
Compression of Particle Data from
Hierarchical Approximate Methods

DOW-YUNG YANG
Information Systems Laboratories, Inc.
ANANTH GRAMA
Purdue University
VIVEK SARIN
Texas A&M University
and
NAREN RAMAKRISHNAN
Virginia Tech.

This article presents an analytical and computational framework for the compression of particle
data resulting from hierarchical approximate treecodes such as the Barnes–Hut and Fast Multipole
Methods. Due to approximations introduced by hierarchical methods, various parameters (such as
position, velocity, acceleration, potential) associated with a particle can be bounded by distortion
radii. Using this distortion radii, we develop storage schemes that guarantee error bounds while
maximizing compression. Our schemes make extensive use of spatial and temporal coherence of
particle behavior and yield compression ratios higher than 12:1 over raw data, and 6:1 over gzipped
(LZ) raw data for selected simulation instances. We demonstrate that for uniform distributions with
2M particles, storage requirements can be reduced from 24 MB to about 1.8 MB (about 7 bits per
particle per timestep) for storing particle positions. This is significant because it enables faster
storage/retrieval, better temporal resolution, and improved analysis. Our results are shown to
scale from small systems (2K particles) to much larger systems (over 2M particles). The associated

A. Grama’s work was supported in part by National Science Foundation (NSF) grants EIA-9806741,
ACI-9875899, and ACI-9872101.
V. Sarin’s work was supported in part by NSF grant CCR-9972533.
N. Ramakrishnan’s work was supported in part by NSF grants EIA-9974956 and EIA-9984317.
Computing equipment used for this work was supported by NSF MRI grant EIA-9871053 and by
the Intel Corporation.
Authors’ addresses: D.-Y. Yang, Information Systems Laboratories, Inc., 11140 Rockville Pike, Suite
500, Rockville, MD 20852, email: dyang@islinc.com; A. Grama, 1398, Computer Sciences Build-
ing, Purdue University, West Lafayette, IN 47907, email: ayg@cs.purdue.edu, web: http://www.cs.
purdue.edu/people/ayg; V. Sarin, Department of Computer Science, Texas A&M University, Col-
lege Station, TX 77843-3112, email: sarin@cs.tamu.edu, web: http://www.cs.tamu.edu/faculty/sarin;
N. Ramakrishnan, Department of Computer Science, Virginia Tech., Blacksburg, VA 24061, email:
naren@cs.vt.edu, web: http://www.cs.vt.edu/∼ramakris.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this worked owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2001 ACM 0098-3500/01/0900–0317 $5.00

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001, Pages 317–339.

318 • D.-Y. Yang et al.

algorithm is asymptotically optimal in computation time (O(n)) with a small constant. Our imple-
mentations are demonstrated to run extremely fast—much faster than the time it takes to compute
a single time-step advance. In addition, our compression framework relies on a natural hierarchi-
cal representation upon which other analysis tasks such as segmented and window retrieval can
be built.

Categories and Subject Descriptors: E.2 [Data]: Data Storage Representations; E.4 [Data]:
Coding and Information Theory—data compaction and compression; G.1.0 [Numerical Analysis]:
General—error analysis; G.1.10 [Numerical Analysis]: Applications; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—abstracting methods; J.2 [Computer
Applications]: Physical Sciences and Engineering—physics

General Terms: Algorithms, Design

Additional Key Words and Phrases: Astrophysics, Barnes–Hut, data compression and analysis,
Fast Multipole Method, materials simulation, molecular dynamics, particle dynamics

1. INTRODUCTION AND MOTIVATION

Particle methods find application in a variety of domains ranging from molec-
ular dynamics to astrophysics. Starting from an initial state, the system state
is advanced by computing forces (such as Coulombic and Lennard-Jones) at
each timestep and advancing the particles using a leapfrog scheme. A sim-
ple all-to-all force computation in an n particle system results in a complexity
of O(n2) because of long-range Coulombic (or gravitational) forces. A number
of approximation techniques have been explored to reduce this complexity. Of
these, the prominent ones are lattice-based methods and hierarchical treecodes
such as Barnes–Hut [Barnes and Hut 1986] and Fast Multipole Method (FMM)
[Greengard and Rokhlin 1987]. This article focuses on compression of particle
data resulting from simulations based on hierarchical treecodes.

In typical particle dynamics simulations, each particle has, associated with
it, a number of parameters such as position, velocity, acceleration, and elec-
trostatic or gravitational potential. These parameters are computed at each
timestep, and ideally, are stored for analysis. Analysis tasks range from simple
tasks such as segmented retrieval and window retrieval, to more complex tasks
such as identifying the onset of cracks and fissures in material simulations, to
even more complex tasks such as deriving empirical relationships from data
(e.g., relating thermal conductivity and density, etc.). One of the ultimate goals
of these simulations is to develop techniques for identifying simulation param-
eters that lead to desirable material properties. The offline nature of most of
these analysis tasks requires effective techniques for storage, handling, and
retrieval of simulation data.

It is easy to see that particle simulations can generate extremely large
amounts of data. Simply storing position of each particle at every timestep
requires 12 bytes per particle per timestep (4 bytes/float). For a modest 100K
particle system over a million timesteps, this data corresponds to roughly a ter-
abyte of storage. Merely storing, retrieving, and transferring this data can pose
formidable challenges, let alone running meaningful analysis tasks on them.
Due to this high storage requirement, data is typically stored once every k

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 319

timesteps, where k is selected based on available storage, underlying phenom-
ena being analyzed, and timestep size. This places severe restrictions on the
post-processing operations that can be performed on the data since phenom-
ena at lower time-scales are completely lost in temporal subsampling. There
is a pressing need for storage and representation techniques that reduce the
amount of data storage and bandwidth while supporting analysis tasks. Al-
though considerable work has gone into compression techniques for both topol-
ogy and geometry data associated with meshes [Taubin and Rossignac 1998;
Bajaj et al. 1999; Levoy 1995; Deering 1995], the unique characteristics of this
problem combined with theoretical error bounds of hierarchical methods pro-
vide us with unique opportunities for effective compression. It is important to
note that the most effective compression technique is the particle dynamics
simulator itself. The initial state of the problem corresponds to the compressed
data and the decompressor is the simulation program. However, the computa-
tion associated with the decompressor makes this view impractical.

Hierarchical multipole methods (both FMM and Barnes–Hut variants) use
a truncated series approximation of charges within a localized region to es-
timate impact on well-separated sets of particles. The method of Barnes and
Hut relies only on particle—cluster interactions to achieve an O(n log n) com-
putational bound for uniform particle distributions. The Fast Multipole Method
uses both particle—cluster and cluster—cluster interactions to achieve an O(n)
bound for uniform distributions. We refer the readers to the work of Barnes and
Hut [1986] and Greengard and Rokhlin [1987] for detailed description of these
methods. For nonuniform distributions, similar bounds can be obtained by us-
ing box-collapsing techniques of Callahan and Kosaraju [1992] or the chaining
techniques of Aluru and Gustafson [1996].

As we shall further elaborate in Section 2, one of the major advantages of
these methods is their ability to bound the error associated with approximations
introduced by them. Multipole methods are used to compute the forces and/or
potentials at each timestep. These forces are used to advance particle positions
using methods such as the leapfrog scheme. The error associated with multipole
methods induce an error in other particle parameters such as position, velocity,
energy, etc. This induced error, or distortion sphere forms the basis for our
compression schemes. Our compression schemes position the particle within
specified distortion radius to maximize compression. Specifically, they place
the particle appropriately within a sphere of radius (1 + µ)d , centered about
the accurate particle parameter. Here d is the distortion radius induced by the
hierarchical treecode and µ is a user defined parameter (usually selected to be
less than 0.01). The proposed methods also makes extensive use of spatial and
temporal coherence of particle behavior to improve compression. Using these,
we develop a family of schemes that reduce the storage-per-particle to under
8 bits/particle per timestep in the best case. This corresponds to a compression
ratio of over 12:1 over raw data and over 6:1 over gzipped raw data (LZ) [Ziv and
Lempel 1977, 1978] for selected simulation instances. In addition to excellent
compression ratios, we demonstrate the following desirable properties of our
compression scheme:

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

320 • D.-Y. Yang et al.

—Bounded error rates.
—Low compression and decompression times—both O(n) with small constants.
—Fast querying of intermediate timesteps and retrieval of specified subdo-

mains over specified timesteps.
—In-built framework for analysis of spatial and temporal artifacts in data.

The rest of this paper is organized as follows: In Section 2, we outline the
theoretical basis for various error bounds; in Section 3, we describe a family of
compression schemes based on our framework; Section 4 presents compression
ratios and timings for these schemes, and the impact of proposed schemes is
discussed in Section 5.

2. THEORETICAL UNDERPININGS

Consider a system of n charged particles with charges q0, q1, . . . , qn. Significant
developments in the use of hierarchical multipole-based approximations have
enabled simulation of such systems for large values of n. These approximations
result in bounded errors in potentials and forces, and consequently derived
parameters such as particle velocities and positions that are used to advance
system state. This bounded error, also known as a distortion radius, can be
used to effectively reduce the storage associated with the state of the system at
intermediate timesteps. In this section, we summarize a sequence of analytical
results that provide bounds on various particle parameters that are used for
compressing particle data.

Given a function evaluation f and an approximation of the evaluation f A,
conventional metrics of relative error compute ε as

ε = | f − f A|
| f | .

Here, f ∈ <m is an m-tuple of reals. The associated distortion radius D is given
by:

D = | f − f A| = ε| f |.
Given f and ε for an approximate method, it is easy to see that the function
evaluation can be located anywhere inside a distortion sphere of radius D cen-
tered around point f without changing the error bound of the approximation
technique. In practice, however, the function evaluation f is not known, but f A
is known and ε can be theoretically estimated. It is possible to get an estimate
of the distortion radius D′ as:

D′ = ε| f A|.
It is easy to see that:

|D − D′|
|D| < ε.

Since ε for typical applications is in the range of 10−3 or less, the resulting
error in distortion radii is small. A second problem arises because the center
of the distortion sphere f is not known. Rather, the known point f A can lie

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 321

Fig. 1. Error estimation scenario for a single particle—cluster interaction.

anywhere within the distortion sphere. This problem is addressed subsequently
in Section 3.2.

2.1 Error in a Single Particle-Cell Interaction

Consider a multipole-based Barnes–Hut method for computing the force and
potential on each particle. The basis for this method is the aggregation of a
cluster of particles into a single series representation that can be evaluated at
various observation points. This is illustrated in Figure 1. The source points are
contained within a sphere of radius r and the evaluation point is at a distance
ρ from the center of the sphere. The sources are approximated by a truncated
multipole series of degree p defined with respect to the center of the sphere.
With this as the basic interaction primitive, the following error bounds have
been theoretically established:

THEOREM 1 (RELATIVE ERROR IN POTENTIAL USING MULTIPOLES) [GREENGARD AND

ROKHLIN 1987; ELLIOTT 1994]. For a spherical cell of radius r containing a set
of charges, the relative error in evaluation of potential at an observation point
at distance ρ from the center of the sphere using a multipole series with p terms
is given by:

εpotential ≤
(

r
ρ

)p

. (1)

PROOF. This error bound is derived in Greengard and Rokhlin [1987] and
Elliott [1994]. We refer the interested readers to these detailed derivations.

THEOREM 2 (RELATIVE ERROR IN FORCE USING MULTIPOLES) [ELLIOTT 1994]. For
a spherical cell of radius r containing a set of charges, the relative error in
evaluation of force at an observation point at distance ρ from the center of the
sphere using a multipole series with p terms is given by:

εforce ≤
(

r
ρ

)p(
p
(
ρ

r
+ 1
)
− 1
)
. (2)

PROOF. This error bound is derived in Elliott [1994]. We refer the interested
readers to these detailed derivations.

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

322 • D.-Y. Yang et al.

2.1.1 Absolute Error in Potential Using Multipole Expansions. In addition
to relative error, it is often useful to examine the absolute error in potential
resulting from a truncated p-term multipole approximation. Absolute error in
a function evaluation f approximated by f A is defined as | f − f A|. The absolute
error in potential φ resulting from a p-term multipole approximation is given
by:

THEOREM 3 (ABSOLUTE ERROR IN POTENTIAL USING MULTIPOLES) [GREENGARD

AND ROKHLIN 1987]. The absolute error δ between the exact potential φ and
potential φA computed using a p-term multipole approximation is given by:

δ = |φ − φA| ≤ A
ρ − r

(
r
ρ

)p+1

, (3)

where A = ∑k
j=1 |qj | is the sum of magnitudes of all charges contained in the

sphere of radius r.

This error metric is often used when absolute error bounds have been speci-
fied. Another use of this error bound is in reducing the overall error in simula-
tion. A careful examination of Eq. (3) reveals that the error increases linearly
with magnitude of enclosed charge. Consider a uniform charge distribution sim-
ulated using a multipole-based Barnes–Hut method. Since a particle interacts
with clusters of varying sizes, the larger clusters contribute most to absolute er-
ror in evaluated potential. This motivates a variable degree multipole method
in which larger clusters (in terms of charge) have a higher degree multipole
approximation. The following theorem specifies the variable degree multipole
method:

THEOREM 4 (VARIABLE DEGREE MULTIPOLES) [GRAMA ET AL. 2000]. The polyno-
mial degree pk required for a particle—cluster interaction for constant absolute
error is given by

pk = p0 + k logα 2+ logα
A0

Ak

where Ak is the net charge on the cluster at level k and A0 is the smallest net
charge cluster at lowest level in the tree.

PROOF. The increase in polynomial degree is computed by equating the ab-
solute error in a particle—cluster interaction to a constant. Detailed proof is
presented in Grama et al. [2000].

2.2 Number of Interactions for a Particle in Multipole-Based Barnes–Hut Method

In the Barnes–Hut method, an interaction between a cluster and a particle oc-
curs only when the multipole acceptance criteria, also known as the α criterion
is satisfied. This criteria requires that the ratio of the size of the cluster (radius
r of circumscribing sphere) to the distance of observation point from center of
cluster (ρ) is less than a constant (α, typically in the range 0.5–0.7). This criteria
can be used to establish the following observations:

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 323

—the number of interactions with clusters of a particular size are bounded by
constant, and

—the number of distinct sizes of clusters is equal to the height of the decompo-
sition tree.

For structured distributions with uniform charge density, this translates to
O(log n) interactions. The first assertion can be formally derived as follows:

LEMMA 1 (PERMISSIBLE INTERACTIONS IN BARNES–HUT METHOD) [GRAMA ET AL.
1998]. In the Barnes–Hut method, the ratio r/ρ for particle—cluster interac-
tions is bounded as follows:

α′ <
r
ρ
< α,

where α′ and α are constants, such that

α′ =
(

2
α
+ 1√

2

)−1

.

PROOF. The upper bound is established directly by the α criterion and the
lower bound is established by using the fact that an interaction with the parent
was ruled out by the α criterion. Detailed proof is presented in Grama et al.
[2000].

As α is reduced, this bound tends to α/2 < ρ/r < α, indicating a tight bound.
It is now easy to show that the number of interactions with a box of size ρ is
bounded by a constant.

LEMMA 2 (BOUNDING INTERACTIONS IN BARNES–HUT METHOD) [GRAMA ET AL.
1998]. In Barnes–Hut method, a particle interacts with a bounded number
of boxes of a given size.

PROOF. The proof is based on bounding the number of boxes that can be
packed into an annular region centered around the observation point within
which all boxes of specified size must lie. Detailed proof is presented in Grama
et al. [2000].

Finally, the total number of interactions can be bounded by the product of
the depth of the hierarchy and the number of interactions with a box of each
size.

2.3 Aggregate Errors and Time-Step Errors

The errors (distortion radii) introduced into the force/potential/position at each
timestep are simply computed as products of magnitude of interaction error and
number of interactions for each particle. The distortion radius of a quantity may
change as the simulation proceeds over multiple timesteps. For example, for a
second order time integration scheme, the error in particle position is given by
the following theorem:

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

324 • D.-Y. Yang et al.

THEOREM 5. After n timesteps of size 1t, the distortion radius for particle
position is specified by

|En| ≤ T 2 + T1t
2

[
c1 +1t2c2

]
,

where T = n1t is the total time, and c1 and c2 are constants.

PROOF. The proof relies on a simple analysis of a Verlet-Leapfrog scheme to
compute the position and velocity of each particle:

vk+1/2 = vk+1/2 + ak1t, (4)
sk+1 = sk + vk+1/21t, (5)

where sk , vk , and ak denote the position, velocity, and acceleration, respectively,
of a particle at time tk after k timesteps of size 1t each, that is, tk = k1t.
Detailed analysis is presented by Littell et al. [1997].

These theoretical results form the basis of our compression framework.
After each timestep, the bounds on distortion radius are computed and passed
along with the parameters to the compression framework. This framework is
described in subsequent sections.

3. FRAMEWORK FOR BOUNDED DISTORTION MULTIDIMENSIONAL
QUANTIZATION

In this section, we describe our framework for compressing particle data. We
start with a simple scheme, point out inadequacies of this scheme and describe
a general purpose approach based on hierarchical decompositions. We improve
the performance of this hierarchical decomposition scheme with optimizations
such as spatial and temporal coherence. We conclude with a discussion of an-
other scheme based on an index timestep approach, similar to the one taken in
MPEG video, that overcomes the drawbacks of hierarchical multidimensional
quantization.

3.1 A Simple Scheme for Uniform Quantization

Consider a given two-dimensional domain with particles and associated distor-
tion radii. Instead of representing the particle coordinates using conventional
32-bit floating point numbers, we impose a uniform mesh over the domain. The
particles are then moved to the nearest mesh node that falls within the dis-
tortion radii of the particle. We illustrate this process for a 3-particle system
in Figure 2. The number of mesh points in either dimension is assumed to be
a power of two (without loss of generality). With eight discretization points
along each dimension, the x and y coordinates can be represented using 3 bits.
The particles a, b, and c can be represented as (001 010), (110 011), and (101
101), respectively.

In the simple case presented above, the scheme manages to reduce the stor-
age requirements from 64 bits (2×32 bits) to 6 bits, a compression factor of over
10. In a general case, if the distortion radius is given by d , the mesh discretiza-
tion will also have to be of the order of d . The corresponding bit requirement for

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 325

Fig. 2. A simple scheme for quantizing particle positions based on specified distortion radius.

each dimension is given by− log2(d). For a 3-D dataset with d = 10−3, the stor-
age requirement is 30 bits/particle/timestep. The corresponding compression
ratio is roughly equal to three.

While this quantization scheme based on a uniform mesh works well for
largely regular particle distributions, its performance can be poor for vari-
able distortion radii or highly irregular distributions. In the case of variable
distortion radii, the mesh discretization will have to be refined to the lowest
distortion radii of any particle. Note that hierarchical treecodes are capable of
computing distortion radii of each particle explicitly in addition to the potential
and/or force on the particle. In the case of irregular distributions, fixed length
representations such as the one presented above lead to poor compression. In
the next section, we present a robust framework that uses the same hierar-
chical decomposition that is used for force computation by multipole methods.
We augment this framework with various optimizations for further improving
compression ratios.

3.2 Multidimensional Quantization of Parameter Lists with Arbitrary Distributions

The multidimensional quantization scheme proposed in this paper constructs
a hierarchical domain decomposition from a given set of particles and distor-
tion radii. For a two-dimensional problem, the domain is recursively subdivided
into quads until each quad contains one particle and the center of the quad is
within the distortion radius of the particle contained within. Note that the hier-
archical decomposition thus obtained is a refinement of the hierarchy used for
force/potential estimation using Barnes–Hut or Fast Multipole Methods. This
tree construction process is illustrated in Figure 3. It is clear that this hierarchy
may potentially result in a large number of empty leaf-level quads. In our com-
pression scheme, the hierarchy is never explicitly constructed; rather, we simply
compute a representation of the required leaf-level quads containing given par-
ticles. The multidimensional quantization process can be generalized to any
number of dimensions. For storing positions of three-dimensional point-sets,
the quantization process results in oct-trees; that is, the domain is recursively
subdivided into eight octs at each step.

Once this hierarchical structure has been constructed, particles are assigned
to leaf nodes that lie within the distortion radii of the particle. The problem

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

326 • D.-Y. Yang et al.

Fig. 3. Illustration of compression of particle position data using a distortion sphere, and spatial
and temporal coherence.

of representing particle positions now reduces to the problem of representing
populated leaf-level octs (nodes) in the oct-tree. This is done by encoding the
path from the root to the leaf node. By associating a predefined ordering of
children in the oct tree, we can associate 3 bits per level in the tree. We illustrate
this process for a 2-D problem in Figure 3. In this case, we require only 2 bits
per node since the tree is a quad tree. In the example, particle a is at level three
in the tree and according to the predefined node ordering for children of a node,
it is represented as 00 00 11. This provides the basic quantization mechanism
for our schemes.

Discussion. When compressing particles in the above framework, the accu-
rate particle position f is not available to us. Instead, the approximate (distor-
tion bounded) position f A is available to us. Consequently, if we select d ′ to be
the distortion radius for compression in the above framework, in the worst case,

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 327

a particle may be separated from the accurate position by a distance d + d ′,
where d is the original distortion bound induced by the hierarchical treecode.
We select d ′ = µd , where µ is a constant (typically less than 0.01), for a true
distortion bound of (1+ µ)d .

3.3 Encoding Spatial Coherence

The next order of compression relies on spatial coherence of representation.
Simply stated, particles that are spatially proximate are likely to share large
prefixes in the path from root to leaf. This implies that if the particles are
sorted in a proximity preserving order (such as Morton or Hilbert curves), then
we can represent particle positions relative to the previous particle. Indeed,
for improved cache performance as well as parallel performance, particles are
typically sorted in a spatial order (such as a Morton order or a Peano–Hilbert
order) for the FMM/Barnes–Hut computation [Grama et al. 1996; Singh et al.
1994; Warren and Salmon 1993], and this requires no additional processing
for compression.

The use of spatial coherence for improving compression ratios is illustrated
in Figure 3, Timestep 0. The quantized representations for particles a, b, and c
are given by 00 00 11, 00 10, and 00 11 01, respectively. Assuming that these
particles are sorted in the order a, b, and then c, it is easy to see that particles
b and c share the prefix 00 with particle a. Consequently, the prefix does not
need to be stored for these and the representations for b and c are simply 10
and 11 01. While this may not seem to be a significant improvement in this
example, in typical trees, the depth can be high. For example, with a normal-
ized domain of unit size in each dimension, a distortion radius of 10−3 would
require up to 10 levels in the oct tree. In such cases with higher particle den-
sities, significant improvements result from the use of spatial coherence in our
quantization framework.

The performance of spatial coherence encoding is impacted by the fact that
two spatially proximate particles may have significantly different prefixes
based on which half of the tree they fall into. Trivially, two particles that lie
on either side of a half split will have entirely different prefixes. In such cases,
the spatial coherence framework does not provide any additional benefits over
simple quantized representation. However, the number of such particles is a
small fraction of the total number of particles.

3.3.1 Encoding Temporal Coherence. In addition to spatial coherence, com-
pression rates can be further improved by considering temporal coherence; that
is, a particle is not expected to move significantly over a single timestep. Con-
sequently, instead of storing the entire relative leaf location corresponding to a
populated leaf node, we can store only the difference with respect to the previ-
ous location. This is stored as a sequence of XOR’ed least significant bits. This
is illustrated in Figure 3 (Time-step 1). The quantized positions of particles a,
b, and c are given by 00 00 01, 10, and 11 11, respectively after coding spatial
coherence. These representations can be reduced to 10 and 10 respectively for
a and c since the rest of the prefix is shared with the previous timestep. Also,
since the representation of b did not change between the two timesteps, it does

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

328 • D.-Y. Yang et al.

not require any storage. It is easy to see from this simple illustration that the
hierarchical framework when combined with spatial and temporal coherence
is capable of yielding very high compression rates.

An important aspect that impacts the performance of time-coherence ex-
ploitation is the choice of boundary conditions in the simulation. Typical sim-
ulations are run with periodic boundary conditions; that is, the simulation
domain is infinitely replicated around itself. With such boundary conditions,
a particle leaving the domain of simulation re-enters it on the far side. This
causes a significant shift in the particle position and for these particles the
differentially encoded position requires the same amount of storage as a naive
representation of the path from root to the leaf node. However, the number
of such particles is small (by the surface to boundary argument in a steady
state simulation) and does not significantly degrade the performance of the
compression scheme.

3.3.2 Coding Particle Displacements and Higher Order Differences. It is
possible to encode particle displacements and higher order differences in the
same framework as illustrated above. The driving intuition for this is that dis-
placements of particles between timesteps are not expected to change abruptly.
To encode particle displacements in the above framework, the refinement cri-
teria for the oct-tree must be modified slightly—a node is subdivided only until
its center is within prescribed distortion radii. The condition relating to sin-
gle particle per leaf is not required. Furthermore, the distortion radius needs
to be altered appropriately to maintain the same distortion radii for particle
positions as before.

This compression process is illustrated in Figure 4. Between timesteps 0 and
1, particles a, b, and c are displaced by vectors (0.1, 0.3), (0.05, 0.25), and
(0.35, 0.15), respectively. These values are now encoded in our quantization
framework as before. Since more than one particle can have the same displace-
ment (but not the same position), multiple particles can be assigned to the same
leaf node in the hierarchy. The hierarchy corresponding to the displacements
is illustrated in Figure 4. The hierarchy is populated with vectors, each corre-
sponding to the displacement of a single particle. Populated leaf nodes in this
hierarchy are now encoded using spatial coherence.

An important consideration in this process is the choice of timestep data with
respect to which differences are computed. Consider two vectors Ti and Ti+1 of
positions along with their error-bounded quantized counterparts T ′i and T ′i+1. To
determine T ′i+1, it is natural to consider the displacement Di+1 = Ti+1 − Ti and
code it in our framework to give D′i+1. On the decoding side, T ′i+1 is recovered
as T ′i+1 = T ′i + D′i+1. A close examination of this process reveals that this leads
to unstable error properties. This follows from the following sequence of steps.
We know that the following equations hold for bounded distortion radii η and ν.

Di+1 = Ti+1 − Ti

|D′i+1 − Di+1| < η

|T ′i − Ti| < ν

T ′i+1 = T ′i + D′i+1.

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 329

Fig. 4. Illustration of compression of particle displacement data using distortion sphere and spatial
coherence. Notice that the extent of the domain represented hierarchically is determined by the
maximum displacement in any dimension and that the radius of distortion sphere is in fact smaller
than for coding positions.

From these, with some basic algebraic manipulations, it is possible to show that:

|T ′i+1 − Ti+1| < ν + η.
This is an undesirable situation in which the effective distortion radii for
particle positions increases at each timestep.

To remedy this situation, for encoding Ti+1, its differences with respect to T ′i
must be encoded instead of vector Ti. Mathematically, we have:

Di+1 = Ti+1 − T ′i
|D′i+1 − Di+1| < η

|T ′i − Ti| < ν

T ′i+1 = T ′i + D′i+1.

In this case, we can show that:

|T ′i+1 − Ti+1| < η.

This is important because we are now able to maintain a constant distortion
bound for particle positions. Indeed, this is simple to implement and requires

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

330 • D.-Y. Yang et al.

Fig. 5. Using index (I) timesteps for interpolating particle positions for intermediate timesteps.

storing the previous compressed timestep representation while compressing the
next timestep. A similar technique is used for coding second-order differences
in particle positions.

3.4 Index Time-Steps for Interpolated Encoding

One of the major drawbacks of differentially coding timesteps in the above
framework is the inability to selectively decompress specified timesteps or re-
gions of space quickly. Specifically, to decompress a certain timestep, the entire
simulation leading up to the timestep would have to be unrolled. Furthermore, if
a small part of the data was corrupted, the entire data following the corrupted
segment would be lost. These drawbacks can be potentially unacceptable in
many situations (unreliable media or networks, analysis tasks requiring seg-
mented retrieval). We now propose a scheme that addresses these drawbacks.

An alternate scheme for compressing particle positions relies on using peri-
odic index timesteps (I-steps). Consider the illustration in Figure 5. This exam-
ple shows a 1D trajectory of a single particle across nine timesteps. Errorbars on
particle positions indicate the distortion radii for each particle. In this example,
every fourth timestep is an index step (marked by an I in the figure). A simple
technique for coding particle positions in this framework uses the neighboring
I-steps to construct a polynomial that specifies particle positions at intermedi-
ate timesteps. If the polynomial approximation lies within the error-bars, no
data needs to be stored for the particle. If the polynomial lies outside the error-
bar, then the data can be differentially encoded with respect to the polynomial.
In the example in Figure 5, it is easy to see that there is no storage associated
with timesteps 1, 2, 5, and 7 (0, 3, 6, and 9 are index timesteps). Only timesteps
4 and 8 require additional encoding. Clearly, this technique has the potential
for significant compression.

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 331

Fig. 6. Use of I-steps for interpolating intermediate timesteps.

We now look at the reduction in magnitude of quantities that need to be
encoded because of the interpolation framework above. In Figure 6, we illus-
trate the use of I-steps with interpolation polynomials of varying degrees for
a 2568 atom system (water molecules). For the sake of illustration, we only
show the encoding of the x coordinate. The magnitude of difference between
the polynomial and actual position computed from the timestepping scheme
applied to the hierarchical method is shown. In the extreme case, if each of the
magnitudes in the figures were under, say, 10−2, and the distortion radius was
10−2, then no encoding is required for the intermediate timesteps. In Figure 6,
we see that the magnitude of differences can be reduced very significantly by
quadratic and cubic interpolation. We experimented with varying number of
intermediate timesteps and present results for these in Section 4. Once parti-
cle trajectories have been interpolated, the data is differentially encoded with
respect to this trajectory. This differential coding is done using the hierarchical
framework used for quantizing particle positions as before.

This approach of using I-steps for compression has other benefits over sim-
ply coding first and second order differences in particle positions. The I-frame

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

332 • D.-Y. Yang et al.

Fig. 7. Organization of major software components and the dataflow among these components.

approach alleviates the drawbacks of differentially coding timesteps and sup-
ports fast access to intermediate timestep data with limited unrolling. Note
that this approach is similar in philosophy to that taken by MPEG encoders for
video compression.

3.5 Software Organization

A high-level overview of various software components is illustrated in
Figure 7. The compression layer fits in as a modular plugin into the hierarchi-
cal multipole-based treecode. The inputs to this compression layer are:

—A parameter list sorted on the spatial position of the particles. This list con-
sists of n d-dimensional vectors defined over the space of real numbers, where
n is the number of particles.

—The distortion radii associated with each particle. This list consists of n real
numbers, each specifying the distortion radius associated with corresponding
particles in the parameter list.

—The FMM/Barnes–Hut hierarchical representation of the domain. This hi-
erarchical representation is used to accelerate the compression process. The
representation can be easily reconstructed in the compression layer as well
to make abstract data types more flexible.

—The algorithm to be used for compressing the data and parameters associ-
ated with the algorithm where necessary. For instance, while using the I-step
approach, the polynomial degree and number of intermediate timesteps be-
tween two I-steps are parameters to the compression algorithm.

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 333

The compression layer uses the input parameters and stores a compressed
representation along with parameters into the compressed output file. In many
of the algorithms, timesteps need to be buffered for computing higher order dif-
ferences or I-step interpolants. These are maintained in static data structures
within the compression layer; thus ridding the calling program of additional
book keeping. Note that the error-estimation routines for computing distortion
radii must still be incorporated into the hierarchical treecode.

3.6 Performance of Compression Schemes

We begin by reiterating that the best compression for such applications is sim-
ply to store the initial state of the system. The decompressor is the simulation
process itself. This highlights the trade-off between computational overhead
(speed of compression and decompression) and the compression ratio. It is im-
portant for any compression scheme to have the following properties:

—Fast compression and decompression.

—High compression ratios.

—Data-structures that can build on existing hierarchies and support further
analysis tasks on the data.

Our schemes address each of these requirements explicitly. The performance
of the proposed schemes is a sensitive function of the distortion radius associ-
ated with the quantity being stored. While theoretical bounds exist on distor-
tion radii, it is often observed that these bounds are loose and that hierarchical
methods yield much better results in practice. For our compression schemes,
we use distortion radii which are much smaller than theoretical bounds. For
instance, for a charged particle system with charges totaling to 1, the error
behavior of the electrostatic potential is given by αp+1. For α = 0.5, an increase
in multipole degree by one leads to halving of the error term. In the oct-tree
structure for compression, each additional level corresponds to halving of the
distortion radius. Therefore, the depth of the tree is expected to grow linearly
with the multipole degree. For a compression tree depth of 10, the distortion
radius is 2−11 and the corresponding storage per path is 30 bits (3 bits per level).
Notice that without using any coherence (spatial or temporal), we can already
achieve a 3-fold compression (down from 12 bytes) in storing positions. Spatial
coherence can be encoded either by sorting particles in a proximity order and
coding differences with respect to previous particles or by using tries (as used
in LZ compression). We chose to use the former since the particles are already
sorted in proximity order for force/potential estimation.

Other issues relating to particle dynamics simulations relate to stability, con-
tinuity, and maintaining energy in a closed system. Although our compression
framework does not address these issues directly, it maintains stability char-
acteristics of the original (uncompressed) simulation. The I-step approach also
provides additional continuity based on the selected interpolation polynomial.
These are important orthogonal issues that must be addressed in the simula-
tion itself.

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

334 • D.-Y. Yang et al.

Table I. Number of Particles in Problem Instances, Size of Uncompressed Position Data
(Bytes), and Results of LZ Compression

No. of Particles Uncompressed Size LZ Compressed Size Compression Ratio (LZ)
Structured Distributions

2568 30816 15289 2.02
10K 120K 76123 1.58
20K 240K 157426 1.52

100K 1.2M 704018 1.70
500K 6.0M 3409091 1.76
2M 24M 13114754 1.83

Unstructured Distributions
24K 288K 241036 1.19
45K 540K 457151 1.18

Fig. 8. Sample distributions for experiments: (a) Gaussian (24,000 particles), and (b) Overlapped
Gaussians (45,000 particles).

4. EXPERIMENTAL RESULTS

We implemented our compression framework in conjunction with a multipole
based Barnes–Hut method with a leapfrog integration scheme. We tested our
schemes on various problems with sizes ranging from 2K to 2M particles and
distributions ranging from uniform to Gaussian and multiple Gaussians. These
distributions are illustrated in Figure 8. Uniform distributions are synthetically
generated by locating particles randomly across the domain. Gaussian distri-
butions are generated by altering the point density according to a Gaussian
curve and generating the required point density randomly.

The LZ compression (gzip) of particle data forms the baseline for our com-
parison. In Table I, we present sizes of uncompressed particle data, size of LZ
compressed data, and the compression ratio of LZ. Compression ratios for our
schemes will be presented as improvements (compression ratios) with respect
to LZ compression.

We present results of the basic compression scheme followed by the effect
of various optimizations in Table II. The distortion radii used in these cases is
presented in Table III. The theoretical distortion radii in each of these cases
is over two orders of magnitude more than selected distortion radii. The four
schemes presented in Table II are as follows:

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 335

Table II. Compression Results for Uniform Particle Distributions of Varying Sizes.
Performance of Various Schemes is Computed as Compression Ratio with Respect

to LZ-compressed Position Data

Position 2nd timestep Displacement 2nd Ord. Diff.
Problem Spatial Temporal Spatial Spatial

Size Scheme 1 Scheme 2 Scheme 3 Scheme 4

Structured Distributions

2568 1.44 1.81 1.78 2.01
10K 1.99 3.31 4.19 5.32
20K 2.36 3.45 4.73 6.11
100K 3.20 3.03 5.20 7.12
500K 4.10 4.18 5.06 7.43
2M 4.16 4.09 5.44 7.38

Unstructured Distributions

24K 4.15 2.24 2.50 3.76
45K 4.98 2.51 2.85 4.27

Table III. Distortion Radius Used for the Particle Sets

Distortion Radius
Problem Size position difference of position
2568 1.0× 10−3 1.0× 10−4

10K 3.9× 10−3 3.9× 10−4

20K 7.8× 10−3 7.8× 10−4

100K 3.9× 10−2 3.9× 10−3

500K 4.0× 10−2 4.0× 10−3

100K 4.0× 10−2 4.0× 10−3

Non-uniform distributions
24K 1.0× 10−2 1.0× 10−3

45K 2.0× 10−2 2.0× 10−3

Scheme 1 compresses particle positions using only spatial coherence. In
this scheme, particles are first sorted in a proximity-preserving order (a space
filling curve). The representation of the leaf oct for each particle is coded
differentially with respect to the previous particle. This process is illustrated
in Figure 3 (Timestep 0).

Scheme 2 compresses particle positions using both spatial and temporal co-
herence. Particles are first sorted in a proximity preserving order and their
representations are coded differentially with respect to previous particle. In
addition, these representations are further coded differentially with respect to
the (spatially differentially coded) representation for the particle in the prior
timestep. This process is illustrated in Figure 3 (Timestep 1).

Scheme 3 computes differences in particle position (displacement) between
timesteps and stores them in the spatial coherence framework, that is, parti-
cles are sorted in a proximity order and their displacement representations
are stored differentially with respect to previous particle. If the timesteps
for each particle are identical, then this corresponds to storing velocities
of particles.

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

336 • D.-Y. Yang et al.

Scheme 4 computes second-order differences (difference in displacement
of particle) and stores them using spatial coherence. If the timesteps for
each particle are identical, then this corresponds to storing acceleration for
each particle.

The following observations can be made from the table: coding particle po-
sition data using the hierarchical distortion radii proposed in the paper with
spatial coherence yields up to a factor of three improvement in compression
over gzipped raw data. This corresponds to a compression ratio of six over raw
data and can be seen to scale very well with problem size. Applying temporal
coherence for coding the next timestep yields improvements in the range of 20%
over spatial coherence. This is less than expected; however, it is due to the fact
that the selected distortion radii is very small. Consequently, particles traverse
significant number of leaf octs in the tree-space. The last two columns corre-
spond to storing first and second order differences in particle positions in the
hierarchical framework using only spatial coherence. It can be seen that stor-
ing second order differences yields the best storage of any scheme and yields
compression ratios ranging from 4:1 to 12:1 over raw data and 2:1 to 7:1 over
gzipped data.

An interesting observation from the Table II is that compression improves
as the number of particles is increased. This is because the error bound of mul-
tipole methods grows with the total charge in the system. Thus, the distortion
radii increases with increase in number of particles. Consequently, the com-
pression ratio increases. This also points to an important fact that the accuracy
of multipole methods needs to be increased (by changing the α parameter or
multipole degree) as systems become larger. In this case, we expect the com-
pression ratios to be largely independent of the size of particle system. We
base this on the last two observations we make on larger datasets –500K and
2M particles, respectively. We compress these datasets with constant distortion
radii of 4 × 10−2. In these cases, we see that going from 0.5M to 2M particles
does not change the performance characteristics of our compression schemes
significantly. It is important to note that while simulations of these magni-
tudes are adequate for most molecular dynamics simulations, experiments in
astrophysics now approach 100M—1G particles.

For unstructured distributions, it is evident from Table II that compres-
sion ratios are much lower than their structured counterparts. For example,
for a 100K particle uniform distribution, the best encoded size is 98820 bytes,
whereas for a 45K particle unstructured distribution, it is 91784 bytes. This
large difference is a result of the fact that the tree depth in unstructured dis-
tributions can be much higher. For this purpose, it may be necessary to use
alternate hierarchical data structures. The discrepancy is also a function of the
distortion radii in the two cases. In reality, the distortion radii for unstructured
distributions is much higher for simple FMM/Barnes–Hut methods.

The relative improvements due to our schemes are illustrated in Figure 9. It
is easy to see that our schemes yield excellent compression ratios in a fast and
flexible framework.

In Table IV, we present results from compression schemes based on the use
of index timesteps. We present encoded results for quadratic and cubic fitting

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 337

Fig. 9. Comparison of compression rates of various schemes: Scheme 1 compresses particle po-
sitions with only spatial coherence, Scheme 2 compresses particle positions using both spatial
and temporal coherence, Scheme 3 compresses particle displacements with spatial coherence, and
Scheme 4 compresses second order differences with spatial coherence.

for a number of distributions. The size of compressed data is computed as an
average of one index timestep and all of the intermediate timesteps up to (but
not including) the next timestep. This is done to ensure a fair comparison of
various schemes. The number of intermediate (interpolated) timesteps is var-
ied between 2 and 4. Several observations can be made from Table IV and its
comparison to Table II. The compression ratio for uniform distributions im-
proves with increasing number of intermediate timesteps. This is expected to
saturate and then decrease as the number of intermediate timesteps is further
increased. A comparison with Table II also reveals that this scheme yields the
best compression of any scheme for smaller systems. For larger systems (100K),
the second-order difference scheme with spatial coherence outperforms the
I-frame approach. The storage requirement of the scheme is almost linear in
the number of particles and approaches 8 bits/particle/timestep. Furthermore,
a quadratic fit is largely adequate and higher order interpolations do not re-
sult in significant improvements in performance. In some cases, they result in
slightly poorer performance. This is because cubic interpolants use the previous
four I-steps for prediction and in doing so make potential mistakes.

5. DISCUSSION AND IMPACT

The results presented in this article correspond primarily to storing particle
position data although the framework can be applied to other particle param-
eters as well. In general simulations, one might need to store particle velocity,

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

338 • D.-Y. Yang et al.

Table IV. Compression Results for Particle Distributions of Varying Sizes. N
Indicates the Number of Interpolated Timesteps. Compression Ratios are

Presented with Respect to LZ-Compressed Position Data

I-step Approach
Problem Quadratic Fit Cubic Fit

Size N= 2 N= 3 N= 4 N= 2 N= 3 N= 4

Structured Distributions

10K 4.34 5.42 6.32 4.59 5.67 6.36
20K 4.51 5.63 6.48 4.76 5.83 6.45
100K 4.04 4.99 5.55 4.22 5.02 5.25

Unstructured Distributions

24K 4.33 4.62 4.52 4.29 4.40 4.09
45K 4.66 5.06 5.04 4.64 4.86 4.61

acceleration, potential, force, etc. While one approach is to compute these pa-
rameters from particle positions over timesteps, it would involve considerable
computational overhead and possibly, numerical inaccuracies. Alternately, we
advocate a technique that uses the same hierarchical framework for storing
other computed parameters as well. Depending on the timestepping scheme
used (e.g., a Leapfrog–Verlet scheme), distortion radii can be computed for
particle velocities as well. Distortion radii for gravitational (or electrostatic)
potential and force are known directly from error bounds on multipole meth-
ods. Using these distortion radii, it is possible to build hierarchical structures
for each parameter that needs to be stored independently. Since most parti-
cle parameters exhibit spatial coherence (as determined by the particle coor-
dinates), the same (proximity preserving) order can be used to differentially
code other parameters as well. Schemes 3 and 4 in Table II correspond to
storing velocity and acceleration data in the case of identical timesteps for
each particle.

The compression schemes presented in this paper reduce storage require-
ments of particle data by as much as a factor of 12 while guaranteeing dis-
tortion bounds on compressed data. This has several important implications
for particle simulations: given a subsampling frequency, the I/O overheads can
be reduced significantly; conversely, given a desired overhead factor, the sam-
pling rate can be increased significantly for better analysis. It also facilitates
remote access across networks where bandwidth is a bottleneck. The frame-
work put forth in this article provides a natural mechanism for clustering and
quantifying cluster behavior. It can be used to identify high-energy regions
of the domain and other quantitative subdomain features. It also supports
segmented retrieval without expensive unrolling overheads in asymptotically
optimal time.

The compression algorithm can be easily parallelized (threaded) and in-
curs little parallel overhead. Subdomains assigned to processors can be
independently compressed with no serialization or communication overheads.
This also provides a natural declustering of particle data across disks for im-
proved parallel I/O performance. There is a slight loss of compression in the
parallel context since each processor treats its subdomain independently of

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

Compression of Particle Data from Hierarchical Approximate Methods • 339

the others; thus leading to loss of coherence. However, in practice, this loss of
compression is expected to be negligible.

We are currently exploring techniques for integrating our compression
framework with advanced analysis tools and for supporting progressive visual-
ization and transmission of large datasets. Publications and software related to
this paper are available at http://www.cs.purdue.edu/homes/ayg/PARTICLES/.

ACKNOWLEDGMENTS

The authors would like to acknowledge the referees for making several insight-
ful and encouraging comments, which helped in improving this manuscript
significantly.

REFERENCES

ALURU, S. 1996. Greengard’s n-body algorithm is not O (n). SIAM J. Sci. Comput. 17, 3, 773–776.
BAJAJ, C., PASCUCCI, V., AND ZHUANG, G. 1999. Single resolution compression of arbitrary triangular

meshes with properties. In Proceedings of Data Compression Conference.
BARNES, J. AND HUT, P. 1986. A heirarchical o(n log n) force calculation algorithm. Nature, 324.
CALLAHAN, P. B. AND KOSARAJU, S. R. 1992. A decomposition of multi-dimensional .point-sets with

applications to k-nearest-neighbors and n-body potential fields. In Proceedings of 24th Annual
ACM Symposium on Theory of Computing (May). ACM, New York, pp. 546–556.

DEERING, M. 1995. Geometry compression. In Proceedings of SIGGRAPH’ 95. ACM, New York,
pp. 13–20.

ELLIOTT, W. 1994. Multipole algorithms for molecular dynamics simulation on high-perfomance
computers. Dept. Electrical Engineering, Duke Univ.

GRAMA, A., KUMAR, V., AND SAMEH, A. 1996. Parallel hierarchical solvers and preconditioners for
boundary element methods. In Proceedings of the Supercomputing Conference (Pittsburgh, Pa.).

GRAMA, A., SARIN, V., AND SAMEH, A. 2000. Improving error bounds for multipole-based treecodes.
SIAM J. Sci. Comput. 21, 5 (May), 1790–1803.

GREENGARD, L. AND ROKHLIN, V. 1987. A fast algorithm for particle simulations. J. Comput. Phys.
73, 325–348.

LEVOY, M. 1995. Polygon-assisted jpeg and mpeg compression of synthetic images. In Proceedings
of SIGGRAPH’ 95. ACM, New York, pp. 21–25.

LITTELL, T. R., SKEEL, R. D., AND ZHANG, M. 1997. Error analysis of symplectic multiple time
stepping. SIAM J. Numer. Anal. 34, 5, 1792–1807.

SINGH, J., HOLT, C., TOTSUKA, T., GUPTA, A., AND HENNESSY, J. 1994. Load balancing and data locality
in hierarchical n-body methods. J. Parall. Dist. Comput.

TAUBIN, G. AND ROSSIGNAC, J. 1998. Geometric compression through topological surgery. ACM
Trans. Graph. 17, 2, 84–115.

WARREN, M. AND SALMON, J. 1993. A parallel hashed oct tree n-body algorithm. In Proceedings of
Supercomputing Conference.

ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory 23, 3, 337–343.

ZIV, J., AND LEMPEL, A. 1978. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inf. Theory 24, 530–536.

Received October 2000; accepted July 2001

ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

