
Algorithms for Storytelling

Deept Kumar∗, Naren Ramakrishnan∗, Richard F. Helm#, and Malcolm Potts#

∗Department of Computer Science, Virginia Tech, VA 24061
#Department of Biochemistry, Virginia Tech, VA 24061

Contact: naren@cs.vt.edu

ABSTRACT
We formulate a new data mining problem called storytelling
as a generalization of redescription mining. In traditional
redescription mining, we are given a set of objects and a
collection of subsets defined over these objects. The goal
is to view the set system as a vocabulary and identify two
expressions in this vocabulary that induce the same set of
objects. Storytelling, on the other hand, aims to explicitly
relate object sets that are disjoint (and hence, maximally
dissimilar) by finding a chain of (approximate) redescrip-
tions between the sets. This problem finds applications in
bioinformatics, for instance, where the biologist is trying to
relate a set of genes expressed in one experiment to another
set, implicated in a different pathway. We outline an efficient
storytelling implementation that embeds the CARTwheels
redescription mining algorithm in an A* search procedure,
using the former to supply next move operators on search
branches to the latter. This approach is practical and effec-
tive for mining large datasets and, at the same time, exploits
the structure of partitions imposed by the given vocabulary.
Three application case studies are presented: a study of
word overlaps in large English dictionaries, exploring con-
nections between genesets in a bioinformatics dataset, and
relating publications in the PubMed index of abstracts.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; I.2.6
[Artificial Intelligence]: Learning

General Terms: Algorithms.

Keywords: redescription, data mining, storytelling.

1. INTRODUCTION
Redescription mining is a recently introduced data mining

problem [9, 10] that seeks to find subsets of data that afford
multiple definitions. The input to redescription mining is
a set of objects O (e.g., books, genes) and a collection of
subsets S defined over O. The goal is to view the set sys-
tem as a vocabulary of descriptors and identify clusters of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

London
Map Guide

Christianity’s
Hidden Goddess

Rick Steves’
London

Holy Blood
Holy Grail Da Vinci Code Codebreakers

Y

G

R

M

B

Figure 1: An example input to storytelling.

objects that can be defined in at least two ways using this
vocabulary.

For instance, consider the set system in Fig. 1 where
the six objects are books and the descriptors denote books
about traveling in London (Y), books containing informa-
tion about places where popes are interred (G), popular
books about the history of codes and ciphers (R), books
about Mary Magdalene (M), and books about the ancient
Priory of Sion (B). An example redescription for this data-
set is: ‘books involving Priory of Sion as well as Mary Mag-
dalene are the same as non-travel books describing where
popes are interred,’ or B ∩ M ⇔ G − Y . This is an exact
redescription and gives two different ways of defining the
singleton set {‘The Da Vinci Code’}. The basic premise of
redescription mining is that object sets that can indeed be
defined in at least two ways are likely to exhibit concerted
behavior and are, hence, interesting.

While traditional redescription mining is focused on find-
ing object sets that are similar, storytelling aims to explicitly
relate object sets that are disjoint (and hence, maximally
dissimilar). Given start and end descriptors X, Y ∈ S, the
goal here is to find a sequence of descriptors Z1,Z2, · · · ,Zk

where Z1 = X, Zk = Y , and every Zi is an approxi-
mate redescription of Zj , 1 ≤ i < k, j = i + 1. A re-
description Zi ⇔ Zj is approximate if its Jaccard’s coeffi-

cient
|Zi∩Zj |
|Zi∪Zj |

is strictly between zero and one. An example

story in the above dataset results when we try to relate
London travel books to books about codes and cipher his-
tory: Some London travel books (Y) overlap with books
about places where popes are interred (G), some of which
are books about ancient codes (R). This story is a sequence

S1 = { o1, }
S2 = { o1, o2, o3 }
S3 = { o2, o4 }
S4 = { o3, o5 }
S5 = { o5 }
S6 = { o6 }

Figure 2: Example data for illustrating operation of
storytelling algorithm.

of (approximate) redescriptions: Y ⇔ G ⇔ R. Each step of
this story holds with Jaccard’s coefficient 1/3. A stronger
story, that holds with Jaccard’s coefficient 1/2 at each step,
is: B ⇔ (G ∩M) ⇔ R.

Why is this problem interesting and relevant? Storytelling
can be viewed as a carefully argued process of removing and
adding participants, not unlike a real story. Knowing ex-
actly which objects must be displaced, and in what order,
helps expose the mechanics of complex relationships. Sec-
ond, storytelling can be viewed as an abstraction of rela-
tionship navigation for propositional vocabularies and re-
veals insight into how the underlying Venn diagram of sets
is organized, and how it can be harnessed for explaining
disjoint connections. Finally, with the emergence of high-
throughput data acquisition systems, domains such as bioin-
formatics are now suffering from ‘descriptor overload’; story-
telling promises to be a valuable tool to attack this problem
and reconcile disparate vocabularies.

Why is this problem difficult? Storytelling is non-trivial
because the space of possible descriptor expressions is not
enumerable beforehand and hence the network of overlap re-
lationships cannot be materialized statically. In particular,
observe that the intermediaries Zi are not constrained to be
just elements of S but can be set-theoretic expressions made
up of the Si’s, e.g., S1∪S3,S2−S4,S1∩ (S2∪S5). In a typ-
ical application, we have hundreds to thousands of objects
and an order of magnitude greater descriptors, with an even
larger number of possible set-theoretic constructions made
of the descriptors. Effective storytelling solutions must mul-
tiplex the task of constructive induction of descriptor ex-
pressions with focused search toward the end point of the
story.

2. DESIGNING A STORYTELLER
We embed CARTwheels inside an A* search procedure,

using the former to supply next move operators on search
branches to the latter. Each move is a possible redescrip-
tion to be explored and a heuristic function evaluates these
redescriptions for their potential to lead to the end descrip-
tor of the story. In this paper, we focus on story length—
number of redescriptions to reach the end descriptor—as the
primary criterion of optimality although different criteria
might be more suitable in other applications. Backtracking
happens when a previously unexplored move (redescription)
appears more attractive than the current descriptor. The
search terminates when we reach a descriptor that is within
the specified Jaccard’s threshold from the ending descriptor
or when there are no redescriptions left to explore.

2.1 Working Example
For ease of illustration, consider the artificial example in

Fig. 2 with six descriptors {S1,S2,S3,S4,S5,S6} defined
over the universal set O = {o1, o2, o3, o4, o5, o6} (in a re-

alistic application, the number of descriptors would greatly
exceed the number of objects). Our goal is to find a story
between descriptor S1, corresponding to the set {o1}, and
S5, corresponding to the set {o5}, such that each step is a
redescription that holds with Jaccard’s coefficient at least
θ = 0.5. In this example, we set the maximum depth of
decision trees used to 2.

To initialize the alternation, we prepare a traditional data-
set for classification tree induction (see Fig. 3, left), where
the entries correspond to the objects, the class (to be learnt)
corresponds to the starting descriptor, and the boolean fea-
tures are comprised of the remaining descriptors. A classifi-
cation tree can now be grown using these features and class
assignments with the Jaccard’s coefficient as the node eval-
uation criterion. Hence, at each level in the decision tree we
construct, we look for a descriptor Si such that one of the
blocks in its induced partition will provide the best overlap
with the class we seek (in this case, S1). If the maximum
Jaccard’s coefficient value obtainable is lesser than θ, we
choose the descriptor that provides the best value. Else, we
consider all descriptors that satisfy the Jaccard’s threshold
and, among them, greedily choose the one with the highest
Jaccard’s coefficient with the end point of the story. The tree
growth is continued until the maximum Jaccard’s coefficient
observed at a given depth is lesser than that observed at the
parent level, or the depth limit of tree growth is reached.
Once the tree has been constructed, class assignments at
the leaves are made by majority and paths that lead to a
given class are union-ed to form redescriptions.

For instance, Fig. 4 (a) shows the decision tree we have
constructed to match the partition {S1,S1}. This tree pro-
vides the first step in the story to be the redescription S1 ⇔
(S2 −S3). In this example, we show only one possible ‘next
tree’ for our example but in our implementation, we main-
tain a number of such possible matching trees, to simulate
a branching process and for potential backtracking. Note
that while the current redescription holds with a Jaccard’s
value of 0.5, the new descriptor does not have any overlap
with S5.

For the next step in our story, we use the partition {(S2−
S3), (S2 − S3)} as the classes to match and consider the
dataset as shown in Fig. 3 (right). In constructing the new
dataset, observe that we ignore the descriptor that is the
top-most node (here, S2) in the decision tree that defines
the current partition. This ensures that we do not utilize
the same features for matching a partition as those that
define the partition! The one-level tree we learn at this
stage is shown in Fig. 4 (b). The redescription of interest
here is (S2 − S3) ⇔ S3, which also holds with a Jaccard’s
coefficient of 0.5. Although it introduces the element we
seek (o5), the redescription to the end point of the story,
S3 ⇔ S5, has only a Jaccard’s coefficient of 0.25. We hence
continue the search and obtain the redescription S3 ⇔ S4

which gives us the desired overlap with the target, and our
final redescription, namely S4 ⇔ S5. Our story is thus
S1 ⇔ (S2 − S3) ⇔ S3 ⇔ S4 ⇔ S5.

2.2 Implementation
The storytelling algorithmic framework follows the outline

of the working example above for a given O, S, X and Y .
The parameters that need to be specified are: a threshold
θ (0 < θ < 1) denoting the minimum required Jaccard’s
coefficient for each connection in the story; d (depth of trees)

obj. S2 S3 S4 S5 S6 class
o1

√
× × × × S1

o2
√ √

× × × S1

o3
√

×
√

× × S1

o4 ×
√

× × × S1

o5 × ×
√ √

× S1

o6 × × × ×
√

S1

obj. S1 S3 S4 S5 S6 class
o1

√
× × × × (S2 − S3)

o2 ×
√

× × × (S2 − S3)
o3 × ×

√
× × (S2 − S3)

o4 ×
√

× × × (S2 − S3)

o5 × ×
√ √

× (S2 − S3)

o6 × × × ×
√

(S2 − S3)

Figure 3: (left) Dataset to initialize storytelling algorithm. (right) Dataset for the second iteration.

S1

yes no

yesno

yesno

S2

S3

(a)

S4

noyes

S5

yes no

(d)

S4

noyes

S3

no yes

(c)

S3

no yes

yesno

yesno

S2

S3

(b)

Figure 4: Storytelling using CARTwheels alternation. Beginning with S1, the starting descriptor exposed by
the bottom tree in (a), the alternation systematically moves toward S5, the ending descriptor in (d). At each
step we alternately keep one of the trees fixed and grow a new tree to match it. The story mined here is the
sequence of redescriptions: S1 ⇔ (S2 − S3) ⇔ S3 ⇔ S4 ⇔ S5.

that imposes a bias B over set expressions defined on S; and
branching factor b that restricts the maximum number of
possible next states from each state in the A* search.

Our implementation can be divided into an Initialization
step and an Alternation step. In the Initialization step, an
empty open list (OL) and closed list (IL) required for A*
search are defined. Also, the decision tree induced by the
starting class (a 1-level tree with the node X) is added to
OL along with its heuristic score obtained from the func-
tion calculate heuristic score as explained later. This tree
provides the classes for the first step of the Alternation pro-
cess. The class of interest (X) is marked as the one we want
to find the closest match for.

At each alternation in the Alternation process, the first
tree (tN) in OL provides the classification C. The candidate
set of features F is made equal to all except the feature
used at the root of the current tree providing the classes. b
distinct trees of depth d are created using these definitions
of C and F and Jaccard’s coefficient as the metric. For each
of the decision trees constructed, the Jaccard’s coefficient
between the current descriptor of interest and the union of
the paths leading to it in the current tree is calculated. For
each tree (tj) for which this value is higher than or equal
to θ, the calculate heuristic score is used to compute the
heuristic score hj .

If the heuristic evaluation hj for the currently picked tree
tj is zero, we have arrived at a tree that has sufficient Jac-
card’s overlap with the end point of the story. We can then
terminate by displaying the story by tracing back the se-
quence of mined redescriptions. If hj is not zero, tj is placed

in OL and tN is moved to CL. For adding tj to OL, the
heuristic score hj is combined with cost expended so far (gj)
to arrive at the evaluation criterion sj . Nodes are placed in
OL in ascending order of sj . This completes one step in the
Alternation process. The whole alternation process outlined
is repeated until there is no tree left in OL or a story has
been found.

The heuristic function h is designed to systematically never
over-estimate the number of redescriptions remaining and
takes the value of zero for a tree whose partition has an
overlap of at least θ with the ending descriptor. We now
present details of h that clearly indicate its admissibility.

Table 1 outlines the approach to estimate hj for tree tj .
This algorithm can be understood as follows. Assume that
the new descriptor Zj (provided by tree tj) has f elements in
common with the target descriptor Y and e elements that do
not participate in Y . This means that Zj must shed enough
of the e elements and acquire enough of the |Y | − f ele-
ments in order to have a Jaccard’s threshold of ≥ θ with Y .
The goal of calculate heuristic score is to estimate the num-
ber of redescriptions required to shed the requisite number
among e elements and acquire some of the necessary |Y |−f
elements. The procedure first conservatively estimates if
the current discrepancies already correspond to a Jaccard’s
threshold of ≥ θ with Y , in which case it returns zero. If this
is not possible, the procedure estimates the shortest num-
ber of steps in which the deletions and additions can happen
by a recursive computation. Two extremes are considered
at each step – the case where we can acquire as many of
the necessary new elements as dictated by θ without any

Table 1: Heuristic for storytelling A* search.

calculate heuristic score(tj , C, Y , θ):
set Zj−i = target class from C
set Zj = block from tj that redescribes to Zj−1

set f = |Zj ∩ Y |
set e = |Zj − Y |
set h = 0
calculate h = minpath(f , e, |Y |, h, θ)
return h

minpath(f , e, |Y |, h, θ):
calculate θY = f/(e + |Y |)
if (θY ≥ θ)

return h
else

calculate δfmax = b (1−θ)(f+e)
θ

c
calculate δemax = b(1− θ)(f + e)c
set hmin = ∞
for (i = 0; i ≤ δfmax; i = i + 1)

set done = false
for (k = δemax; k ≥ 0 and ! done; k = k − 1)

calculate θnew = f+e−k
f+e+i

if (θnew ≥ θ)
set done = true
set hcurr = minpath(f + i, e− k, |Y |,

h + 1, θ)
if (hcurr < hmin)

set hmin = hcurr

end if
end if

end for
end for
return hmin

end if

removals, and the case where we can shed as many of the
unnecessary elements as dictated by θ without any addi-
tions. This step provides us the bounds δfmax and δemax

in Table 1. We then search combinatorially within these
ranges for the maximal number of deletions, for every possi-
ble number of additions, such that θ holds, akin to dynamic
programming. The minimum number of redescriptions over
all possibilities is then returned.

2.3 Data structures
The efficient implementation of our storytelling algorithm

hinges on data structures for fast estimation of overlaps (e.g.,
see [7, 11]). In this paper, we combine an AD-tree data
structure [6] with the signature tables [1] approach for ef-
ficient similarity search in categorical data. The signature
table is constructed before the Initialization step mentioned
earlier. Here, objects in the universal set are divided into a
predefined number of clusters (c) on the basis of their co-
occurrence frequencies, forming their signature. All descrip-
tors and their co-occurrence frequencies (used in construct-
ing a decision tree of depth more than 1) are also built into
an AD-tree at this stage. The descriptors at the top-level
of the AD-tree are additionally linked to their signatures.
When a similarity search query is issued, only nodes that
correspond to signatures of interest need to be investigated.
At greater depths in the AD-tree, we can either construct
individual signature tables for each node in the AD-tree or
we can opt to use a traditional AD-tree node that contains
descriptor names and co-occurrence frequencies. In our im-
plementation, we used traditional AD-tree nodes at depth
greater than 1.

Using these data structures, we can reduce the number of
descriptors searched against at each step and improve the
speed of computation of stories. For instance, in the first
call to the function construct tree, where we are looking for
the best match for the class X from among the descriptor
set D, we can reduce X to a vector of size c (Xc). Also, we
keep a count of the number of objects in X that belong to
each of the c clusters in the form of a frequency vector fc.
The optimistic Jaccard’s coefficient (OJ) between Xc and
a signature vector V c

i corresponding to a set of descriptors
can then be calculated by the formula

OJ (Xc, V c
i) =

Pc
j=1(f

c[j] ∗Xc[j] ∗ V c
i [j])Pc

j=1 fc[j]

We then compare Xc to all the signature vectors and retain
only those for which the optimistic Jaccard’s coefficient is
above θ. This narrows down our search to only those descrip-
tors that have potential to provide the necessary overlap.

2.4 Assessing Significance of Stories
The significance of a story is assessed at the level of each

redescription participating in the story. To assess the sig-
nificance of redescription X ⇔ Y , we use the cumulative
hypergeometric distribution to determine the probability of
obtaining a rate of co-occurrence of X and Y (over the ob-
ject domain), given their marginal occurrence probabilities,
and comparing it to the observed rate of co-occurrence by
chance. To account for multiple hypothesis testing, the sig-
nificance threshold is determined by first characterizing the
distribution for all descriptors tested and determining if the
given redescription has a rate of occurrence more than four
standard deviations above the mean.

3. EXPERIMENTAL RESULTS
Our three experimental studies are meant to illustrate dif-

ferent aspects of our storytelling algorithm and implemen-
tation. The first study characterizes word overlaps in large
English dictionaries and illustrates scalability of the imple-
mentation and how the different parameter settings affect
the quality of stories mined. The second study, involving
gene sets in bioinformatics, showcases the constructive in-
duction capabilities of CARTwheels when used for story-
telling. This study and the third, which builds stories be-
tween PubMed abstracts, also illustrate interesting nuggets
of discovered knowledge.

3.1 Word Overlaps
In our first study, we implement storytelling for the Mor-

phWord puzzle wherein we are given two words, e.g., PURE
and WOOL, and we must morph one into the other by
changing only one letter at a time (meaningfully). One so-
lution is: PURE → PORE → POLE → POLL → POOL →
WOOL. Here we can think of a word as a set of (letter, posi-
tion) tuples so that all meaningful English words constitute
the descriptors. Each step of this story is an approximate
redescription between two four-element sets, having three
elements in common. Note that words that are anagrams
of each other (e.g., ‘ELVIS’ and ‘LIVES’) will not have a
Jaccard’s coefficient of 1, since position is important.

We harvested words of length 3 to 13 words from the
Wordox dictionary of English words (http://www.esclub.gr/
games/wordox/), yielding more than 160, 000 words. Con-

Figure 5: Fraction of stories mined as a function of story length, for different values of lc (Top left) and
different values of b (Bottom left); Average time required to mine stories as a function of story length, for
different values of lc (Top right) and different value of b (Bottom right); for L10.

sistent with the MorphWord puzzle, we restrict all CARTs
to be of depth d = 1 and study the effect of θ and b on
the number of stories possible, length of stories mined, and
time taken to mine stories. For ease of interpretation, we
recast Jaccard’s thresholds in terms of the number of letters
in common (lc) between two words. Although MorphWord
is traditionally formulated with lc = 1, we explore higher
lc values as well. Due to space restrictions, we present our
results only on 10 letter words (L10). We selected 100, 000
pairs of words at random and tried to find stories between
them, with different lc and b settings.

Fig. 5 (top left) depicts a plot of the fraction of stories (out
of 100, 000) mined with various story lengths as a function of
lc, for a branching factor b = 5. In the plot, a story length of
0, rather counter-intuitively, implies that no story was found
for the word pair considered. The critical story length where
the majority of stories are mined steadily increases as lc is
increased. This is because, as lc is increased, more overlap
is required at each step of the story such that it takes longer
for one word to morph into another. At the same time, the
total number of stories mined decreases as lc is increased,
due to the lack of viable redescriptions.

To study the effect of b on the length of stories mined, we
focus our attention on lc value of 5 for L10. Fig. 5 (bottom
left) shows a plot of the fraction of stories mined with various
lengths as a function of b. As before, a path length of 0 in
the plots implies that no story was found for the word pair
considered. Here, the lc value chosen contributes to a high
probability of longer stories. As a result the branching factor
b plays a crucial role. This is evident in the case of b =
1, where the excessively greedy strategy is often rendered
futile. As b increases, the chances of going down toward the
target word increases and more stories are mined.

To study the effect of these parameters on the time re-
quired to mine stories, we set b = 5 as before for under-
standing the role of lc. We computed the average time taken
to mine a story, for various story lengths, across all pairs of
words considered. Fig. 5 (top right) shows the plot of this
average time against story lengths, for different lc values.
The plots indicate that there is a near linear increase in time
required, with steeper increases for lower lc values. This is
because the lower lc values cause an increase in the num-
ber of possibilities (within the bound of b = 5) which must
be explored before converging on the shortest path. Also
observe the higher times for story lengths of 0, indicating
it takes longer to conclude that stories do not exist. Sim-
ilar linear trends are observed in time versus the role of b
(Fig. 5, bottom right). Here, steeper profiles are witnessed
for higher b values. Once again, this is due to the increase in
the number of possibilities, although these increases appear
to taper off quickly. These figures clearly indicate the un-
derlying tradeoff in mining stories: time versus importance
of optimal story lengths.

3.2 Gene Sets
In our second case study, we mine stories among descrip-

tors defined over gene sets in the budding yeast S. cere-
visiae. We draw our descriptors from various bioinformat-
ics vocabularies (e.g., the Gene Ontology (GO), microarray
experiment clusters, experiment ranges) as done in previ-
ous work [10]. An example significant story, between the
GO categories protein modification and hexokinase, mined
for θ = 0.5, b = 5, and d = 2 is shown in Fig. 7. Ob-
serve that the second descriptor in the story involves a set
intersection performed by CARTwheels. A unifying fea-
ture that links the genes in this story is their common role

Early expression of yeast genes
affected by chemical stress

(PMID:15713640; 2005–02–16)
⇓

Glutathione, but not transcription factor
Yap1, is required for carbon source-dependent

resistance to oxidative stress in
Saccharomyces cerevisiae

(PMID:10794174; 2000–06–22)
⇓

The role of glutathione in
yeast dehydration tolerance

(PMID:14697735; 2003–12–30)
⇓

The adaptive response of
Saccharomyces cerevisiae

to mercury exposure
(PMID:11816031; 2002–01–29)

⇓
Cloning, characterization, and

expression of the CIP2 gene induced
under cadmium stress in Candida sp.

(PMID:9627968; 1998–07–09)
⇓

Mutations in the Schizosaccharomyces pombe
heat shock factor that differentially affect

responses to heat and cadmium stress
(PMID:10071222; 1999–04–07)

⇓
Genome-wide analysis of

the biology of stress responses
through heat shock transcription factor

(PMID:15169889; 2004–05–31)
⇓

Isolation and characterization of
HsfA3, a new heat stress transcription

factor of Lycopersicon peruvianum
(PMID:10849352; 2000–10–10)

⇓
Heat stress transcription factors

from tomato can functionally replace
HSF1 in the yeast Saccharomyces cerevisiae

(PMID:9268023; 1997-09-18)

Figure 6: An example significant story among
PubMed abstracts relating chemical stresses.

YGL158W
YJL164C

YKL035W

kinase hexokinase
protein

modification

YCL040W
YFR053C
YGL158W
YJL164C

YKL035W

YCL040W
YDR516C
YFR053C
YGL158W
YGR052W
YJL164C

YCL040W
YDR516C
YFR053C

cell growth
and/or

maintenance

transferase,
transferring
P-containing

groups

Figure 7: A significant story among gene sets from
protein modification to hexokinase.

in nutrient control and carbohydrate metabolism, partic-
ularly metabolism of glucose-phosphate. Considering the
three genes in the first descriptor, YKL035W is involved
in the reversible conversion of glucose-1-phosphate to UDP-
glucose via UTP; YJL164C is a cAMP dependent kinase
and binds both YFL033C (glucose repressed, nutrient con-
trol) and YIL033C (glycogen accumulation); and YGL158W
is a kinase that binds YGL115W (release from glucose re-
pression). Two new genes enter the story with the first
redescription, namely YCL040W (involved in phosphoryla-
tion of glucose) and YFR053C (a hexokinase also involved
in the phosphorylation of glucose in the glycolysis pathway).
In traversing the second redescription, two additional genes
appear: YDR516C is involved in phosphorylation of glu-
cose and, most importantly, also binds YCL040W (which is
present in earlier redescriptions). YGR052W is a mitochon-
drial serine/threonine kinase of unknown function. Through
the thread of the story we predict that YGR052W may also
be involved in an aspect of glucose metabolism and/or nu-
trient control.

3.3 PubMed Abstracts
For our final case study, we consider the more than 140, 000

publications about yeast in the PubMed index and focus on
finding stories between publication abstracts. Each abstract
is hence a descriptor over terms/keywords. We restrict our
CARTs to be of depth 1 and also adopt a weighted Jac-
card’s measure that is more suited to measuring similarity
between bags (details omitted due to space constraints). To
generate keywords, we focused on the 3756 abstracts con-
taining the keywords ‘yeast AND stress’ and applied stop
word removal and Porter’s stemming as well as manual in-
spection to cluster similar words together. Over 95% of the
keywords were eliminated by significance testing over the
values of TF · IDF (corresponds to a threshold of about 7),
resulting in 6821 unique words.

For this application, it is important to note that the com-
putation of the heuristic function would result in a combi-
natorial problem since each word does not uniformly have a
weight of 1 in our Jaccard’s calculation. For instance, elimi-
nation of different word subsets from a given descriptor, even
if they are of the same size, will result in different Jaccard’s
coefficients; hence we will have to exhaustively search all
combinations for removal and addition of keywords to deter-
mine the theoretically shortest possible storylength. Thus,
for the case of the weighted Jaccard’s coefficient, we used
a simpler heuristic function wherein we estimate the max-
imum weight we can gain/lose at each step and calculated
the number of steps required to gain enough of the weight for
the final document and lose enough weight from the current
document, to reach a Jaccard’s coefficient above the thresh-
old for the final document. An example of a significant story
we mined using this function is given in Figs 6 (the PubMed
IDs and publication dates are given alongside).

The story (see Fig. 6), mined with θ = 0.2, b = 5, be-
gins with a high throughput experiment that links chemical
stress to gene expression in Saccharomyces cerevisiae, and
ends with heat stress transcription factors in tomato. The
‘story line’ was initiated through comparisons between ox-
idative and heavy metal stresses. This led to a paper identi-
fying a gene from Candida sp. that was expressed when the
cells are exposed to cadmium but not copper, mercury, lead
or manganese. Interestingly a BLAST search for the en-

coded protein sequence indicates that the protein is novel.
The link between tomato heat stress transcription factors
and a cadmium-specific gene with no known match in the
current databases was through work with the fission yeast
Schizosaccharomyces pombe where a study looked specifi-
cally at heat and cadmium stress responses. This story
hence illustrates the key players in the systems biology of
related chemical stresses.

4. RELATED RESEARCH
We briefly survey related research in three categories: story-

telling in information visualization, approaches for topic track-
ing in documents, and link mining.

In the first category, storytelling has been viewed, not in
a data mining context, but as an information organization
tool based on narrative structures from real life. Kuchin-
sky et al. [4] propose an interactive approach for biological
information management using three constructs – items, col-
lections (of items), and stories. A ‘story editor’ is used to
form an outline of the story using a template. The players
(items and itemsets) are then used to fill in the template
manually to complete the story.

Pertinent work in the topic tracking community, e.g., [3]
focuses on post-processing search results into storylines by
analyzing bipartite graphs of document-term relationships.
Here a story is a thread of related documents with tempo-
ral as well as semantic coherence. Although similar to our
PubMed abstracts case study, these works are focused on
unsupervised discovery of all threads whereas we focus on
directed storylines between given start and end points. Fur-
thermore, as shown in our GeneSets case study, we allow
arbitrary set constructions for the purpose of positing over-
laps by casting stories as a generalization of redescriptions.
The definition of a ‘thread’ is also different in this work and
relies on the notion of node-disjoint directed paths.

Link mining [2] begins with data that can be modeled as
a collection of links and, in this sense, storytelling can be
approached as a problem of analyzing overlap relationships.
However, the links used and sought by us are between sets
of items rather than individual items, and these sets are
not enumerated beforehand. The concept of stories is also
inherently similar in spirit to relational knowledge discov-
ery, e.g., [8], but observe that our vocabularies are primarily
propositional in nature, and defined over a single domain of
objects. In future work, we aim to generalize story telling
into relational redescription mining where the stories can
straddle different domains and employ relationships for nav-
igating across domains.

Finally, the applications presented here suggest compar-
isons to classical discovery systems such as Swanson’s Ar-
rowsmith [13] which can be viewed as seeking stories of
length two. Our stories can be of arbitrary lengths with
differing complexities of the participating descriptors.

5. DISCUSSION
By defining stories as chains of redescriptions, we have

been able to design a storytelling algorithm as A* search
around the outputs of a redescription mining algorithm. We
have demonstrated the scalability of this approach using the
Word overlaps case study and showcased its potential for
knowledge discovery using the Gene sets and PubMed ab-
stracts case studies.

In future work, we aim to investigate other metrics for
evaluating stories besides story length, e.g., based on the
number of objects temporarily brought into the story, the
story’s conformance to prior background knowledge, or using
overlap metrics that better mirror a domain scientist’s con-
ception of set similarity. We also aim to explore connections
to works that characterize the structure of partitions [5, 12]
and investigate whether storylines can be designed around
paths in such discrete structures. We also intend to gener-
alize from propositional to predicate vocabularies and cast
storytelling in the context of relational redescriptions. This
will help provide structured stories that follow a template
of connections. Our eventual goal is to establish storytelling
as an important tool for reasoning with data and domain
theories.

6. REFERENCES
[1] C.C. Aggarwal, J.L. Wolf, and P.S. Yu. A New

Method for Similarity Indexing of Market Basket
Data. In Proc. SIGMOD’99, pages 407–418, 1999.

[2] L. Getoor. Link Mining: A New Data Mining
Challenge. SIGKDD Explorations, Vol. 5(1):pages
84–89, 2003.

[3] R. Guha, R. Kumar, D. Sivakumar, and R. Sundaram.
Unweaving a Web of Documents. In Proc. KDD’05,
pages 574–579, 2005.

[4] A. Kuchinsky, K. Graham, D. Moh, A. Adler,
K. Babaria, and M.L. Creech. Biological Storytelling:
a Software Tool for Biological Information
Organization based upon Narrative Structure. ACM
SIGGROUP Bulletin, Vol. 23(2):pages 4–5, Aug 2002.

[5] M. Meila. Comparing Clusterings by the Variation of
Information. In Proc. COLT’03, pages 173–187, 2003.

[6] A.W. Moore and M.S. Lee. Cached Sufficient
Statistics for Efficient Machine Learning with Large
Datasets. JAIR, Vol. 8:pages 67–91, 1998.

[7] A. Nanopoulos and Y. Manolopoulos. Efficient
Similarity Search for Market Basket Data. VLDB
Journal, Vol. 11(2):pages 138–152, 2002.

[8] J. Neville and D. Jensen. Supporting Relational
Knowledge Discovery: Lessons in Architecture and
Algorithm Design. In Proc. Data Mining Lessons
Learned Workshop, ICML’02, 2002.

[9] L. Parida and N. Ramakrishnan. Redescription
Mining: Structure Theory and Algorithms. In Proc.
AAAI’05, pages 837–844, 2005.

[10] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts,
and R.F. Helm. Turning CARTwheels: An
Alternating Algorithm for Mining Redescriptions. In
Proc. KDD’04, pages 266–275, 2004.

[11] S. Sarawagi and A. Kirpal. Efficient Set Joins on
Similarity Predicates. In Proc. SIGMOD’04, pages
743–754, June 2004.

[12] D.A. Simovici and S. Jaroszewicz. An Axiomatization
of Partition Entropy. IEEE Transactions on
Information Theory, Vol. 48(7):pages 2138–2142, 2002.

[13] D.R. Swanson and N.R. Smalheiser. An Interactive
System for Finding Complementary Literatures: A
Stimulus to Scientific Discovery. Artificial Intelligence,
Vol. 91(2):pages 183–203, 1997.

