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ABSTRACT
This paper presents an integrated methodology to forecast the
direction and magnitude of movements of lending rates in security
markets. We develop a sequence-to-sequence (seq2seq) modeling
framework that integrates feature engineering, motif mining, and
temporal prediction in a unified manner to perform forecasting at
scale in real-time or near real-time. We have deployed this approach
in a large custodial setting demonstrating scalability to a large
number of equities as well as newly introduced IPO-based securities
in highly volatile environments.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Applied
computing→ Electronic commerce; • Information systems→
Data stream mining.

KEYWORDS
Securities Lending, Sequence-to-Sequence Modeling, Motif Mining,
Deep Learning
ACM Reference Format:
Abhinav Prasad, PrakashArunachalam, AliMotamedi, Ranjeeta Bhattacharya,
Beibei Liu, Hays SkipMcCormick, ShengzheXu, NikhilMuralidhar, andNaren
Ramakrishnan. 2023. ML-assisted Optimization of Securities Lending. In
4th ACM International Conference on AI in Finance (ICAIF ’23), Novem-
ber 27–29, 2023, Brooklyn, NY, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3604237.3626877

1 INTRODUCTION
Securities lending is an established practice inmany custodial banks,
including ours, wherein investment strategies backed by cash or
non-cash collateral are enabled to support clients who wish to have
additional returns on securities held. For example, the common
method of shorting an equity or a fixed income security is to borrow
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the security and sell it. Later the short seller buys the security to
return to the lender, profiting by any price decline net of lending
fees. Those wishing to borrow or lend must search each other’s
offerings and negotiate a lending fee. Determining the optimal fee
requires the lender to balance returns with utilization.

Furthermore, the process of determining the optimal fee for se-
curities lending involves careful consideration of various factors.
Lenders need to strike a balance between maximizing their returns
and ensuring the efficient utilization of their securities. Setting the
lending fee too high may discourage potential borrowers, leading
to underutilization of the available securities. On the other hand,
setting the fee too low might attract a high demand for borrowing,
but the lender may not fully capitalize on the potential returns. It
becomes crucial for lenders to assess market conditions, evaluate
the demand for specific securities, and factor in the associated risks.
By conducting thorough research and analysis, custodial banks can
offer competitive lending fees that attract borrowers while opti-
mizing the utilization of their securities. Additionally, establishing
robust mechanisms for borrowers and lenders to connect and ne-
gotiate terms efficiently is paramount for the smooth functioning
of securities lending operations. With effective fee determination
strategies and streamlined processes, custodial banks can continue
to provide valuable support to clients seeking enhanced returns on
their securities holdings.

Why is this problem challenging? First, the complexity of over
100 demand and supply factors exacerbate the impact of even small
adjustments to fees and rates. This complicates manual approaches
to set rates for securities lending. Second, inconsistent patterns un-
derlie the regimes under which securities lending can be profitable.
When a security is in demand, lending fees tend to be very volatile.
This presents a challenge to estimate how much the fee will rise or
fall during a given period. Finally, the large number of securities
with characteristic behaviors during different periods of time poses
a scalability challenge. Overall, while digitization has supported
operational efficiencies underlying securities lending, the above
issues also have opened up the potential for errors which may cause
cascading downstream effects. As a result, any approach to securi-
ties lending rate forecasting must contend with these uncertainties
in order to deliver tangible results to operators.

https://doi.org/10.1145/3604237.3626877
https://creativecommons.org/licenses/by/4.0/
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1.1 Contributions
Our problem formulation here is to forecast both the direction and
magnitude of lending fee movements. Our key contributions are
three-fold.
• By forecasting magnitude along with the direction, our approach
implicitly captures the nature of the security (e.g., general collateral,
warm, special and hot). This suggests inputs to adjust the lending
rate, especially when there is no market indication.
• We present a sequence-to-sequence (seq2seq) modeling frame-
work that runs at scale in real-time to support securities lending in
highly volatile environments.
•We outline applications and deployment in a large custodial set-
ting demonstrating scalability to a large number of equities as well
as newly introduced IPO-based securities.

1.2 Organization of this paper
Section 2 provides some background about securities lending. Sec-
tion 3 surveys related research. Section 4 presents the overall
methodology with example experimental results covered in Section
5. Finally, we present a discussion of the future implications of
securities lending rate prediction in custodial markets.

2 BACKGROUND
As introduced earlier, the typical approach to short selling a stock
or a fixed-income security involves borrowing the asset and subse-
quently selling it. Later, the short seller will repurchase the asset
to return it to the lender, aiming to profit from any decrease in its
price after deducting borrowing fees. Borrowers and lenders must
find each other and agree on a fee through negotiation, which the
lender sets to optimize utilization. When the collateral provided is
non-cash, the borrower usually pays a fee, whereas for cash col-
lateral, the borrower may receive a rebate, with the rebate rate
determined by the lender (see Fig. 1).

Lent Security

Rebate

Dividend Replacement

Lent Security

Rebate

Initial Collateral

Dividend ReplacementLender Lending
Agent

Borrower

Cash Investment Fund

Cash Investment 
Income

Initial Collateral

Figure 1: Overview of Securities-Lending Transaction Collat-
eralizedWith Cash (adapted fromMorningstar Analytics) [1]

Short selling has played a key role in recent market events and
conditions. During the COVID-19 pandemic, the global financial
markets experienced a severe downturn. As economic uncertainty
grew, investors became increasingly concerned about the potential
impact on various industries. In response, some investors engaged
in short selling to profit from the anticipated decline in the stock
prices of vulnerable companies. For instance, companies in the
travel, hospitality, and oil sectors were heavily shorted as these in-
dustries faced significant challenges due to lockdowns and reduced
consumer activity. Short sellers sought to capitalize on the price

declines, which further added to the market volatility during that
period.

As a second example, consider the GameStop Short Squeeze
(2021). In early 2021, an extraordinary event unfolded in the stock
market involving GameStop, a struggling video game retailer. A
group of retail investors on a Reddit forum called WallStreetBets
coordinated a massive buying campaign on GameStop’s shares,
causing its stock price to skyrocket. This sudden surge put signifi-
cant pressure on hedge funds and institutional investors who had
heavily shorted GameStop’s stock, as they were facing massive
losses. The short squeeze resulted in a rapid and unexpected up-
ward movement in the stock’s price, leading to considerable loss
for short sellers and a notable shift in market dynamics.

To operationalize the securities lending situation here, we view
the underlying business problem as one of increasing fee and rebate
rate as close to the market rate, while keeping the utilization high
and providing revenue uplift. The fee provided by the data is spread
which contains volume weighted number for both cash collateral
as well as non-cash collateral. Forecasts from our machine learning
models are made available daily to the desk for repricing analysis.
By identifying where the forecasted rate is in relation to the mar-
ket mean and the securities relative volatility, combined with the
directional and magnitude prediction, we obtain greater insights
into potential rate movements.

3 RELATED RESEARCH
Forecastingmodels have long been employed for decisionmaking in
economics and financial sectors. Several modeling paradigms have
been developed for modeling financial time-series. The paradigms
can be broadly divided intomodel-based and data-driven approaches.

Model-based approaches. Such approaches for forecasting
financial time-series are primarily developed by experts in quantita-
tive econometric modeling and are based on established economet-
ric theory. Such approaches employ significant domain knowledge
and rely on domain experts to sift through and isolate the drivers of
a process of interest. In such approaches, the process being modeled
is usually decomposed using traditional time-series decomposition
techniques [31] to isolate trends, seasonality and cycles following
which auto-regressive approaches [12] (e.g., Vector-Autoregression,
Autoregressive Integrated Moving Average) are employed to model
the residual transition dynamics. Several approaches based on state-
space models like Kalman Filters have also been employed for mod-
eling commodity prices, process risk [28] and evolution of infla-
tion [6]. However, many of these state-space modeling approaches
require at least a partial knowledge of transition dynamics, are
mostly linear (or locally non-linear e.g., Extended-Kalman Filter)
and make strong assumptions about process distributions. Model-
based approaches have been developed for forecasting lending,
inflation and interest rates [5] and rely on statistical techniques
to analyze historical lending rate data, identifying patterns and
relationships with various market factors. For instance, researchers
have explored the impact of supply and demand dynamics [2], mar-
ket volatility [20], interest rates, and credit risk on lending rates. By
incorporating these variables into econometric models, researchers
have achieved varying degrees of success in forecasting lending
rates accurately.
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Data-DrivenApproaches.With the recent trends in generation
and availability of massive troves of process data and the develop-
ment of sophisticated statistical and machine learning (ML), more
recent econometric forecasting efforts have been geared towards
leveraging the power of ML techniques. The advantage of these
techniques is their ability to model more sophisticated (non-linear)
functions with no domain-knowledge. These algorithms leverage
advanced computational techniques to analyze large volumes of
historical data and identify complex patterns that may be diffi-
cult to capture with traditional econometric models. Researchers
have employed various Bayesian and frequentist methods from ma-
chine learning (ML) such as support vector machines [21], random
forests to predict various processes like stock prices [25], secu-
rity prices [38], and bank loan loss defaults [4]. Although several
works [14, 18, 33, 36] employ machine learning solutions for stock
price prediction, to the best of our knowledge, we are the first
to address the problem of ML-assisted Optimization of Securities
Lending.

Deep Learning for Time-Series Forecasting. Traditional data-
driven techniques although flexible, require sophisticated feature-
engineering and feature selection techniques to be successful. Re-
cently, with the advent of affordable commodity GPUs, the para-
digm of developing and training large deep neural network models
has come to the fore. Deep learning (DL) pipelines have proved
highly effective in various domains such as NLP [13], computer
vision [8, 37], image generation [19], and time-series generation [9,
39], due to their ability to model complex functions and their ability
to automatically learn representations through non-trivial com-
positions of raw data. DL models have also been widely adopted
for various economic forecasting tasks [35]. Such approaches have
shown effective performance in forecasting the evolution of finan-
cial processes [35] like prices of stocks, bonds, indices, commodi-
ties [41] and the price variations therein. Further, DL models have
also been employed to forecast changes and evolution in interest
rates [26]. In contrast to other modeling paradigms, DL pipelines
in financial modeling contexts are able to learn from a wide range
of input variables, including market indices, asset characteristics,
and macroeconomic indicators, to improve the accuracy of their
forecasts of a process of interest.

Many previous works have successfully employed motif mining
to extract high level temporal behavior from data [29, 30]. Addi-
tionally, motif mining enables discretization of time series behavior,
thereby alleviating any adverse effects of process noise [11]. In
this work, we hence leverage time series discretization via mo-
tif mining and encode the temporal dynamics of the discretized
time series using DL techniques (Long-short term memory net-
works [3, 7, 15, 17, 40]) for the task of forecasting lending rates.

4 METHODOLOGY
Security lending is a problem where we aim to optimize the stock
fee to maximize our revenue by lending securities. Usually the
evolution of the stock fee for a particular ticker is locally smooth
from a temporal context. Specifically, if we consider a particular
ticker 𝜏 , a stock fee at time t, 𝑦𝜏𝑡 is on average, strongly correlated
with the stock fee values at time-steps (𝑡 − 1) : (𝑡 −𝑤) for some

Figure 2: The architecture of our proposed multi-horizon
LSTMmodel trained to estimate k-discretized stock fee price
as well as stock fee direction of movement with categorical
cross entropy and weak-Sobolev regularization.

local horizon ‘w’. Taking advantage of this property of locally-
deterministic temporal evolution of the stock fee process, we cast the
problem of optimal stock fee estimation as a time-series forecasting
problem. In general it is known that the evolution of the stock fee
is also influenced by other factors like stock quantity and historical
utilization.

Task Description. Let us denote the stock fee of a ticker 𝜏 over a
particular horizon from start time 𝑡𝑠 to end time 𝑡𝑒 as y𝜏𝑡𝑠 :𝑡𝑒 ∈ R1×ℎ .
Further, let us denote the corresponding values of exogenous vari-
ables (e.g., stock quantity and historical utilization) that are known
to influence stock fee evolution as e𝜏𝑡𝑠 :𝑡𝑒 ∈ R𝑞×ℎ . Here, ℎ indicates
the size of the time duration in days (i.e., ℎ = |𝑡𝑒 − 𝑡𝑠 |) and 𝑞 is
the number of exogenous factors considered to influence the stock
fee. Our goal is to forecast the stock fee y𝜏𝑡𝑠 :𝑡𝑒 , from 𝑡𝑠 to 𝑡𝑒 for
a ticker 𝜏 , conditioned upon historical information 𝑋𝜏

𝑡𝑠−𝑤 :𝑡𝑠−1 =

[e𝜏𝑡 (𝑠−𝑤) :𝑡 (𝑠−1) ; y
𝜏
𝑡 (𝑠−𝑤) :𝑡 (𝑠−1) ]. Here, 𝑋

𝜏
𝑡𝑠−𝑤 :𝑡𝑠−1 ∈ R(𝑞+1)×𝑤 are the

holistic set of input features for our proposed estimation task of
stock fee for ticker 𝜏 in the horizon 𝑡𝑠 : 𝑡𝑒 . We employ a DL pipeline
trained using empirical risk minimization (ERM) to model the evolu-
tion of our target task. Given, a training corpus of pairs of inputs, tar-
gets X = {(𝑋𝜏

𝑡𝑠−𝑤 :𝑡𝑠−1 , y
𝜏
𝑡𝑠 :𝑡𝑒 ) |𝑤 ≤ 𝑡𝑠 ≤ 𝑀 − ℎ ∧𝑤 + ℎ ≤ 𝑡𝑒 ≤ 𝑀},

Eq. 1 details the estimation objective.

𝜃𝜏𝑜𝑝𝑡 = argmin
𝜃 ∈Θ

E(𝑋𝜏 ,y𝜏 )∼X [L(y𝜏 , 𝑓𝜃 (𝑋𝜏 ))] (1)

In Eq. 1, for each ticker 𝜏 , we learn a stock fee prediction function
𝑓𝜃 (·) parameterized by learnable parameters 𝜃 and conditioned
upon historical endogenous and exogenous inputs1 𝑋𝜏 . The ERM
optimization objective in Eq. 1 yields, 𝜃𝜏𝑜𝑝𝑡 , which is the optimal

1we have dropped the temporal subscript notation for ease of understanding.
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set of parameters that can be employed to yield estimates of stock
fees in future time-steps.

Figure 3: Showcase the stock fee (blue) and stock fee change
(green) of various tickers. We notice that these processes
exhibit complex temporal dynamics.

The stock fee of each ticker exhibits unique and complex evolu-
tionary characteristics owing to the multivariate dependence on
various exogenous factors. Fig. 3 demonstrate the uniqueness of
evolutionary characteristics of the stock fee magnitude and the cor-
responding change of the stock fee price (i.e., stock fee direction)
for different ticker symbols. Hence, attempting to model the stock
fee with standard regression based DL models leads to sub-optimal
predictions. To address this issue, we adopt a discretized modeling
approach for the stock fee estimation task.

Discretization We employ a time-series discretization function
𝑔 : RY → BY such thatRY is the continuous space comprising the
raw stock fee data and BY is the space of corresponding discretized
representation.

For example (as Fig. 4), one instance of a simple discretization
function could be one that discretizes a stock fee timeseries Y𝜏𝑡1:𝑡𝑀 ∈
R1×𝑀 for a particular stock ticker 𝜏 , based on quartiles (i.e., into
a 4 symbol sequence) Y𝜏

𝑡1:𝑡𝑀 ∈ B4×𝑀 where each time-step of the
discretized sequence represents a 4-dimensional one-hot binary
vector. In general we represent Y𝜏

𝑡1:𝑡𝑀 ∈ B𝑘×𝑀 as a k-discretized
version of y𝜏𝑡1:𝑡𝑀 . Without loss of generality, we can consider the
train-setX to comprise of input-target pairs (𝑋𝜏

𝑡𝑠−𝑤 :𝑡𝑠−1 ,Y
𝜏
𝑡𝑠 :𝑡𝑒 ) such

that each target seriesY𝜏
𝑡𝑠 :𝑡𝑒 ∈ B𝑘×ℎ represents the k-discrete target

series of the stock-fee y𝜏𝑡𝑠 :𝑡𝑒 ∈ R1×ℎ .

(a)

(b)

Figure 4: 4a - 4b showcase price time-series and their dis-
cretization 𝑔(·) in various stocks (AMZN, GOOG).

𝜃𝜏𝑜𝑝𝑡 = argmin
𝜃 ∈Θ

E(𝑋𝜏 ,Y𝜏 )∼X [L(Y𝜏 , 𝑓𝜃 (𝑋𝜏 ))] (2)

Eq. 2 represents the variant of the ERM procedure outlined in Eq. 1
adapted for learning to estimate k-discretized stock fee time-series.
The loss function L(Y𝜏 , 𝑓𝜃 (𝑋𝜏 )) in Eq. 2 plays a critical role in the
estimation procedure and has been detailed in Eq. 3.

L(Y𝜏 , 𝑓𝜃 (𝑋𝜏 )) = − 1
ℎ

ℎ∑︁
𝑖=1

𝑘∑︁
𝑗=1

Y𝜏
𝑗𝑖 log(Ŷ

𝜏
𝑗𝑖 ) (3)

Eq. 3 demonstrates the categorical cross-entropy [16, 24] loss calcu-
lation over a target horizon h of a k-discretized target sequenceY𝜏 .
Here, Ŷ𝜏 ∈ R𝑘×ℎ represents the output of 𝑓𝜃 (X𝜏 ). Essentially, each
Ŷ𝜏
𝑗𝑖
∈ Y𝜏 represents the predicted probability (by 𝑓𝜃 (·) conditioned

on inputs X𝜏 ) of occurrence of discrete symbol 𝑖 at time sequence
step 𝑗 .

Weak Sobolev Regularization. Traditionally, DL pipelines
make for an immensely powerful learning mechanism capable of
modeling complicated functions. This capability can serve to be
a doubled edged sword as it also brings with it the bane of over-
fitting to the training data leading to dismal performance on unseen
(test) data during inference, rendering the forecasting model useless.
Regularization [34] has long been a popular technique in ML and
DL employed to systematically curtail model complexity thereby
reducing over-fitting. In addition to traditional (L1, L2) based reg-
ularization mechanisms, it has been recently shown that Sobolev
losses [10] serve as effective regularizers in over-parameterized DL
pipelines. We augment our training pipeline to incorporate a weak
version of the Sobolev loss by training our DL pipeline to predict the
k-discretized time-series of the gradient of the target time series i.e.,
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ΔY𝜏 = 𝑔(Δy𝜏 ) where 𝑔(·) is a discretization function, Δy𝜏 ∈ R1×ℎ
is the first-difference (i.e. slope or direction of motion) at each point
in the stock fee target series y𝜏 ∈ R1×ℎ and ΔY𝜏 ∈ B𝑘×ℎ is the
k-discretized version of the point-wise slope2.

𝜃𝜏𝑜𝑝𝑡 = argmin
𝜃 ∈Θ

E(𝑋𝜏 ,Y𝜏 )∼X [L(Y𝜏 , 𝑓𝜃 (𝑋𝜏 )) + L(ΔY𝜏 , 𝑓𝜃 (𝑋𝜏 ))]

(4)
Our final training loss functionwithweak-Sobolev regularization

in the discretized setting is detailed in Eq. 4.

4.1 Seq2seq Model Architecture
In an effort to encode the temporal nature of the target process
of interest, we shall adopt recurrent deep learning architectures
and a sequence-to-sequence forecasting design [23]. Our choice of
modeling pipeline is an LSTM (long-short-term memory) network,
which is adept at processing sequential data.

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖 )
𝑓𝑡 = 𝜎 (𝑊𝑥 𝑓 𝑥𝑡 +𝑊ℎ𝑓 ℎ𝑡−1 +𝑊𝑐 𝑓 𝑐𝑡−1 + 𝑏 𝑓 )
𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐 )
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜 )
ℎ𝑡 = 𝑜𝑡 tanh(𝑐𝑡 )

(5)

Eq. 53 details the multiple gating mechanisms existing within an
LSTM network. Each𝑊 matrix represents a learnable set of projec-
tions of the input sequence 𝑥 ∈ R(𝑞+1)×𝑤 , hidden representations
ℎ𝑡−𝑖 or cell-states 𝑐𝑡−𝑖 . By maintaining separate states (i.e., the hid-
den states and cell states) as well as mechanisms (termed gates) to
include and forget (𝑓𝑡 ) information, LSTMs have been successful
in overcoming the vanishing gradient [27] problems inherent to
training vanilla Recurrent-neural networks (RNN).

The structure of our proposed LSTM pipeline is visually depicted
in Fig. 5. Our proposed architecture comprises of two separate LSTM
trunk models, each with the same structure of blocks. Each trunk
net is designed to accept a different historical sequence length
(one trunk accepts a 5 sequence input while the other accepts a
12 sequence input), thereby serving to incorporate multi-horizon
effects into our modeling pipeline.

The architecture for both the LSTM models is identical – One in-
put layer, One GroupNormalization layer, two LSTM layers (stacked
LSTM) where each layer is followed by dropout layer and one Dense
Layer on which ELU activation function is applied. The output from
the models are combined using Average Layer where features gen-
erated during training from both the models are averaged and fed
to another dense layer in order to generate the final prediction. Fur-
ther, our model yields predictions to simultaneously forecast the
k-discretized magnitude (Y𝜏 ) and direction (ΔY𝜏 ) of the stock fee
for ticker 𝜏 . The activation function applied on the final dense layer
is a softmax function. The loss function selected for optimization is

2For simplicity we consider both ΔY𝜏 and Y𝜏 to be k-discretized, in reality they
don’t have to be discretized into the same number of ‘k’ symbols.
3Note, here we have used overloaded notation to contextualize the LSTM mecha-
nism for correspondence with standard literature. This must not be confused with
terminology in Section 4.

Figure 5: Proposed MH-LSTMstock fee forecasting model
architecture with weak Sobolev regularization. The None in
each layer structure indicates a flexible input-dimension of
the input tensor to the layer that is set during execution e.g.,
batch size.

categorical cross-entropy (see Eq. 3) and the optimizer selected is
Adam.

Finally, we detail a feature normalization technique incorporated
to ensure increased stability and robustness during training of our
DL pipeline. It is well-known that initial values of the weights
of a neural network can have a significant impact on the train-
ing process. Weights should be chosen randomly but in a way to
ensure appropriate activation in the linear region of activation
functions like the sigmoid to avoid saturation [32] and consequent
sub-optimal training. Works like [22] have investigated the effect
on vanishing gradient on neural network training and proposed
techniques to alleviate the ill-effects of vanishing gradients gradi-
ents during training by intelligent weight initialization and weight
scaling.

Owing to the critical nature of this problem, we employ a tech-
nique based on Gaussian-Mixture-Models (GMM) to fit a feature
distribution for each feature and employ the means and standard
deviations of the learned GMM distribution to normalize and scale
features in the neural network pipeline. Hyperparameters like the
number of Gaussians in the GMM are obtained based on an elbow-
curve method using a Bayesian-Information Criterion.

We report the effect of the GMM based feature-scaling procedure
on the prediction performance of MH-LSTM in Table 1 (without
GMM based feature scaling) and Table 2 (with GMM based fea-
ture scaling). We notice that incorporating feature scaling leads to
increase in overall performance accuracy.



ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA Abhinav et al.

Table 1: Forecasting results for our proposed modeling
pipeline before GMMN based normalization.

Precision Recall F1-Score

0 0.70 0.89 0.78
1 0.77 0.50 0.61
Accuracy 0.72
Macro Avg 0.73 0.69 0.69
Weighted Avg 0.73 0.72 0.71

Table 2: Forecasting results employing our proposed model-
ing pipeline, after GMMN based normalization. We notice
an increase in the accuracy, macro and weighted average
metrics, relative to the performance of the variant without
GMMN (see Table. 1).

Precision Recall F1-Score

0 0.76 0.74 0.75
1 0.70 0.71 0.70
Accuracy 0.73
Macro Avg 0.73 0.73 0.73
Weighted Avg 0.73 0.73 0.73

5 EXPERIMENTAL RESULTS
We perform a holistic performance evaluation by investigating
the performance of MH-LSTMon the direction prediction and the
magnitude prediction for the target task of stock fee estimation on
a dataset of US-based securities. Further, we investigate the model
performance on an out-of-sample time-period in April 2022.

5.1 Direction Prediction Task
In order to demonstrate the performance of our proposed model
on the stock fee direction prediction task, we first investigate the
training loss curve (see Fig. 6) of our proposed multi-horizon LSTM
pipeline. We notice that the convergence as depicted, increases and
becomes more reliable as the number of training epochs increases.
Further, Table 3 details the task performance of themodel on the out-
of-sample data. We see from the table that our trained model yields
an average accuracy of 68% on the task of direction prediction,
across the out-of-sample period, on the investigated dataset of
US-based securities. Further, we discovered that calibrating the
classification threshold to 60% (from its original balanced threshold
value of 50%) yields a significant rise in classification accuracy with
the new accuracy reaching 75% on the binary classification task
of daily stock fee direction prediction. Overall, the table indicates
consistent prediction performance of our proposed multi-horizon
LSTM pipeline, across all the classes (0, 1). From the table, we
glean that the overall accuracy over out-of-sample period is 68%.
We further investigate the distribution of the accuracy across the
evaluation dataset (containing data from 6500 tickers) and report
the histogram in Fig. 7. We notice that a majority of the tickers (70%
or more) are above 60% in accuracy mainly in 80% to 100% accuracy
range. Although there exist a few tickers with individual accuracy

less than 60%, as shown by the distribution plot, the predictions
with accuracy higher can be used for decision making.

Figure 6: Loss Curve of direction prediction task in proposed
multi-horizon LSTM model

Table 3: Performance ofmulti-horizon LSTMmodel on the di-
rection prediction task for US-based securities on the out-of-
sample test set (April 15𝑡ℎ - 22𝑛𝑑 2022). We obtain an average
classification accuracy of 68% with balanced classification
threshold (0.5).

Precision Recall F1-Score Support

0 0.68 0.71 0.70 16917
1 0.68 0.65 0.67 16123
Accuracy 0.68 33040
Macro Avg 0.68 0.68 0.68 33040
Weighted Avg 0.68 0.68 0.68 33040

Figure 7: MH-LSTMstock fee direction prediction accuracy
histogram on out-of-sample period on US-securities dataset.
We notice that a majority of the predictions for the direction
prediction by MH-LSTMhave high-accuracy i.e., our model
demonstrates greater than 60% accuracy on a majority of
tickers for the stock fee direction prediction task.

Fig. 8 and Fig. 9 show that MH-LSTMyields highly accurate
results for a majority of its decisions on the stock fee direction
prediction task. We observe that although the model can be less
than 60% accurate during a few time periods (and for a few tickers),
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Figure 8: Long-term evolution across the entire year 2020
of 5-day-ahead stock fee direction prediction accuracy. The
plot showcases the change in accuracy for the 5-day-ahead
stock direction prediction task by MH-LSTMfor 5 sample
tickers.Wenotice thatMH-LSTMyields prediction accuracies
in excess of 60% for a majority of the direction prediction
decisions.

it demonstrates decision accuracy in excess of 60% a vast majority of
the time. This consistency and stability in prediction performance
can be leveraged to consider predictions.

Figure 9: We isolate a sample ticker from Fig. 8 and depict
(for a single month) a more granular evolution of 5-day pre-
diction accuracy for the task of stock direction prediction by
MH-LSTM . The plot depicts that MH-LSTMyields consistent
and high accuracy (greater than or equal to 80%) for a major-
ity of the decisions in the direction prediction task.

Figure 10: 5-day accuracy calculated everyday over 2022 pre-
diction by MH-LSTMfor the task of direction prediction on
5000 tickers.

Although a few regions in Fig. 10 showcase that MH-LSTMcan
yield prediction performance accuracy lower than 60%, we see that
for a majority of the decisions, it is highly accurate and yields
accuracy greater than 60%. Finally, we show the performance of
tickers that are above a fixed threshold of 60%, in Fig. 11.

Figure 11: The performance of tickers that are above a fixed
threshold of 60%.

5.2 Magnitude Prediction Task
In this section we further investigate the performance of MH-
LSTMon the out-of-sample set from April 2022.

Figure 12: Learning Curve for magnitude prediction task of
MH-LSTM .

We once again showcase the training and validation losses of
MH-LSTMon the magnitude prediction task ( Fig. 12) and observe
a simultaneous decreasing trend in training and validation losses
indicating a stable training of MH-LSTM for the task.

Further, we once again calculate the precision/recall/F1 score of
MH-LSTMon the 5-day stock fee magnitude prediction task and
find that the overall accuracy of MH-LSTMon the stock fee magni-
tude prediction task is 73% for 6500 US tickers. The classification
results, as shown in Table 4, is also based on out-of-sample test set
of April 2022.

Table 4: Performance of MH-LSTMmodel on the magnitude
prediction task for US-based securities on the out-of-sample
test set (April 15𝑡ℎ - 22𝑛𝑑 2022). We obtain an average classifi-
cation accuracy of 73%with balanced classification threshold.

Precision Recall F1-Score Support

0 0.76 0.74 0.75 17410
1 0.70 0.61 0.70 14535
Accuracy 0.73 31945
Macro Avg 0.73 0.73 0.73 31945
Weighted Avg 0.73 0.73 0.73 31945

Fig. 13 is the accuracy histogram of all tickers and it is also based
on out of sample data on same period (2021/04/23 – 2021/04/30).
Fig. 14 shows thatmajority of the tickers are in 60% to 100% accuracy
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range in terms of individual accuracy.There will be tickers with
individual accuracy less than 60% as shown by the distribution plot
but the predictions with accuracy higher than 60% may be selected
to make better decisions. Fig. 15 shows 5-day accuracy calculated
for magnitude model: 500 tickers (everyday over one year (2020)).

Figure 13: Accuracy histogram of all tickers. Y-axis is the
frequency of tickers, where x-axis is the accuracy.

Figure 14: Accuracy histogram of all tickers. Y-axis is the
frequency of tickers, where x-axis is the accuracy.

Figure 15: Accuracy evolution of MH-LSTMpredictions for
stock fee magnitude prediction task.

The 5-day accuracy plot for individual ticker is also stable and
can be visualized using Fig. 16a, Fig. 16b.
Overall, our results demonstrate that MH-LSTM is able to yield
stable and accurate predictions across diverse time ranges and
tickers for the stock fee magnitude and direction prediction tasks.

(a) Magnitude 5 - Day Accuracy Trend for 2030997_US59576681098
in 2020

(b) Magnitude 5 - Day Accuracy Trend per Ticker from 11/2021 to
05/2022

Figure 16: Figures (a), (b) depict the MH-LSTM5-day predic-
tion accuracy for the stock fee magnitude prediction task for
sample tickers.

6 CONCLUSION & FUTUREWORK
In this work, we have developed a scalable and integrated methodol-
ogy based on a novel deep-learning pipeline for forecasting lending
rates in security markets. Our flexible framework MH-LSTM , is
able to model both the price and the direction of evolution of the
lending rates making for a more holistic forecast. We have demon-
strated the accurate and high-quality forecasts through rigorous
qualitative and quantitative analyses employing 6500 tickers from
the US equity market thereby demonstrating that our model is
able to capture a large number of versatile market trends. Further,
by developing our MH-LSTMmodel, scalability of the model to a
large number of time series is an important problem that we have
addressed. The benefit is double sided where we not only have a
model that benefits from large dataset but also simplifies training,
inference and process monitoring. Through our experiments we
have learnt (and communicated) detailed and valuable lessons on
the effectiveness of specialized normalization techniques for LSTM
based neural networks.

In the future, we plan to augment our flexible DL pipeline to
incorporate exogenous information based on market sentiment.
Further, we shall also augment our DL based pipeline to incorpo-
rate the importance of market connectivity and provided insights
into the dynamics of lending rate formation. Specifically, we shall
incorporate the relationships and inter-connectedness between
borrowers, lenders, and other market participants in the securities
lendingmarket. By analyzing the effects of the network structure on
forecasting prowess, key influencers and nodes that play a crucial
role in determining lending rates can be identified.
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