three co-authors of four papers with the same two keywords).
OnionGraph [44] used a similar visual representation to show bibli-
ographic networks. Pretorius et al. also applied a similar layout to
show structures of multivariate graphs and edge labels [40]. In their
method, edge labels are listed in the middle region. Related entities are
highlighted when users select these labels. This is a good example of
enabling interactivity on edges for revealing relevant nodes. However,
their method lacks the ability to manage nodes via interactions on the
labels. Related nodes are highlighted but they do not move close to
the selected label. Thus, users still have to navigate in a graph (e.g.,

scrolling up and down) to find highlighted nodes, if the graph is large.
Hybrid layout combines two or more layouts together. Usually it

uses a list or a node-link diagram as the basic layout and replaces enti-
ties with matrices (or other types of visualizations). Matchmaker [34]
and VisBrick [33] took a list view as the major layout, while Bixplorer
[14], Furby [47] and NodeTrix [23] applied a node-link diagram as
the key layout. The former group organizes relations in lists and the
latter group uses a 2D space to manage relations. Since entities are re-
placed with relations, it is difficult to further explore detailed informa-
tion (e.g., entities and entity-level relations) to interpret a coordinated
relationship. This may be even harder here than using a matrix layout.

In BiSet, we choose list as the key layout. The detailed rationale for
our decision is discussed in Section 3.2.

2.3 Visual Links and Edge Bundling
Visual links (e.g., edges in graphs) are important for assisting visual
navigation [24] and indicate certain types of relations (e.g., causality
[57]). By following links, users can navigate their foci from one part
of a visualization to another, or across different visualizations [52] or
applications [53]. This helps to direct users to potentially related con-
tent for comparison and evaluation [9, 46] or assist users to explore
visually hidden (or being covered) content [16]. However, cases are
not always optimistic. If too many edges exist, a visual layout (e.g.,
graph) will become a hairball of visual clutter [37]. Edge bundling is a
useful technique to reduce visual clutter and reveal high level edge pat-
terns by visually aggregating edges based on certain rules (e.g., force-
directed model [26], image-based rule [50], geometry-based rule [11],
etc.). However, there are two major problems with these edge bundling
techniques: 1) spatial-based bundling in the visual level (losing rela-
tions in the data level), and 2) lack of interactions on edge bundles.

Traditional edge bundling techniques simply group edges based on
spatial proximity (e.g., the position of nodes or edges), which may ig-
nore some implicit relations in a dataset. Since visual adjacency is
determined by layout algorithms (e.g., force-directed layout), rather
than knowledge discovery algorithms (e.g., biclustering), bundling vi-
sually adjacent edges does not guarantee that a bundle of these indi-
vidual relations reflect meaningful semantic insights from the dataset.
To deal with such problems, a hierarchical edge bundling technique is
proposed in [25] that bundles adjacent edges by considering the hier-
archical relations in a dataset. However, compared with coordinated
relationships, hierarchical relationships are relatively simple because
they can not reveal high level semantic insights implied by the co-
ordination of individual relationships. Despite this, the hierarchical
edge bundling technique inspires our design of BiSet that bundle edges
based on coordinated relationship. This potentially enables users to in-
fer semantic insights from these edge bundles.

Deficient interaction on edge bundles is another problem with exist-
ing edge bundling techniques. Such bundles have limited capabilities
to support users exploring the space of relationship, although they help
to reduce visual clutter. This partially results from the previous prob-
lem since edge bundles depend on the layout of nodes. If positions of
nodes change, the existing bundles may also change. This means that
these edge bundles are not stable. In BiSet, we map algorithmically
discovered coordinated relationships to edge bundles. This assures
that each bundle visually presents a certain coordinated relationship.
Thus, bundles in BiSet are more independent from the layout of nodes
than existing techniques. Based on this, BiSet allows interactions on
edge bundles which enables users to manipulate bundles to forage re-
lated information, and organize spatializations for synthesis [2].

3 DESIGN REQUIREMENT ANALYSIS

3.1 A Design Trade-off
Figure 2 shows that a bicluster can both bundle connections and group
entities and this can be clearly conveyed in a list view. However, cases
are not always that easy. When certain entities belong to more than
one bicluster, it becomes difficult to visually group all entities of the
same bicluster together. Figure 4 shows an example of this case. There
are three biclusters indicating three different coordinated relations be-
tween people and locations. They share some entities (e.g., P1 and



P2 are associated with both bicluster A and bicluster B). This brings
about an Euler diagram problem [1, 42] when visually grouping enti-
ties. When the number of shared entities increases, it becomes more
difficult to present a visual representation that show the membership
of these entities without replicating some of them. This suggests a
key design trade-off: entity-centric versus relationship-centric, which
means that we cannot easily achieve the goal of clearly presenting both
entities (without duplications) and relationships (without separations).
Techniques such as bubble sets [10] and untangling Euler diagrams
[41] attempt to balance this trade-off by using a 2D space. They show
relationships with their members in a calculated spatial layout with
certain boundaries. However, they do not scale up well. In a list, there
is just one dimension to use for organizing entities, so it is even harder
to balance this trade-off.

Entity-centric requires that entities that belong to a certain domain
(e.g., people in Figure 4) should be listed in a certain order without
duplication. The positions of entities can be reordered to fulfill some
purpose (e.g., listing names in an alphabetical order or ranking them
based on frequency in documents). Since entities cannot be duplicated,
relationships that consist of shared entities may be separated apart.
Thus, an entity-centric design can help to avoid the ambiguity caused
by entity replication, but it costs the completeness of relationships.

Fig. 4. A detailed example to illustrate the Euler diagram problem that
arises when visually presenting the membership of entities in the do-
main of people shared by three biclusters. This problem indicates a key
design trade-off: entity-centric versus relationship-centric.

Relationship-centric requires that entities that belong to the same
relationships (e.g., biclusters) should be placed near each other, which
visually preserves the completeness of relationships. To achieve this,
entities may be duplicated, particularly when several relationships
share two or more entities. A relationship-centric design (e.g., bub-
ble sets technique [10]) can maintain the integrity of relationships with
the cost of entity duplication. This may confuse users, especially when
they see some entities appear at several different positions in a list.

3.2 Layout Candidate Selection
Three layouts can be potentially applied to show coordinated relation-
ships: node-link diagram, matrix, and list (including parallel coordi-
nates). A detailed discussion about applying them in bicluster visual-
izations are addressed in [49]. Because of the following two advan-
tages, we choose list as the major layout of BiSet.

Consistent, domain-based entity management. In a list layout,
entities are organized in a consistent manner by domains. In a node-
link diagram, nodes are placed either randomly or based on certain
layout algorithms (e.g., force-directed layout [15]), so it is hard to sep-
arate entities of one domain (e.g., people) from those of another (e.g.,
location). Compared with a node-link diagram, a matrix is a better
organized layout, where relations are more readable [17]. Entities in a
matrix are organized in two orthogonal directions based on domains.
However, when a new group of entities are to be added, it is impossi-
ble to add them in the existing matrix. A new matrix has to be built

to show connections between the newly added entities and those from
one domain of the existing matrix. This leads to two problems: entity
duplication and direction (row or column) selection. To build the new
matrix, entities from one domain of the existing matrix have to be du-
plicated to form either row names or column names in the new matrix.
If replicated entities work as the row names in the new matrix, newly
added ones will be the column names, and vice versa. Compared with
matrices, in a list whenever a group of entities are to be added or re-
moved, we can easily add or remove one list. Thus, compared with the
other two layouts, lists organize entities in a consistent manner.

Fig. 5. A 2D space is sliced into two types of subspaces in a list view.

Organized alternate subspaces for entities and relationships. In
a list view, a 2D space is sliced into two types of subspaces, where en-
tities and relationships appear alternately. Figure 5 gives an example
of such slicing that generates three subspaces for entities and two sub-
spaces for relationships. This provides an opportunity to leverage the
design trade-off by using the relationship subspace. In node-link dia-
grams, the space of entities is intertwined with that of relations so there
is no clear boundary between the two spaces. Matrices potentially em-
phasize the space of relationships (e.g., the structure of a dataset) [17],
so it is difficult to support simple relationship (e.g., entity-level or
group-level relations) exploration in a matrix. Visually, in a matrix,
the proportion of the space for relations (the total area of all cells in
a matrix) is larger than that for entities (one column and one row in
the matrix) and the ratio of the two increases when the size of a matrix
gets larger. Thus, compared with the other two layouts, lists slice a 2D
space for entities and relations in a clearly organized and usable way.

3.3 Requirements Description with Identified Tasks
Based on the design trade-off and the selected layout, we identify four
important requirements with key tasks that BiSet needs to support.

R1: Entity and relationship encodings. Efficient visual encodings
for both entity and relationship are necessary which should attempt
to achieve four important goals. First, visual encodings should assist
users to discriminate entities from relations (a). Then visual encodings
(particularly for relationships) should potentially help to reduce visual
clutter (b). Third, visual encodings should provide clues to reveal the
membership of entities (c). Finally, visual encodings should reflect the
changes when the state of entities or relations updates (d).

R2: Four types of exploration. There are four possible types of
exploration in a list layout based on the space slicing: i) from entity to
entity, ii) from entity to relationship, iii) from relationship to relation-
ship, and iv) from relationship to entity. The first type of exploration
refers to when users start from entities and focus on finding related
entities. The second one may happen in the scenario where users take
the strategy of following the clues from identified meaningful entities
[30] and search for more relevant information. The third type of ex-
ploration may be performed when users seek additional relationships
based on current one. This is a possible case for text analytics which
has been reported in [48]. The last one may be used to compare sev-
eral hypotheses, which has been identified as a common intelligence
analysis strategy [7]. For example, several biclusters share some indi-
vidual relations, but they still have their unique ones. This may form
(partially) conflicted relations that lead to different hypotheses. In this



case, users may have to compare these biclusters by drilling down to
detailed level of information (e.g., entities) for competing them.

There are two ways to perform the four types of exploration: from
one to many and from many to many. For instance, users may want to
find related entities based on one or multiple biclusters. Based on this,
we identify eight user tasks involved in such explorations, which are
summarized in Table 1. For each type of exploration, users can start
from either an entity (or a bicluster) or multiple entities (or biclusters)
and then try to find relevant entities or biclusters. A user’s analytical
process may consist of a series of these tasks that iteratively forage rel-
evant information and identify some meaningful pieces [30]. Detailed
examples of these tasks are addressed and labeled in Section 5.

R3: Organizing entities and relationships. Entities and relation-
ships should be visually represented in an organized way. This can
help users to easily find useful information. In addition, users may
want to make changes to the automatically generated layouts so that
they can organize entities or relationships in personalized, meaningful
ways (e.g., using spatialization) for sensemaking [2].

R4: Retrieving original data for reference. To evaluate algorith-
mically discovered coordinated relationships, users may refer to the
content from the original dataset (e.g., documents) because they need
contextual information to help them to interpret and further evaluate
these relations [19]. BiSet should attempt to efficiently direct users to
useful information, rather than keep them from reading documents.

4 BISET TECHNIQUE

Three key aspects are involved in BiSet: coordinated relationship dis-
covery in data level; bundles as objects and a “in-between” layer in
visual level; and interactions to support four types of exploration and
two ways of organizing information. In this section, we discuss them
in detail and explain how identified design requirements are satisfied.

4.1 Data Level: Bicluster Discovery
Coordinated relationship discovery is the fundamental step in BiSet
since it determines how edges are bundled. In BiSet, we formalize co-
ordinated relationships as biclusters. Suppose that entities have been
extracted from a dataset (e.g., documents) with named entity recogniz-
ers such as LingPipe [5] or similar tools. We use closed itemset algo-
rithms (e.g., LCM [51] and CHARM [56]) to discover biclusters based
on extracted entities. Each unique pair of entity types (e.g., people and
location, people and date, location and date, etc.) is considered a type
of coordinated relationship and is computed separately to generate re-
sults that include all unique pairs of entity types. Results are stored in
a database and associated with the dataset under investigation.

The mined biclusters indicate different coordinated relationships
and some of them may share entities and relations in entity-level or
group-level. This suggests that some entities and edges (individual re-
lationships) are members of biclusters. Thus, membership in BiSet, in
the data level, can be considered from two aspects: entity and edge.

4.2 Visual Level: Bundles as Objects and “In-between”
In BiSet, we propose two important concepts to balance the key design
trade-off: making bundles as first class objects and adding a new layer
“in-between” lists to contain bundle objects. The former enables users
to directly manipulate relationships (relationship-centric) and the lat-
ter helps to visually reveal membership of entities in two neighboring
lists without duplicating entities (entity-centric).

Making Bundles as Objects In BiSet, we make bundles the first
class objects so users can directly manipulate them for sensemaking
purposes (e.g., organizing information). BiSet bundles edges based
on computed biclusters that reflect algorithmically discovered coordi-
nated relationships. Different from spatial edge bundling techniques
that emphasize bundling based on spatial proximity, BiSet bundles
edges based on coordinated relationships that reveal task-oriented se-
mantic insights. This assures that edge bundles remain stable, regard-
less of the positions of associated entities. Thus, bundles potentially
enables users to use space (e.g., vertical position) to organize informa-
tion (e.g., entities) (for R3 ), and safely retrieve related information by
interacting with edge bundles (for R2, iii and iv).

Adding an “in-between” Layer To make bundles usable, we add
a new layer, called “in-between”, visually locating in the space be-
tween two neighboring entity-lists. It contains bundles and edges (e.g.,
those that do not belong to any coordinated relationship). In this layer,
BiSet allows users to manipulate bundles for sensemaking (e.g., orga-
nizing entities and checking their membership), so bundles can support
users interactively exploring coordinated relationships.

4.2.1 Semantic Edge Bundling in BiSet
BiSet has two types of edges: independent and associated, which are
mutually exclusive. The former refers to edges that do not belong to
any coordinated relationship and the latter are those that can form one
or more coordinated relationships. For instance, in Figure 6, the edge
on top in (A) is an independent edge and other edges are associated
ones. Independent edges can reflect entity-level and group-level rela-
tionships, but they are not associated with others to form coordinated
relationship. Based on membership, associated edges that belong to
the same bicluster can be aggregated and represented as an edge bun-
dle. BiSet takes the following three steps to bundle edges (for R1(b) ).

Fig. 6. Three modes in the “in-between” layer for displaying edges. (A)
is the edge only mode that shows all edges between related entities. (B)
is the hybrid mode, which presents bundles with individual edges. (C) is
the bundle only mode that just displays bundles.

1) Grouping edges based on membership. We separate associated
edges into different groups based on their associated biclusters. For



those in multiple biclusters, we duplicate and assign them respectively
to multiple groups, so each group has a complete number of edges.

2) Bundling edges based on groups. For each group obtained from
the previous step, we bundle all its edges together and visually replace
these edges with a rectangle to indicate an edge bundle.

3) Connecting bundles with entities. We link bundles and entities
based on membership. This assures that entities and their associated
bundles are fully connected (for R1(c) ).

This bicluster-based edge bundling can potentially reduce visual
clutter and clearly present a coordinated relationship (for R1(b) ). As
is shown in Figure 6, compared with (A), (B) clearly illustrates the
coordinated relationship between four people and five phone numbers.

In fact, BiSet supports three modes to show edges: edge only mode
(EM ), hybrid mode (HM ) and bundle only mode (BM ), shown as (A),
(B) and (C) respectively in Figure 6. In EM, BiSet shows edges with-
out bundling. In HM, BiSet shows independent edges and bundles. In
BM, BiSet just displays bundles. The three modes attempt to meet dif-
ferent user needs. For example, EM potentially reveals the overview
of relationships between two entity sets (e.g., (A) in Figure 6). BM
enables users to focus on analysis just with coordinated relationships.
HM can help to visually organize groups of individual relations into
multiple levels (e.g., coordinated bundles with individual entity-level
relationships). In BiSet, users can switch modes during their analysis.
An example of using semantic edge bundling in BiSet is shown in Fig-
ure 7, which reduces 164 edges to 9 bundles. In this example, we use
LCM to calculate biclusters and set the minimum support parameter
to three, which assures that each calculated bicluster has at least three
entities in one of the two related domains (here is the people’s name).

Fig. 7. A semantic edge bundling example in BiSet. (A) shows the orig-
inal 164 edges. (B) After semantic edge bundling, there are 9 bundles.

In addition to improving readability, bundles in BiSet preserve the
coordinated attribute of entities and edges. This enables users to infer
semantic meanings about potentially coordinated activities. For exam-
ple, why are the four people all related with the five phone numbers
in Figure 6? Perhaps they colluded about a terrorist assault. Such se-
mantic insights cannot be easily revealed from separated entity-level
or group-level of relations. Thus, edge bundles in BiSet serve two im-
portant roles: improving readability and revealing semantic insights.

4.2.2 Visual Encoding in BiSet
BiSet uses four major visual channels [37] to encode bundles, entities
and edges: shape, size, color and position. Figure 8 shows a detailed
example of visual encodings in BiSet.

Shape and Size In BiSet, entities and bundles are represented
as rectangles (e.g., (1) and (2) in Figure 8). Edges are visualized as
Bézier curves. We choose Bézier curves since they can generate more
smooth edges, compared with polylines [32].

Length, width and font size are three specific types of size channel
used in BiSet. Rectangles indicating entities are equal in length, while
those representing bundles are not. BiSet applies a linear mapping
function to determine the length of a bundle based on the total number
of its related entities. In a bundle, BiSet uses two colored regions (light
green and light gray) to indicate the proportion between its related
entities in the left list and those in the right list. In an entity rectangle,
a small rectangle is presented on the left to indicate its frequency in
a dataset. The length of these small rectangles is determined by the
frequency of the associated entities. Based on these with different
color encoding and position, users can easily discriminate entities from
bundles (for R1(a) ). In addition, the width of edges can reflect results
of user selections. For instance, in Figure 8, compared with the width
of those in (3), the width of edges in (8) is larger, since two relevant
entities are selected. Moreover, when hovering an selected entity or
bundle, related entities will be displayed in larger fonts. This helps
users to review relevant information of previous selections (for R1(c) ).

Fig. 8. Visual encodings in BiSet. (1), (2) and (3) present the normal
state of an entity, a bundle and edges, respectively. (4) and (4’) show the
selected state of an entity and a bundle with accumulated highlighting.
(5) and (5’) present the mouseover state of an entity and a bundle. (6)
shows accumulated highlighting of an entity. (7) presents the highlight-
ing state of edges. (8) shows the accumulated highlighting of edges.

Color Coding BiSet applies color coding to entities, bundles and
edges to indicate their states. In BiSet, entities and bundles have three
different states (normal, mouseover and selected), and edges has two
different states (normal and highlighting). In Figure 8, (1), (2) and (3)
respectively present the normal state of an entity, a bundle and edges;
(4) and (4’) show the selected state of an entity and a bundle; (5) and
(5’) illustrate the mouseover state of an entity and a bundle; and (7)
and (8) demonstrate the highlighting state of edges. In addition, two
different colored borders (blue and black) are used to help users further
discriminate the mouseover state from the selected state (for R1(d) ).
When hovering an entity or a bundle, a blue border will be added to the
rectangle. This border will change to black after user selection, which
indicates that the state has changed from mouseover to selected.

Accumulated highlighting is important in BiSet, which is triggered
by mouseover and selection. Different from simple highlighting, ac-
cumulated highlighting provides useful visual clues (e.g., darker in
orange) for shared entities (for R1(c) ) and bundles. BiSet applies ac-
cumulated highlighting to entities, bundles and edges by increasing
the shading of their colors. For example, in Figure 8, the entity in
(6) is in darker orange, compared with those in (4) and (5), since its
highlighting is accumulated based on selections of the entity in (4) and
AMTRAK, and the mouseover on (5).

Position Position is used to organize entities and bundles in BiSet.
A set of entities of a certain domain (e.g., people) is organized as an
entity-list. In between two neighboring entity-lists (the “in-between”
layer), there is one relationship-list that contains coordinated relation-
ships as biclusters (visually as edge bundles).

In entity-lists, the positions of entities can be determined in three
ways (for R3 ): in an alphabetical order, based on frequency, or
based on the order of (one-side) associated bundles. Alphabetical and
frequency-based ordering can help to organize entities. However, they
may lead to a severe problem of membership separation, since entities



belonging to the same bicluster may not be listed close to each other.
This results from the trade-off discussed in Section 3.1. To balance
this trade-off, BiSet provides the third approach to organize the po-
sition of entities based on the order of (one-side) associated bundles.
For example, entities in the left list in Figure 8 are ordered based on
their associated biclusters in the middle list.

The larger a bicluster’s size is, the more important it is likely to
be. A bicluster in larger size contains more information, so it is more
likely to reveal potentially meaningful coordinated relationships. With
this rationale, we apply a greedy algorithm, listed below, to organize
entities based on the size of their associated biclusters.

Algorithm 1: Get positions of entities associated with biclusters
input : curPos, initialized as 0 for the top position

orderedBics, a list of ordered biclusters
bicEntDict, a dictionary stores entities for each bicluster
entBicDict, a dictionary stores biclusters for each entity
rankedEntSet, a set stores entities already ranked

1 foreach bic in orderedBics do
2 entList = bicEntDict(bic);
3 foreach entity in entList do
4 if not entity in rankedEntSet then
5 bicList = entBicDict(entity);
6 totalRank = 0, num = 0;
7 foreach bicluster in bicList do
8 totalRank += bicluster.rank;
9 num += 1;

10 end
11 entity.rank = totalRank / num;
12 rankedEntSet.add(entity);
13 end
14 end
15 end
16 orderedEnts = entList.sort(sel f .rank);
17 foreach entity in orderedEnts do
18 entity.pos = curPos++
19 end

BiSet also allows automatically changing positions of groups of en-
tities (for R3 ) by dragging a bundle in the “in-between” layer. Figure
9 shows such an example. After dragging a bundle, two groups of en-
tities in its two neighboring lists automatically move to new positions.

In the “in-between” layer, BiSet supports two ways to organize po-
sitions of bundles: automatically adjusting positions based on related
entities, and manually dragging and moving bundles to new positions.
The former allows listing bundles based on the positions of entities
in either or both neighboring list(s), while the latter enables users to
adjust the automatically generated layout based on their ad hoc needs
(e.g., synthesis with created spatializations).

4.3 Interaction: Exploring and Organizing Information
Revealing and organizing information in a bidirectional manner serves
as a key design principle for interactions in BiSet. By enabling users
to directly interact with entities in entity-lists, and bundles in the “in-
between” layer, BiSet can potentially support four types of exploration
and two ways of organizing information.

Revealing Information BiSet supports bidirectional information
revealing. Specifically, users can find relevant bundles by selecting or
hovering over entities, and vice versa (for R2, ii and iv). Relevant
entities or bundles in entity-lists or “in-between” layer will also be
highlighted in BiSet (for R2, i and iii ), when users interact with an
entity or a bundle. This means that when users select (or hover over)
entities, BiSet can use accumulated highlighting to reveal four types
of potentially relevant information: 1) entities in the same list that
belong to the same bicluster(s) with the selected entities, 2) entities
in other list(s) that are related with the selected entities, 3) bundles in
neighboring “in-between” layer that are directly connected with the

Fig. 9. Dragging a bundle in the “in-between” layer. Entities associated
with this bundle automatically move to their new positions.

selected entities, and 4) bundles in other relationship-list(s) that are
associated with the selected entities via bicluster-chain(s). 1) and 2)
satisfy the requirement of T1 and T2 (from entity to entity), and 3)
and 4) support T3 and T4 (from entity to relationship). Similarly,
when users select (or hover over) bundles, BiSet can reveal the same
four types of information, but they are related with selected bundles.
In this case, 1) and 2) fulfill the requirement of T7 and T8 (from
relationship to entity), and 3) and 4) can support T5 and T6 (from
relationship to relationship). For example, in Figure 8 when users
hover the entity in (5), three entities in the left list and six entities in the
right list are highlighted. Of the six entities, the FBI one is in darker
orange, which indicates that it is shared with another bundle (bicluster)
on the bottom. The bundle on top is also highlighted, since it is directly
related to the entity. With such ways of revealing information, BiSet
can support the four types of exploration.

Fig. 10. The document view from bundles in BiSet. (A) shows bicluster
ID, related document and associated entities. (B) shows the content of a
document. (C) lists all document ID(s) in the data with a search function.

Organizing Information BiSet supports two ways of organizing
information, which is also bidirectional. Users can organize the posi-
tion of entities based on bundles, and vice versa. BiSet uses vertical
positions to visually externalize the organized entities and bundles. As
discussed above, for bundles in the “in-between” layer, BiSet can not
only automatically organize them based on the position of related en-
tities, but also enable users to manually adjust their positions by drag-
ging and moving them. For entities, BiSet provides three options to
automatically order them in an entity-list. When users drag and move
a bundle, associated entities in two neighboring lists move with it, as
is shown in Figure 9. This enables users to manually adjust positions
of a group of related entities by using bundles. Thus, in BiSet, entities
and bundles can mutually impact each other, which provides a flexible
way for users to organize information in lists.



BiSet also allows users to review documents directly from bundles
and entities with a right click menu (for R4 ), shown in Figure 10.
When finding an interesting bundle or entity, users can use a right click
menu to open a popup view where relevant documents are listed. This
view is on top of the view for relationship exploration. After reading,
users can quickly return to previous view by closing it.

5 USAGE SCENARIO

In this section, we walk through a text analytics scenario to demon-
strate how BiSet supports an analyst to identify a coordinated activity.
We use The Sign of the Crescent dataset [27] which contains 41 fic-
tional intelligence reports regarding a coordinated terrorist plot in three
US cities, and each plot involves a group of (at least four) suspicious
people. In fact, 24 of them are relevant to the plot. We used LCM
[51] to generate biclusters from the dataset with the minimum support
parameter set to 3, which assured that each bicluster has at least three
entities from one domain. This resulted in 284 unique entities, 495
relationships, and 337 biclusters (including 122 thin biclusters).

Suppose that Sarah is an intelligence analyst. She is assigned a task
to read intelligence reports and identify potential terrorist threats with
key persons. She opens BiSet, selects four identified domains (people,
location, phone number and date) and starts her analysis. Figure 11
shows the key steps of Sarah’s analytical process.

Rapid discovery of insights from coordinated relationships with
bidirectional exploration. Sarah begins analysis by hovering indi-
vidual entities in the list of people’s names. BiSet highlights related
bundles and entities, each time when she hovers the mouse over an
entity (T1 and T3 ). Immediately she finds that A. Ramazi is active
in three bundles, which indicates that this person is involved in three
coordinated activities (T3 ). Sarah selects it (Figure 11 (1)) to focus
on highlighted entities of the three bundles (T8 ). She finds that A.
Ramazi is involved in two cells with five other people. One is in Ger-
many and the other is more broad including four countries. A. Ramazi
is the only person connecting the two cells, and there are two over-
lapped subgroups of people involved in the broader cell. Moreover,
each subgroup has its unique person (B. Dhaliwal and F. Goba) (T7 ).
BiSet quickly directs Sarah to such insights with just one click. With-
out BiSet, Sarah has to select and deselect many entities to find these
meaningful semantic insights, particularly with tools that only display
simple relationships (e.g., entity-level or group-level ), such as Jigsaw.

Easily gaining insights from bundles for exploration in entity-
space. Then Sarah decides to explore the two overlapped subgroups,
because she wants to know what brings the unique people to them. She
checks B. Dhaliwal first by hovering the mouse over it. After this, two
bundles are highlighted (T3 ). By following edges from them, Sarah
finds that they share two people’s name and three locations, but the
bigger one (shown in Figure 11 (2)) is related to a new name (H. Pakes)
(T8 ). Then she examines F. Goba in the same way. This time three
bundles and three names are highlighted (T1 and T3 ), and one name
(M. Galab ) has a high frequency. This quickly catches Sarah’s atten-
tion, so she decides to temporarily pause the analytical branch of B.
Dhaliwal, and moves on with the branch of F. Goba. Sarah hovers the
mouse over M. Galab to check whether it leads to more information
(T1 and T3 ). However, it turns out that no additional bundles or names
are highlighted. Sarah realizes that people potentially related with M.
Galab have already been highlighted in her current workspace. The
bundle (shown in Figure 11 (3) as the black dot box in the middle)
clearly reveals the people related with M. Galab, and their activities
are all in the US (T7 ). With this bundle, Sarah easily acquires this
key insight revealed by a group of locations. The relations revealed in
this bundle are important, and Sarah infers that the three people (M.
Galab, Y. Mosed and Z. al Shibh ) may work on something together
in the US. Thus, she decides to find more relevant information by fol-
lowing this tail [30] (T2, T4 and T7 ). Without bundles, Sarah has to
mentally aggregate such pieces of information (18 edges crossed with
each other) to gain this insight (e.g., in Jigsaw’s List View).

Visually connecting semantic insights using bundles for explo-
ration in relationship-space. Sarah selects the same bundle. BiSet
highlights relevant bundles that potentially form bicluster chains with

the selected one (T5 ). She finds that five bundles, in the space be-
tween the location list and the phone number list, are highlighted, and
two bundles, in the space between the phone number list and the date
list, are highlighted. Relevant entities in lists are also highlighted (T7 ).

In the two lists of newly highlighted bundles, Sarah finds that there
are two big ones (relatively longer in width shown in Figure 11 (4))
in each list. These two bundles seem useful since they contain more
relations. Sarah wants to investigate these first and tries to check how
bundles from different relationship lists are connected (T6 ). For bun-
dles between the location list and the phone number list (from top to
bottom), Sarah finds that the first bundle and the third one share two
locations (Charlottesville and Virginia) with the selected bundle, and
other highlighted bundles just share one location with the selected one
(T6 ). Compared with the third bundle, the first one is related with
more locations that are not associated the selected bundle (T7 ). Sarah
wants to focus on information highly connected with the selected bun-
dle, rather than more additional information. Thus, she considers the
third bundle, in this case, a useful one. Using the same strategy in an-
other relationship-list, she finds that the bigger bundle is more useful.

After this, Sarah hides edges of other bundles with the right click
menu to keep a clear view. Then her workspace shows that three bun-
dles connected to each other through two shared locations and three
shared phone numbers. Sarah feels that she has found a good number
of relations, connecting four groups of entities, which may reflect a
suspicious activity. Therefore, she decides to read relevant documents
to find details of such connections and generate her hypothesis.

Efficiently directing to relevant documents based on bundle ob-
jects. The three connected bundles direct Sarah to eight reports, which
are all relevant to the plot. Sarah quickly goes through these reports
by referring to the entities with bright shading in the four connected
groups (shown in Figure 11 (4)). The darker shading of an entity in-
dicates that it is shared more times. Sarah uses this to help keep her
attention to more important entities in reports. After reading the re-
ports, she identifies a potential threat with four key persons.

Aiding hypothesis generation. By visually following the bicluster-
chain (linked bundles, shown in Figure 11 (4)), Sarah quickly remem-
bers what she has already read [2]. Finally she makes a hypothesis of
the identified attack as follows:

F. Goba, M. Galab and Y. Mosed, following the commands from A.
Ramazi, plan to attack AMTRAK Train 19 at 9:00 am on April 30.

6 CONCLUSION AND FUTURE WORK

We present BiSet, a visual analytics technique, which bundles edges
based on biclusters to reveal task-oriented semantic insights about po-
tentially coordinated activities for sensemaking. In BiSet, we make
edge bundles the first class objects that enable users to directly ma-
nipulate relationships. In addition, we add a new layer, “in-between”,
containing bundles, which assists to visually reveal membership of en-
tities in neighboring entity-lists without entity duplication.

By applying interactions on bundles and entities, BiSet enables
bidirectional information foraging to support exploration between the
entity-space and the relationship-space. Moreover, BiSet allows or-
ganizing entities in lists, either automatically based on the positions
of associated bundles or manually by dragging and moving bundles.
With a usage scenario, we demonstrate how BiSet can potentially sup-
port an analyst to explore coordinated activities. However, there are
still three challenges that need further explorations.

C1 : Seriation in lists. In BiSet, we apply a greedy approach to
order entities in lists based on bicluters in neighboring relationship-
list(s). Compared with traditional ordering (in an alphabetical order
or by frequency), this attempts to keep entities, belonging to the same
biclusters (especially those in a larger size), close to each other. How-
ever, this approach may lead to a membership separation problem for
smaller sized biclusters (those with a small number of entities), espe-
cially if some of their entities are shared by bigger sized biclusters. In
fact, this brings about an ordering problem in lists when considering
the design trade-off discussed before. Seriation methods, commonly
used in matrices [35], can reveal clustering structure by permuting the
presentation order [8]. However, applying a seriation method to order-



Fig. 11. A process of finding a major threat plot with key steps. (1): Based on A. Ramazi, finding that there are two similar bundles and two cells.
(2): One name and two bundles are highlighted when hovering the mouse over B. Dhaliwal. (3): Three names and three bundles are highlighted
when exploring F. Goba. (4) Referring to the four connected groups of useful entities for hypothesis generation.

ing entities in lists, based on coordinated relationships, is challenging.
Seriation in lists based on biclusters may better organize entities and
reduce edge crossings between shared entities and edge bundles.

C2 : Variant visualizations in lists. BiSet chooses list as its ma-
jor layout to organize entities and applies interactions to bundles to
enhance its capability to utilize the relationship-space. However, or-
ganizing entities in a list may not always be the best choice. For exam-
ple, entities of locations (e.g., Chicago, Boston, Seattle, etc.) may bet-
ter reveal meaningful, contextual information, if visualized in a map,
rather than simply listed as vertically piled bars. Similar to the tech-
nique proposed in [20], it is possible to substitute some entity-lists
with variant types of visualizations in BiSet, which may help users to
infer contextual clues. If such substitution could be switched on and
off, users would infer semantic insights from lists, and gain contextual
clues from variant views (e.g., maps).

C3 : Semantic Interactions in lists. Semantic interaction provides
an efficient way to facilitate visual analytics by enabling users to im-
plicitly steer machine learning algorithms to support the human rea-
soning process [13]. This allows users to modify algorithmic outcomes
for sensemaking purposes. Currently BiSet does not support this. Se-
mantic interactions on bundles for organizing entities, such as split-
ting and merging bundles (similar to those in NodeTrix [23]), can help
users to adjust algorithmically discovered biclusters and efficiently re-
trieve relevant information. In addition, merging bundles also provides
a good opportunity for BiSet to scale up to a large dataset.
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