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Improved Multiple Sequence Alignments
using Coupled Pattern Mining
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Abstract—We present ARMiCoRe, a novel approach to a
classical bioinformatics problem, viz. multiple sequence align-
ment (MSA) of gene and protein sequences. Aligning multiple
biological sequences is a key step in elucidating evolutionary
relationships, annotating newly sequenced segments, and un-
derstanding the relationship between biological sequences and
functions. Classical MSA algorithms are designed to primarily
capture conservations in sequences whereas couplings, or cor-
related mutations, are well known as an additional important
aspect of sequence evolution. (Two sequence positions are cou-
pled when mutations in one are accompanied by compensatory
mutations in another). As a result, better exposition of couplings
is sometimes one of the reasons for hand-tweaking of MSAs by
practitioners. ARMiCoRe introduces a distinctly pattern mining
approach to improving MSAs: using frequent episode mining
as a foundational basis, we define the notion of a coupled
pattern and demonstrate how the discovery and tiling of coupled
patterns using a max-flow approach can yield MSAs that are
better than conservation-based alignments. Although we were
motivated to improve MSAs for the sake of better exposing
couplings, we demonstrate that our MSAs are also improvements
in terms of traditional metrics of assessment. We demonstrate the
effectiveness of ARMiCoRe on a large collection of datasets.

Index Terms—Multiple sequence alignment, coupled residues,
pattern set mining, coupled patterns, max-flow problems.

I. INTRODUCTION

EVOLUTIONARY pressures on genes and proteins have
constrained their (DNA and protein) sequences over gen-

erations. As organisms evolve through sequence modifications,
mutations that have been evolutionarily selected for survival
would be preserved in the sequence record. It is hence of
intrinsic biological interest to inspect the sequence record and
to unravel those mutations that have withstood the test of time
and have been beneficial to the species.

Multiple sequence alignment (MSA) of biological se-
quences is a classical approach to understand evolutionary
constraints. It has been said that “one or two homologous
sequences whisper, ..., a full [MSA] shouts out loud” [1]. There
is a plethora of MSA algorithms exists , with origins ranging
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from discrete algorithms [2] to probabilistic models, such as
HMMs [3].

A. Isn’t MSA a Solved Problem?

Although sequence alignment has become a widely de-
ployed tool in bioinformatics, practically every MSA algorithm
(e.g., ClustalW [2], Muscle [4], T-Coffee [5], and more) is
designed to model and expose conservation, which although
being a key evolutionary constraint, does not capture the
richness of how sequences evolve and diverge. As seen in
Fig. 1, two key forms of constraints are conservation and
coupling. Column 4 of Fig. 1 (d) illustrates a conserved
column, i.e., all residues are ‘W.’ Columns 2 and 8 of Fig. 1
(d) illustrate coupling, or compensatory mutations: whenever
column 2 is ‘L,’ column 8 is ‘T’; similarly whenever column
2 is ‘M,’ column 8 is ‘S.’ In a typical alignment (e.g., Fig. 1
(b)), conservations are manifest and couplings are obscured; in
fact, it is often accepted practice for biologists to ‘hand tweak’
such an alignment to incorporate structural information about
sequences and thus obtain a better alignment.

Such tweaking is still somewhat of a black art and requires
significant domain expertise. We were motivated to design an
automated approach to better expose couplings in an MSA;
but in doing so, our approach also improves MSAs according
to traditional measures of assessment.

B. Contributions

• We present Alignment Refinement by Mining Coupled
Residues (ARMiCoRe), a pattern mining approach to the
problem of multiple sequence alignment. Using frequent
episode mining as a foundational basis, we define the notion
of a coupled pattern that elucidates covarying residues. Such
coupled patterns are inferred using a levelwise approach and
subsequently ‘tiled’ using a max-flow algorithm. The tiling
is then used to direct the adjustment of a conservation based
alignment to capture covarying residues.
• ARMiCoRe can be viewed as a novel application of pattern

set discovery [6] where the goal is not just to mine inter-
esting patterns (which is the purview of pattern discovery)
but to select among them to optimize a set-based measure.
ARMiCoRe can be used to tweak alignments from any
existing algorithm, to better expose couplings or correlated
mutations.
• As multiple sequence alignment is an established topic

in bioinformatics, we subject ARMiCoRe to a thorough
experimental evaluation involving 108 protein families. We
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Fig. 1: Realignment of a hypothetical MSA using coupled pattern mining. Panel (b) is input to ARMiCoRe and (d) is the
improved alignment.

identify selective superiorities of ARMiCoRe and demon-
strate situations where it outperforms state-of-the-art MSA
algorithms.

II. RELATED WORK

Multiple sequence alignment has been studied extensively
for the past several decades (see [7], [8] for reviews). A rich set
of features exist to classify MSA algorithms. These approaches
fall broadly into two categories of alignment algorithms: global
alignment vs. local alignment algorithms. Global alignment
algorithms (e.g., ClustalW [2], MUSCLE [4], T-coffee [5],
MAFFT [9], and ProbCons [10]) match sequences over their
full lengths, whereas local alignment algorithms (e.g., DI-
ALIGN [11] , DIALIGN-T [12], and POA [13]) aim to
align only the most similar regions between sequences. Local
alignment is appropriate for sequence families where well-
conserved regions are surrounded by variable regions. A
second way to classify algorithms is in terms of the objective
function (e.g., sum of pairs score, entropy, circular sum) used
to identify the highest scoring alignment [8]. Finally, MSA
algorithms can be classified based on their underlying op-
timization scheme: exact algorithms, progressive algorithms,
and iterative algorithms. An exact algorithm attempts to si-
multaneously align all of the sequences and find an optimal
alignment using an objective function [14]. The underlying
problem has been proved to be NP-complete [15] and, hence,
impractical for large numbers of sequences.

A. Progressive and Iterative Algorithms:
Heuristic approaches to MSA are either progressive or

iterative algorithms. Progressive alignment algorithms (e.g.,
ClustalW [2] and T-Coffee [5] and LAGAN [16]), typi-
cally more appealing, involve building a guide tree based
on sequence similarity and progressively aligning sequences
following the order of the guide tree. Variants on progressive
alignment typically use guide tree reestimation, modifying
objective functions, and/or post-processing [8]. In guide tree
reestimation, algorithms compute new distance matrices based
on the initial MSA produced by progressive alignment, and
the revised distance matrix is used to create a new guide
tree. MAFFT [9], MUSCLE [4] , PRIME [17], PRRP [18],
MULTAN [19], and PROMALS [20] use this approach. Meth-
ods that modify the objective function are referred to as

consistency-based methods, e.g., T-Coffee [5], DIALIGN [11],
ProbCons [10], PCMA [21], and PROMALS [20]. The third
variant involves post-processing, also known as iterative algo-
rithms. In this approach, an alignment is first produced rapidly
and then refined through a series of iterations until no more
improvements can be made [8]. Examples are MUSCLE [4]
and DIALIGN [11].

B. Probabilistic Algorithms

Probabilistic algorithms approach MSA by modeling dif-
ferent aspects: evolutionary models of indels , profile models,
and hybrid models that combine probabilistic models with pro-
gressive alignment techniques. ProbCons [10] is a well known
example that uses maximum expected accuracy scoring to
infer a model and is especially useful for divergent sequences.
A second example [3] uses a pair of HMMs as the scoring
strategy.

C. Constraint-based Algorithms

These approaches (a.k.a. segment-based alignment algo-
rithms) improve alignment quality by searching and incorpo-
rating information about homologs, conserved motifs/domains,
and expert-supplied feedback about local similarity. Examples
are COBALT [22], DIALIGN [11], DbClustal [23], and PRO-
MALS [20].

As rich as the above landscape of MSA algorithms is, none
of the above algorithms use covariation as a property to align
sequences. Coupling is often viewed as a feature that ‘comes
out’ of an alignment as opposed to a criterion or driver for
computing the alignment. A very recent work, published in
2010 [24], is the lone exception which uses mutual information
to detect coupled residues, and uses constraint programming
to realign sequences. As we will show, ARMiCoRe captures
not just coupled residues but the richer class of coupled
patterns that tile the entire set of sequences; this greater
expressiveness leads to improved MSAs, both in terms of
exposing couplings, and in terms of traditional metrics of
assessment (see Section V).

III. FORMULATION

We are given a collection S = {s1, . . . , sn} of n aligned
sequences (or strings), each of length m, over a finite alphabet.
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Fig. 2: Figure illustrating Example 2.

As shown in Fig. 1 (b), the sequences in S are assumed to have
been aligned by a standard MSA method that typically favors
conservation (and thus might contain gaps). Each sequence si,
i = 1, . . . , n, can hence be expressed as si = 〈Ei1, . . . , Eim〉,
Eij ∈ E∪{ϕ}, j = 1, . . . ,m, where E denotes a finite alphabet
and ϕ is the gap symbol. In the case of DNA sequences, E =
{A,C, T,G}, whereas for protein sequences, E comprises the
20 amino acid residues. We can even for instance denote amino
acids by their physico-chemical properties so that the set of
20 amino acids can be reduced to a smaller set of properties.

Definition 1: An indexed pattern α (of size `) is defined by
a pair of `-length sequences, (〈Aα1 , . . . , Aα` 〉, 〈δα1 , . . . , δα` 〉),
where each Aαj ∈ E , δαj ∈ Z+, j = 1, . . . , `, and δαj+1 > δαj ,
j = 1, . . . , (` − 1). We refer to 〈δα1 , . . . , δα` 〉 as the sequence
of positions over which α is defined.
The semantics of an indexed pattern α is essentially that in a
sequence s where α is said to occur, we expect that Aj will
appear at position δj (or very close to it) for every 1 ≤ j ≤ `.

Definition 2: A sequence s = 〈E1, . . . , Em〉 is said to
contain an ε-approximate occurrence of indexed pattern α
if there exists a map h : {1, . . . , `} → {1, . . . ,m}, strictly
increasing, such that ∀j, 1 ≤ j ≤ `, Eh(j) = Aαj and
|h(j)− δαj | ≤ ε.

Example 1: α = (〈A,E,M,C〉, 〈5, 9, 15, 20〉) is an in-
dexed pattern of size ` = 4. An example sequence s that
contains an ε-approximate occurrence of α is shown below
(for ε = 1). Note that occurrences of symbols A, E, M and
C can be found within 1 position of the locations 5, 9, 15 and
20 respectively.

s = 〈
1

K
2

F
3

F
4

K
5

R
6

A︸ ︷︷ ︸
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7

C
8

E
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P
10
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11
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12

A
13
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17

P
18

H
19

E
20

M
21
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δ4=20

22

P
23

E〉

Definition 3: The ε-support of an indexed pattern α over
the collection S of sequences, denoted fε(α), is the number
of sequences in S that contain at least one ε-approximate oc-
currence of α; the corresponding set of ε-supporting sequences
is denoted by Uε(α) ⊆ S, fε(α) = |Uε(α)|.

Definition 4: A coupled pattern, ψ, of size k is defined as
a k-tuple, (α1, . . . , αk), where each αi, i = 1, . . . , k (referred
to as a constituent of ψ) is an indexed pattern over a common
sequence of positions 〈δ1, . . . , δ`〉. The ε-support of ψ over
a collection S of sequences, denoted Fε(ψ), is defined as
the total number of ε-supporting sequences of its constituents
found in S, i.e., Fε(ψ) = | ∪αi∈ψ Uε(αi)|.

Example 2: Consider the collection of sequences, S =
{s1, . . . , s8}, defined in Figure 2. ψ = (α1, α2) is an ex-
ample coupled pattern of size 2, where α1 = (〈H,L, F,K〉,
〈5, 9, 15, 20〉) and α2 = 〈A,E,M,C〉, 〈5, 9, 15, 20〉 are
indexed patterns over the same sequence of positions
〈5, 9, 15, 20〉. The ε-support of ψ over S, for ε = 1, is
F1(ψ) = 8.

Our main intuition here is that when there is enough
evidence for a coupled pattern ψ in a given data set S,
the associated sequence of positions (δ1, . . . , δ`) are coupled
across multiple sequences of S, in the sense that, mutations in
one position are accompanied by corresponding mutations in
the others. In Example 2, mutations of H to A in position 5,
would be accompanied by three other mutations, namely, L to
E in position 9, F to M in position 15 and K to C in position
20. To facilitate the detection and measurement of the evidence
for a coupled pattern, we define the notion of τ -coverage with
respect to the pattern’s ε-supporting sequences.

Definition 5: Let S be a given collection of sequences over
E ∪ {ϕ}. Consider a coupled pattern ψ = (α1, . . . , αk) and
its corresponding sets, Uε(αi), i = 1, . . . , k, of ε-supporting
sequences. The τ -coverage of ψ in S with respect to its ε-
supporting sequences, denoted Γε(ψ, τ), is defined as follows:

Γε(ψ, τ) = max
D1,...,Dk

k∑
i=1

|Di| (1)

where Di ⊂ S, i = 1, . . . , k, such that the following hold:
Di ⊂ Uε(αi), Di ∩ Dj is empty for i 6= j, and |Di| ≥ τ .
Essentially, we aim to compute mutually exclusive sets of ε-
supporting sequences for each of the k constituents of ψ, such
that each mutually exclusive set contains at least τ sequences,
while the total number of distinct sequences in these sets
is maximized. Mutual exclusiveness of sequences within a
coupled pattern is necessary to prevent interactions between
patterns in the realignment step. If a sequence containing two
indexed patterns are given to the realigner, then there will be
two constraints applied for the same position which may lead
to unforeseeable results.

Example 3: For the same example as before, with ε = 1,
we get the following sets of ε-supporting sequences for α1 and
α2: Uε(α1) = {s1, s2, s3, s4, s5} (f1(α1) = 5) and Uε(α2) =
{s5, s6, s7, s8} (f1(α2) = 4). Setting D1 = {s1, s2, s3, s4}
and D2 = {s5, s6, s7, s8} we get the 4-coverage of ψ with
respect to its 1-supporting sequences to be Γ1(ψ, 4) = 8.

There are two main challenges in the detection and use of
coupled patterns for improving multiple sequence alignment.
First, given a data set S of (approximately aligned) sequences,
we need to find coupled patterns which have high τ -coverage
over S . Second, we need to use the high-coverage coupled
patterns discovered to improve the MSA relative to the original
alignment in S.

Problem 1 (Mining Coupled Patterns): Consider a data set
S of m-length sequences over E∪{ϕ} and a fixed sequence of
position indices, 〈δ1, . . . , δ`〉. Given user-defined parameters,
ε, K and τ (all non-negative integers) find a coupled pattern
of size k ≤ K over 〈δ1, . . . , δ`〉 which maximizes τ -coverage
with respect to its ε-supporting sequences in S.
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Algorithm 1 CP-MINER(S,Ψ`, τd, τ, ε,K)

Input: A set of aligned sequences S = {s1, s2, . . . , sn}, a
set of frequent coupled patterns Ψ` of size `, dominant
residue conservation threshold τd, non-dominant residue
coverage threshold τ , column-window parameter ε, max-
imum size of a coupled pattern, K.

Output: A set of frequent coupled patterns Ψ`+1 of size `+1.
1. Ψ`+1 ← φ
2. C`+1 ←CANDIDATE-GEN(S ,Ψ`)
3. Ψ`+1

1 ← {ψ : ψ = {α},∀α ∈ C`+1}
4. for ψ ∈ Ψ`+1

1 do
5. α← {x : x ∈ ψ} B dominant indexed pattern.
6. S+ ← {si : si has an ε-approx. occurence of α}
7. if |S+| ≥ nτd then
8. S− ← S − S+
9. I ← find ε-approximate indexed patterns in S−

10. I ′ ← {α : fε(α) ≥ τ,∀α ∈ I}
11. if I ′ 6= φ and |I ′| < K then
12. ψ ← ψ ∪ I ′
13. if ψ is significant then
14. Ψ`+1 ← Ψ`+1 ∪ ψ
15. return Ψ`+1

The MSA realignment problem can then be stated as fol-
lows.

Problem 2 (MSA Realignment): Given a data set S of m-
length sequences over E ∪ {ϕ} and a set of coupled patterns
Ψ = {ψ} in S each of which has τ -coverage of Γε(ψ, τ) =
γ over ε-supporting sequences, find a realignment S ′ of the
sequences in S where all patterns in Ψ have a τ -coverage of
Γε′(ψ, τ) ≥ γ for ε′ < ε.

In the above formulation, note that we require coupled
patterns discovered in the original (approximate) alignment to
still be manifest in the new alignment, but in a more obvious
manner. Ideally ε′ = 0 (which is the situation for the example
pattern in Fig. 1 (d)) but in practice we aim to obtain ε′ < ε.

IV. ALGORITHMS

In this section, we present ARMiCoRe, a new method for
aligning multiple sequences based on coupling relationships
that may exist between residues found in two or more sequence
positions. The method consists of two main steps. We start
by discovering high-support coupled patterns over various
choices of position sequences (described in Sec. IV-A). Finally,
in Sec. IV-C, we derive an alternative alignment S ′ for S
based on both the original ungapped sequences and the just-
discovered coupled patterns.

A. Discovering Coupled Patterns

The first step of ARMiCoRe is to choose the sequence
positions over which to mine coupled patterns. Then standard
level-wise methods (Apriori [26]) are used to discover coupled
patterns (restricted to the chosen sequence positions) with
sufficient support (cf. Sec. IV-A1). While level-wise searching
for coupled patterns ARMiCoRe looks for patterns that have

Algorithm 2 CANDIDATE-GEN(S,Ψ`)

Input: A set of frequent coupled patterns Ψ` of size `.
Output: A set of indexed patterns C`+1 of size `+ 1.

1. C`+1 ← φ
2. A` ← {α : α = arg maxx∈ψ max(fε(x)),∀ψ ∈ Ψ`}
3. for all αi, αj ∈ A` do
4. if prefix match of length `−1 exists between δαi and

δαj then
5. αk ← Merge(αi, αj)
6. for all αt ∈ Al and αk containing αt do
7. αsubk ← αt B store subpatterns
8. C`+1 ← C`+1 ∪ αk
9. return C`+1

at most K constituents ignoring τ -coverage (cf. Sec. IV-A2).
Then ARMiCoRe applies a statistical significance test to filter
out uninteresting coupled patterns (cf. Sec. IV-A3). This gives
us the pattern set, Ψl = {ψ1, . . . , ψ|Ψ|}, of `-size indexed
patterns, each with support at least τ , each has at most K
constituents, and each defined over a common sequence of
positions, 〈δ1, . . . , δ`〉. Each subset of indexed patterns in ψ
can thus be a potential candidate for a τ -coverage coupled
pattern. Finally, ARMiCoRe applies a max-flow approach to
get the τ -coverage of each ψ (cf. Sec. IV-A4).

A lower-bound τ on the sizes |Di| of the blocks correspond-
ing to each constituent of a coupled pattern (see Definition 5)
automatically enforces an upper-bound

⌊
n
τ

⌋
on the size, k, the

coupled pattern. At first, it might appear as if the user only
needs to prescribe τ to detect interesting patterns (since an
upper-bound on k is implied). However, we have observed
that in the couplings that are already known in biological data
sets, the number of constituents are typically far fewer than⌊
n
τ

⌋
. The notion of a coupling between two residue positions

in biological datasets is based on the occurrences of a few
amino acid combinations at these residue positions. If many
amino acid combinations occur at two residue positions, the
coupling between the two residue positions becomes weak.
That is why protein families exhibiting couplings show a few
amino acid combinations between two residue positions. If
we set τ very low, then K increases a lot, and it reduces
the fidelity of the couplings at these positions. Hence, in our
framework, the user must specify both an upper-bound K for k
as well as a lower-bound τ on the block-sizes |Di| of coupled
patterns.

We now describe the steps in ARMiCoRe for finding a
subset of indexed patterns that implies a coupled pattern, of
size at most K, and which maximizes the τ -coverage over
its ε-supporting sequences. The main hardness in the problem
arises from having to maximize coverage with a τ constraint
while restricting the number of constituent patterns to no more
than K. Hence, we decouple the two problems and show that
the individual problems can be solved efficiently. Specifically,
we show that by ignoring the τ constraint, the problem of
maximizing coverage is a sub-modular function-maximization
problem with cardinality constraint. We propose Algorithm 1,2
for generating all possible coupled patterns of size at most K.
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Fig. 3: (a) Clustering of amino acids proposed in [25]. (b) This figure describes window constraints. While looking for similar
residue within a window the algorithm does not go beyond a conserved residue in a (semi)conserved column so that the
(semi)conserved column is not distorted in the realignment process.

On the other hand, after selecting coupled patterns of size at
most K, maximizing coverage with the τ constraint reduces
to a max-flow problem.

1) Level-wise Coupled Pattern Mining: Our basic idea here
is to organize the search for coupled patterns around the
(semi) conserved columns of the current alignment. Level 1
patterns are comprised of individual columns, level 2 patterns
are comprised of pairs of level 1 patterns, and so on.

For choosing a (semi) conserved column, we employ a
dominant residue conservation threshold τd (see Line 7 of
Algorithm 1). We use class-based conservation so that amino
acid residues that have similar physico-chemical properties
are considered conserved. Class-based conservation can be
estimated using the Taylor diagram [27] or by k-means cluster-
ing of substitution matrices such as Blosum62 [25]. We have
explored both approaches and found the latter to work better
(with a setting of 7 non-overlapping clusters)(see Fig. 3a).

Amino acids in and around the semi-conserved columns (to
within a window length of ε) are organized into positive and
negative sets of sequences describing the dominant combina-
tion and other, non-dominant, ones (see Fig. 4 (left)). While
increasing the size of both the dominant and nondominant
patterns for a column by searching for similar residues within
a window for that column, the algorithm restricts itself to not
go beyond a (semi)conserved column if it encounters any such
column within the window. For example, in Fig. 3b the column
5 is semiconserved and the residue ‘H’ is the dominant residue
in this column as it is the most frequent residue. The residue
‘H’ at position 7 of sequence 2 is a candidate for extending the
dominant pattern at column position 5. As the column position
6 is almost fully conserved for residue ‘A’, the inclusion of
‘H’ at position 7 of sequence 2 for the dominant pattern at
column position 5 may destroy the conservation of column 6
in the realignment process. So the algorithm does not include
‘H’ at position 7 of sequence 2 as a dominant residue for
column 5. On the other hand, the algorithm will include the
residue ‘H’ at position 6 of the sequence 6 as a dominant
residue for column 5 since this inclusion does not destroy the
conservation of column 6. As we construct level-2 and greater
patterns, we take care to ensure that ε does not yield window

lengths that cross another semi-conserved column.

2) High ε-support using at most K Constituents: We
now present the approach taken by ARMiCoRe to solve the
problem of maximizing coverage by enforcing only the upper-
bound K (user-defined) on the number of constituents of ψ
while ignoring the τ constraint. We will test for τ -coverage
later as a post-processing step (see Sec. IV-A4). Note that at
τ = 0, τ -coverage is same as ε-support, and this can be shown
to be both monotonic and sub-modular with respect to its
constituents. That is, if A and B are two subsets of ψ, such that
A ⊂ B, then it can be shown that: Γε(A ∪ α, 0) ≥ Γε(A, 0),
and, Γε(A ∪ α, 0) − Γε(A, 0) ≥ Γε(B ∪ α, 0) − Γε(B, 0).
Consequently, we can use a greedy algorithm which guarantees
a (1− 1

e )-approximate solution [28]. In other words, we would
find a subset of ψ whose ε-support (or 0-coverage) is within
a factor of (1− 1

e ) of the optimal subset.
3) Significance Testing of Coupled Patterns: For level-2

patterns and greater, we perform a 2-fold significance test, the
first focusing on the dominant pattern and the second focusing
on the non-dominant patterns. For a dominant pattern of size l,
we compute the p-value for each dominant subpattern of size
l− 1 within the dominant pattern and then take the maximum
as a p-value. For computing p-value we choose Poisson
distribution if the number of sequences in the alignment is
less than 100; otherwise, we choose binomial distribution. Let
p1 be the probability for the dominant residue in the subpattern
of size l − 1 and p2 be the probability for the dominant
residue in the column that is present in the original pattern
but not in the subpattern. We use np as a parameter for the
Poisson distribution and n, p as parameters for the binomial
distribution where n is the number number of sequences
in the alignment and p = p1 ∗ p2. For the non-dominant
patterns, we conduct a standard enrichment analysis using the
hypergeometric distribution to determine if the symbols in the
non-dominant pattern are over-represented. The parameters for
the hypergeometric distribution are the number of sequences
in the alignment, the size of the non-dominant pattern, and the
size of the union of all non-dominant patterns.

4) Checking τ -coverage using Max-Flow: Once we have
generated ψ with high ε-support we proceed to check if a
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Dominant pattern

Non-dominant pattern 1

Non-dominant pattern 2

Non-dominant pattern 3

+ve Seq

-ve Seq

Block 1

Block 2

Block 3

Fig. 4: Generating a coupled pattern set from all possible patterns. In the left figure a coupled pattern can be created from
a dominant dominant pattern and three candidate non-dominant patterns that may overlap with each other. In right figure a
possible construction of a coupled pattern consisting of one dominant pattern and two non-dominant pattern is shown.

Fig. 5: Network G used in the max-flow step. Each αi is an
indexed pattern and each sj is a sequence. The nodes v∗ and
v] denote the source and the sink respectively. Each edge from
αi to sj has a flow of 1 if sj contains αi. The minimum flow
from v∗ to an αi is τ since αi has a support of at least τ .

non-zero τ -coverage is feasible (Recall that the coverage will
either be zero or the full ε-support corresponding to the chosen
subset of ψ). This problem reduces to a standard max-flow
problem for which efficient (poly-time) algorithms exist. We
now present the reduction of this problem to max-flow (see
Fig. 5).

Let G = (V,E) be a network with v∗, v] ∈ V denoting the
source and sink of G respectively. In addition to v∗ and v],
there is a unique node in V corresponding to each indexed
pattern αi ∈ ψ and also to each sequence sj ∈ S , i.e., V =
{v∗, v]} ∪ ψ ∪ S . Three kinds of edges are in set E:

1) e∗i ∈ E, representing an edge from the source node v∗
to the pattern node, αi ∈ V. We will have e∗i ∈ E,
∀αi ∈ ψ

2) ej] ∈ E, representing an edge from the sequence node
sj ∈ V to the sink node v]. We will have ej] ∈ E,
∀sj ∈ S

3) eij ∈ E, representing an edge from pattern node αi ∈ V
to the sequence node sj ∈ S , whenever the algorithm
assigns sj to Di (see Definition 5). We will have eij ∈
E, ∀αi ∈ ψ, sj ∈ S such that sj is assigned to the block

Di that corresponds to the ith pattern αi ∈ ψ.
For any edge e ∈ E, let LB(e) and UB(e) denote, respectively,
the lower and upper bounds on the capacity of edge e. Given a
coupled pattern ψ, the computation of its τ -coverage, Γε(ψ, τ),
reduces to the computation of max-flow for the network G
under the following capacity constraints:

1) LB(e∗i) = τ , UB(e∗i) =∞, ∀αi ∈ ψ
2) LB(ej]) = 0, UB(ej]) = 1, ∀sj ∈ S
3) LB(eij) = 0, UB(eij) = 1, ∀αi ∈ ψ, sj ∈ S
We can now use any max-flow algorithm, such as [29], [30]

to obtain the max-flow in G subject to the stated capacity
constraints. The flow returned will give us Γε(ψ, τ).

B. Complexity Analysis

The runtime for finding all possible coupled patterns de-
pends on the number of sequences (n), the alignment length
(m), the column-window threshold (ε), and the maximum size
of the indexed pattern (`). Let p be the number of semi-
conserved columns found in level 1 indexed pattern mining.
Then the running time for generating all possible coupled
patterns is O(nm + l(p3 + lp2nε)). Since p ∼ O(m), the
running time is O(l(m3 + lm2nε)). Finding a τ -coverage
coupled pattern depends on the number of nodes (O(n+K))
and the number of edges (q) in the max-flow network for which
the running time is O((n+K)q log((n+K)2/q)) [30].

C. Updating the Alignment

There are various ways to adjust the given alignment. One
strategy that suggests itself is to modify the substitution matrix
but this is not a good idea since this is a global approach
and does not lend itself to the local shifting of columns
as suggested by coupled pattern sets. We instead adopt a
constraint-based alignment strategy, based on COBALT [22],
which can flexibly incorporate domain knowledge. Constraints
in COBALT are specified in terms of two segments from a pair
of sequences that should be aligned with each other in the final
result. To convert coupled patterns into constraints, we can
adopt various strategies. One approach is to, for each pair of
sequences, identify a pair of column positions that should be
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realigned based on the coupled pattern set. We then map these
two positions in the alignment to the corresponding positions
in the original (ungapped) sequences. (These two positions
in terms of the original sequences thus constitute a segment
pair of size one that should be realigned.) Taking all pairs
of sequences in this manner would generate a huge number
of constraints. We can reduce the number of constraints by
considering consecutive pair of sequences. Another approach
is to take a subset of sequences, say S1, for whom the
residues match over a column in the coupled pattern. We
then take each of the sequences for whom residues do not
match over that column in the coupled pattern, and create
constraints by pairing the sequence with each of the sequences
from S1. COBALT guarantees a maximal consistent subset of
these constraints to be occurred in the final alignment. The
runtime for an alignment using COBALT is data-centric [22].
DIALIGN [31] is another possible algorithm that can be used
to realign sequences. It takes user-defined anchor points but
might yield non-aligned residues in the alignment. Due to our
desire for global alignments we focus on he COBALT strategy
but ARMiCoRe can be easily incorporated into DIALIGN as
well.

V. EXPERIMENTAL RESULTS

In this section, we assess ARMiCoRe on benchmark
datasets. Due to space limitations, we provide only represen-
tative results illustrating selective superiorities of ARMiCoRe.
Our goals are to answer the following questions:

1) How is the discovery of coupled patterns influenced by
the dominant residue conservation threshold (τd), block
coverage threshold τ , and column window parameter ε?
(see Section V-C)

2) How does ARMiCoRe fare against classical algorithms
on benchmark datasets? Here we choose ClustalW and
COBALT, two representative MSA algorithms. (see Sec-
tion V-D)

3) Can ARMiCoRe extract coupled patterns that capture
evolutionary covariation in protein families? (see Sec-
tion V-E, Section V-F, and Section V-G)

4) Can domain expertise be used to drive the computation
of improved alignments? (see Section V-H)

5) How does the experimental run time of ARMiCoRe fare
against ClustalW and COBALT (see Section V-I)

A. Datasets

We use both simulated and benchmark datasets to evaluate
our method.

1) Simulated Datasets: To evaluate our proposed method,
we designed a simulation model to generate MSAs with
embedded coupled patterns. We generated 27 synthetic protein
families varying various parameters (see Table I). Subse-
quently, the multiple sequence alignments were stripped of
the gap (‘-’) symbols to obtain contiguous residue sequences.
We used a standard multiple sequence alignment algorithm (in
this case ClustalW) to align these sequences and used this new
alignment to mine for coupled patterns.

The simulator generates an MSA by first randomly labeling
residue positions as either a conserved column, randomly

TABLE I: Description of simulated datasets. Each of the
dataset from A0 to F2 has 100 sequences and 100 residues.

Dataset Parameter Value Parameter Description
A0–A2 {0.2, 0.4, 0.6} Fraction of columns involved in cou-

plings
B0–B3 {2, 3, 4, 5} Number of columns in each embedded

coupled pattern
C0–C3 {2, 3, 4, 5} Number of partitions or blocks in each

embedded coupled pattern
D0–D2 {0.2, 0.4, 0.6} Fraction of sequences covered by the

dominant or combination in each cou-
pled pattern

E0–E2 {0.4, 0.6, 0.8} Fraction of sequences covered by the
conserved symbol in a given conserved
column

F0 –F2 {0.05, 0.1, 0.2} Fraction of deletions (i.e. blanks ’-’) in
a column

G0–G2 {50, 100, 150} Number of columns in a simulated
alignment

H0–H2 {50, 100, 150} Number of sequences in a simulated
alignment

distributed column, or part of a coupled pattern. Each con-
served column is then assigned a dominant symbols randomly
drawn from 20 amino acid residues and each row of the
MSA for that residue position gets the dominant symbol with
high probability or one of the remaining amino acid symbols
(including a gap) with remaining probability. A residue po-
sition labeled as random receives amino acid symbols with
equal probability. Next, couplings are embedded over the set
of columns allocated for this purpose. Each coupled pattern
embedded into the MSA consists of two or more sets of
symbols where all sets have the same number of distinct
residue symbols. Each set of symbols in a coupled pattern
is randomly assigned a sequence in the MSA and the symbols
of the set are placed in the respective columns of the MSA
assigned to that coupling. The number of columns in a coupled
pattern, the number of sets or partitions and the total number of
coupled patterns to embed are input by the user. There is also
a provision in the simulator to set probabilities of assignment
to each of the symbol sets or partitions in a coupling. For
example in our simulation, we designate one of the residue
sets as the dominant combination which is used in a larger
fraction of sequences in the MSA.

2) Benchmark Datasets: We evaluate our method us-
ing three well-known benchmark datasets: BaliBase3 [32],
OXBench [33], and SABRE [34]. The BaliBase benchmark
is created for evaluating both pairwise and MSA algorithms.
We use only those alignments from BaliBase that have at
least 25 sequences, which yields 48 alignments from three
reference sets: RV12, RV20, and RV30. (We chose a threshold
of 25 sequences in order to maintain the fidelity of couplings
within a sequence family.) For reference set RV20 and RV30
we chose additional threshold of 400 residues for sequence
length to reduce the number of alignments in the datasets.
The alignments in the reference set RV12 are composed of
sequences that are equidistant and have 20-40% identity. The
reference set RV20 contains alignments that are composed of
highly divergent orphan sequences. The reference set RV30
contains alignments that are composed of sequence groups
each of whom have less than 25% identity. OXBench has 3
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reference sets and the master set contains 673 alignments that
have sequences ranges from 2 to 122. From the master set,
we chose a subset that have at least 25 sequences (yields
20 alignments). SABRE contains 423 alignments that have
sequences ranges from 3 to 25. We choose a subset of 6
sequences that have at least 20 sequences.

Other than these benchmark datasets, we use families of
proteins couplings: GPCR, WW, and PDZ. G-protein coupled
receptors are a key demonstrator of allosteric communication
and serve to transduce extracellular stimuli into intracellular
signals [35]. The entire GPCR family is subdivided into
16 subfamilies (alignments). We use 6 alignments from this
set, each of whom involve at least 30 sequences: Amine,
Rhodopsin, Peptide, Olfactory, Nucleotide, and Prostanoid.
The PDZ family has only one alignment and the WW family
has three subfamilies: native, CC, and IC.

A summary of the alignments that are used in the experi-
ments are shown in Table II.

B. Scoring Criteria

We use four different scoring criteria to assess the quality
of a test alignment with respect to a reference alignment. The
scores are as follows:

1) Q-Score [4]: This score, a.k.a. sum-of-pairs score, can
be defined as follows. Let T be the number of aligned
residue pairs in the reference alignment and L be the
number of aligned residues pairs in the reference align-
ment that are also correctly aligned in the test alignment.
Then, Q-score = L

T .
2) Total Column Score (TC) [32]: This score is measured

by the percent of the number of columns in the reference
alignment that are identical with a test alignment. Let m
be the number of columns in a reference alignment and
m′ be the number of columns that are identical in both
of the reference and test alignments. Then, TC-Score =
m′

m .
3) Modeler Score [36]: This score is the same as the Q-

score but with a different denominator. The score is
the percent of pairs of residues in the test alignment
that are present in the reference alignment. Let R be
the number of aligned residue pairs in a test alignment
and L be the number of aligned residue pairs in the
reference alignment that are also correctly aligned in
the test alignment. Then, Modeler score = L

R .
4) Cline Shift Score [37]: While the above three scores

evaluate only correctly aligned residues or residue pairs,
the Shift score also penalizes misalignments. See [37]
for more details.

5) Coupled Column Score (C-Score): None of the above
four scores measure how many of the coupled columns
(columns that are participating in the couplings) of a
reference alignment are retained in the test alignment.
We propose a new score to measure the fraction of
retained coupled columns based on probabilistic graph-
ical models (PGMs). PGMs can encode couplings of an
alignment [38] where each node denotes a column of
the alignment and each edge denotes a coupling between

TABLE III: Comparison of ARMiCoRe with ClustalW and
Cobalt on synthetic dataset.

Score ClustalW Cobalt ARMiCoRe

Q-score 0.516 0.265 0.551
TC Score 0.0 0.009 0.017
Shift score 0.655 0.355 0.663
Modeler Score 0.512 0.474 0.592

two columns. To calculate the C-Score, we create a PGM
for a reference alignment, and then count the number
of columns (V ) that are participating in couplings. For
these V coupled columns in the reference alignment,
we count how many (V ′) of them are retained in the
test alignment. A column in the reference alignment is
considered to be retained in the test alignment if the
number of mismatched residues are fewer than 10% of
the residues in the particular column in the reference
alignment. These two counts give us C-Score = V ′

V .
For all the above measures, higher values are better. The five

measures yield a maximum score of 1. The first four measures
yield a score of 1 when both the reference and test alignments
are identical. The first three measures yield a score of 0 when
the alignments are a complete mismatch. For the Shift score,
the minimum possible score is −0.2 by default.

C. Effects of Important Thresholds

The parameters that have the most significant impact on
the number of coupled patterns discovered are the dominant
residue conservation threshold (τd ), block coverage threshold
(τ ), and column-window size threshold (ε). Based on the
27 synthetic alignments, we produced precision-recall curves
using various values for τd, τ and ε. In synthetic alignments
couplings are embedded. We run our methods on these datasets
to discover coupled patterns based on various parameters and
see how many of the discovered coupled patterns are matched
(true positive) and how many are redundant (false positive).
The precision-recall curve for τd ∈ {0.2, 0.4, 0.6, 0.8} which
are illustrated in Fig. 6. We vary the block pattern threshold
parameter τ in the set {0.4, 0.6, 0.8, 0.10, 0.12} and generate
precision-recall plots (Fig. not shown). Similarly, we produce
precision-recall curves for ε ∈ {1, 2, 3, 4, 5} (Fig. not shown).
As all the plots reveal, our method maintain consistently high
levels of recall and precision across a wide range of thresholds.

D. Comparison with ClustalW and COBALT

We evaluate ARMiCoRe on all the datasets described ear-
lier: synthetic, benchmark and alignments with couplings. For
each of these alignments, we remove gaps and realign with
ClustalW in default settings (using the PAM matrix). We
then run ARMiCoRe on each of the ClustalW alignments
to generate coupled patterns and use the coupled patterns to
generate constraints, which are used by COBALT to create
an improved alignment. We then compare our scores with
ClustalW and with COBALT (without any constraints input).

As shown in Table III ARMiCoRe excels in all four
traditional measures of MSA quality for synthetic datasets.
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TABLE II: Summary of datasets used in the study.

Dataset Num of
Alignments

Min Number
of Sequences

Max Number
of Sequences

Min Number
of Residues

Max Number
of Residues

Synthetic 27 50 150 50 150
BaliBase(RV12) 4 27 34 268 786
BaliBase(RV20) 27 30 91 63 400
BaliBase(RV30) 17 34 140 69 358
OXBench 20 26 122 49 174
SABRE 6 25 25 525 525
CC 1 43 43 39 39
PDZ 1 80 80 80 80
Nucleotide 1 41 41 348 348
Olfactory 1 41 41 348 348
Prostanoid 1 33 33 348 348
Amine 1 196 196 348 348
Peptide 1 333 333 348 348
Rhodopsin 1 143 143 348 348
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Fig. 6: Precision-recall plots for the dominant residue conservation threshold τd [0.2,0.4,0.6,0.8].

TABLE IV: Comparison of ARMiCoRe with Cobalt on RV12 reference set of the Balibase [32] benchmark.

Dataset Q-Score TC Score Shift Score Modeler Score
Cobalt ARMiCoRe Cobalt ARMiCoRe Cobalt ARMiCoRe Cobalt ARMiCoRe

BB12035 0.75 0.74 0.20 0.25 0.81 0.80 0.84 0.78
BB12043 0.68 0.66 0.10 0.10 0.77 0.72 0.78 0.72
BBS12035 0.78 0.81 0.30 0.38 0.84 0.86 0.86 0.83
BBS12043 0.75 0.80 0.24 0.33 0.82 0.85 0.84 0.82
Avg 0.74 0.75 0.21 0.26 0.81 0.81 0.83 0.79

TABLE V: Comparison of ARMiCoRe against ClustalW over all BaliBase datasets (using only core regions). The average
scores are shown here. RV20* is curated from RV20 by removing orphan sequences.

Dataset Q-Score TC Score Shift Score Modeler Score
ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe

RV12 0.84 0.89 0.51 0.61 0.73 0.81 0.69 0.79
RV20 0.84 0.79 0.24 0.15 0.83 0.78 0.81 0.78
RV20* 0.88 0.90 0.54 0.57 0.88 0.88 0.85 0.87
RV30 0.68 0.58 0.23 0.13 0.65 0.58 0.63 0.63
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TABLE VI: Comparison of ARMiCoRe against ClustalW and
COBALT over OXBench alignments.

Dataset Score ClustalW COBALT ARMiCoRe

12s107

Q-Score 0.99 0.99 0.98
TC Score 0.80 0.93 0.86
Shift Score 0.93 0.93 0.92
Modeler Score 0.87 0.87 0.87

12s108

Q-Score 0.97 0.99 0.99
TC Score 0.85 0.97 0.94
Shift Score 0.88 0.89 0.89
Modeler Score 0.79 0.81 0.81

12t109

Q-Score 0.96 0.99 0.96
TC Score 0.76 0.91 0.8
Shift Score 0.87 0.89 0.87
Modeler Score 0.78 0.80 0.80

12t113

Q-Score 0.95 0.99 0.91
TC Score 0.82 0.92 0.56
Shift Score 0.78 0.80 0.76
Modeler Score 0.65 0.68 0.67

12t116

Q-Score 0.94 0.98 0.87
TC Score 0.53 0.65 0.33
Shift Score 0.76 0.79 0.73
Modeler Score 0.62 0.64 0.65

...
...

...
...

...

588t28

Q-Score 0.99 0.98 0.99
TC Score 0.97 0.94 0.97
Shift Score 0.89 0.88 0.89
Modeler Score 0.80 0.80 0.79

22s38

Q-Score 0.95 0.95 0.95
TC Score 0.82 0.81 0.81
Shift Score 0.81 0.81 0.81
Modeler Score 0.69 0.69 0.69

22t50

Q-Score 0.96 0.95 0.95
TC Score 0.86 0.83 0.85
Shift Score 0.78 0.77 0.78
Modeler Score 0.64 0.64 0.63

588

Q-Score 0.98 0.99 0.98
TC Score 0.83 0.83 0.8
Shift Score 0.88 0.89 0.89
Modeler Score 0.80 0.80 0.80

12

Q-Score 0.86 0.88 0.87
TC Score 0.00 0.00 0.1
Shift Score 0.50 0.51 0.53
Modeler Score 0.34 0.35 0.36

Table IV depicts the superior performance of ARMiCoRe
over COBALT on three of the four measures in the RV12
reference set of the BaliBase benchmark. Performance of
ARMiCoRe against ClustalW on all reference sets of the
BaliBase benchmark is given in Table V. ARMiCoRe shows
superior performance over ClustalW on all of the four mea-
sures in the RV12 reference set. The sequence identity in
this benchmark is about 20–40%. Note that the performance
of ARMiCoRe on RV20 and RV30 is worse than that of
ClustalW in all four measures. This is because RV20 and RV30
pool together sequences with poor similarity and thus coupled
patterns are not a driver for obtaining good alignments. The
effect of an orphan sequence on the similarity structure of
an alignment is illustrated in Fig. 7. To test this hypothesis,
we removed the orphan sequences from RV20 (RV20*) and
as Table V shows, the performance of ARMiCoRe is better
along three of the four measures. Table VI describes the
results of ARMiCoRe for the OXBench benchmark, once
again revealing a mixed performance on a dataset with high
sequence diversity. Finally, Table VII depicts the superior per-

TABLE VII: Comparison of ARMiCoRe against ClustalW and
COBALT over SABRE alignments.

Dataset Score ClustalW COBALT ARMiCoRe

sup 038

Q-Score 0.82 0.83 0.88
TC Score 0 0 0
Shift Score 0.17 0.18 0.19
Modeler Score 0.10 0.10 0.12

sup 092

Q-Score 0.20 0.28 0.30
TC Score 0 0 0
Shift Score 0.05 0.09 0.07
Modeler Score 0.03 0.05 0.05

sup 108

Q-Score 0.89 0.92 0.93
TC Score 0 0.35 0.35
Shift Score 0.46 0.48 0.48
Modeler Score 0.31 0.32 0.32

sup 126

Q-Score 0.51 0.76 0.59
TC Score 0 0.14 0
Shift Score 0.19 0.30 0.23
Modeler Score 0.12 0.18 0.14

sup 167

Q-Score 0.61 0.69 0.50
TC Score 0 0 0
Shift Score 0.27 0.33 0.23
Modeler Score 0.17 0.21 0.14

sup 215

Q-Score 0.11 0.47 0.18
TC Score 0 0 0
Shift Score 0.0 0.03 0.01
Modeler Score 0.0 0.01 0.01

TABLE VIII: Comparison of ARMiCoRe against ClustalW
and COBALT over CC subfamily of WW protein family, PDZ
family, and Nucleotide subfamily of GPCR family.

Dataset Score ClustalW COBALT ARMiCoRe

CC

Q-Score 0.89 0.85 0.96
TC Score 0.51 0.35 0.51
Shift Score 0.93 0.91 0.97
Modeler Score 0.90 0.91 0.97
C-Score 0.71 0.88 1.00

PDZ

Q-Score 0.85 0.82 0.87
TC Score 0 0.1 0
Shift Score 0.89 0.87 0.9
Modeler Score 0.85 0.89 0.88
C-Score 0.67 0.81 0.81

Nucleotide

Q-Score 0.74 0.68 0.79
TC Score 0.46 0.34 0.45
Shift Score 0.79 0.74 0.83
Modeler Score 0.74 0.77 0.80
C-Score 0.52 0.50 0.63

formance of ARMiCoRe over ClustalW in 5 alignments out of
6 alignments in SABRE dataset. In Tables VI and VII, we see
that sometimes ARMiCoRe performs relatively poor compare
to COBALT. The reason might be the sequence similarity
structure of the alignments or poor choice of gap penalties
for realignment. Note that these benchmark datasets are not
designed for evaluating couplings’ discovery algorithms in
protein families.

E. Modeling Correlated Mutations

We describe the effect of ARMiCoRe on three families
that are known to exhibit correlated mutations. We focus on
the CC subfamily of the WW domain, the PDZ family, and
the Nucleotide subfamily of the GPCR family. Based on C-
Score, we evaluate the Performance of ARMiCoRe against
ClustalW and COBALT. As shown in Table VIII, ARMiCoRe
is consistently better on at least three measures.
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Fig. 7: Pairwise sequence similarity analysis of an alignment ‘BB20006’ from RV20 dataset that contains an orphan sequence.
We use SCA [39] for this analysis. Fig. 7a has a peak for similarity score around 0.12 that indicates that the orphan is distant
from the other sequences. Fig. 7b shows a reasonably narrow distribution without the orphan sequence with a mean pairwise
similarity between sequences of about 27% and a range of 20% to 35%, which suggests that most sequences are about equally
dissimilar from other.
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Fig. 9: Interfaces for mining coupled patterns. (a) Loading of An input alignment. (b) Selection of coupled patterns with
colored plot of corresponding residues.
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Fig. 8: An overview of user interaction with ARMiCoRe.

F. Evaluation using Global Statistical Model for Residue
Couplings

Couplings are often employed to predict 3D structure of
proteins from sequences. A global statistical method for
residue couplings for predicting 3D structure of proteins is
proposed by Marks et al. [40]. The proposed method first
calculates pairwise coupling scores and then uses high scoring
pairs to find a 3D structure. The way of calculating couplings

scores is global which is different from the method given by
Thomas et al. [38]. We use their method to calculate pairwise
couplings scores for reference, ClustalW, and ARMiCoRe
alignments. We then identify how many of the coupled pairs
(true positive) for the reference alignment are also retained in
ClustalW and ARMiCoRe alignments for various thresholds.
In Table IX and Table XI we see that the alignments for CC
and Nucleotide subfamily given by ARMiCoRe is much better
than that of ClustalW. But the alignment for PDZ family given
by ARMiCoRe is not better than that of ClustalW in terms
of couplings calculated in global settings (see Table X). The
scores produced by ARMiCoRe are low for both PDZ and
Nucleotide families. To get an insight we perform sequence
similarity analysis using SCA tool [39]. We have seen wider
distributions of sequence similarities with multiple peaks for
PDZ and Nucleotide families which indicates that sequences
are not equally dissimilar from each other and the presence of
subclusters of sequences within the family.
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TABLE IX: Comparison of ARMiCoRe against ClustalW over the CC subfamily of WW family using the global residue
coupling model defined in [40]. Here ‘TP’ is used for true positive, ‘P’ is used for precision, and ‘R’ is used for recall.

Score
Threshold

Number of
couplings in
Ref MSA

Number of
couplings in
ClustalW MSA

TP P R F1
Score

Num of couplings
in ARMiCoRe
MSA

TP P R F1
Score

0.40 8 5 1 0.20 0.13 0.15 5 3 0.60 0.38 0.46
0.35 27 19 13 0.68 0.48 0.57 29 21 0.72 0.78 0.75
0.30 64 51 36 0.71 0.56 0.63 61 53 0.87 0.83 0.85

TABLE X: Comparison of ARMiCoRe against ClustalW over the PDZ family using the global residue coupling model defined
in [40]. Here ‘TP’ is used for true positive, ‘P’ is used for precision, and ‘R’ is used for recall.

Score
Threshold

Number of
couplings in
Ref MSA

Number of
couplings in
ClustalW MSA

TP P R F1
Score

Num of couplings
in ARMiCoRe
MSA

TP P R F1
Score

0.20 15 13 4 0.27 0.31 0.29 17 3 0.20 0.18 0.19
0.15 64 71 21 0.33 0.30 0.31 82 13 0.20 0.16 0.18
0.10 396 405 190 0.48 0.47 0.47 474 145 0.37 0.31 0.33

TABLE XI: Comparison of ARMiCoRe against ClustalW over the Nucleotide subfamily of GPCR family using the global
residue coupling model defined in [40]. Here ‘TP’ is used for true positive, ‘P’ is used for precision, and ‘R’ is used for recall.

Score
Threshold

Number of
couplings in
Ref MSA

Number of
couplings in
ClustalW MSA

TP P R F1
Score

Num of couplings
in ARMiCoRe
MSA

TP P R F1
Score

0.15 7 7 0 0.00 0.00 - 9 1 0.11 0.14 0.13
0.12 14 14 1 0.07 0.07 0.07 24 3 0.13 0.21 0.16
0.10 21 23 2 0.09 0.10 0.09 37 5 0.14 0.24 0.17
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Fig. 10: Pairwise sequence similarity analysis using SCA [39]. Histograms for reference, ClustalW, and ARMiCoRe are drawn
for the same number of bins. This figure shows that the ARMiCoRe alignment retains most of the sequence similarity structure
of the reference alignment.

TABLE XII: Comparison of ARMiCoRe against ClustalW over the CC subfamily of WW family using the statistical coupling
analysis defined in [41]. Here ‘TP’ is used for true positive, ’P’ is used for precision, and ’R’ is used for recall.

Cut-off
Threshold

Sector Size
in Ref MSA

Sector Size in
ClustalW MSA TP P R F1

Score
Sector Size in
ARMiCoRe MSA TP P R F1

Score

0.85 7 5 5 1.00 0.71 0.83 7 6 0.86 0.86 0.86
0.80 11 7 7 1.00 0.64 0.78 9 9 1.00 0.82 0.90
0.75 12 8 8 1.00 0.67 0.80 12 11 0.92 0.92 0.92

G. Evaluation using Statistical Coupling Analysis

Lockless and Ranganathan [41] proposed statistical cou-
pling analysis (SCA) as a method for analyzing coevolution
in protein families represented by MSAs. The SCA tool [39]
performs sequence similarity analysis to get an idea of the
number of subfamilies in the MSA. We perform similarity
analysis for the reference, ClustalW, and ARMiCoRe align-
ments of CC family (see Fig. 10). There are two subfamilies
for the CC family: folded and non-folded. Fig. 10 shows that

for both reference and ARMiCoRe alignments there are two
peaks in the histogram which is an indication that there are two
subfamilies, whereas the ClustalW alignment indicates that the
similarity structure for two subfamilies are distorted.

SCA also allows us to identify protein sectors, which are
quasi-independent groups of correlated amino acids [42]. We
identify protein sectors of reference, ClustalW, and ARMi-
CoRe alignments for various cut-off thresholds (0.85, 0.80,
and 0.75). We then calculate precision, recall, and F1-score
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TABLE XIII: Comparison of ARMiCoRe with ClustalW and
COBALT using avergare runtime per alignment. Times are
given in seconds.

Dataset ClustalW COBALT ARMiCoRe

BaliBase 3.2 1.74 5.23
OXBench 2.76 2.18 4.77
SABRE 0.80 3.41 3.53

for ClustalW and ARMiCoRe alignments with respect to the
reference alignment. For all of the cut-off thresholds one
protein sector is identified. Table XII shows that much of
protein sector in the reference alignment is retained in the
ARMiCoRe alignment.

H. User Interaction in Choosing Couplings

We have developed GUIs for ARMiCoRe that allow users to
interactively choose patterns from a set of significant coupled
patterns and use them to realign sequences. This enables
biologists to bring specific domain knowledge in deciding
which coupled pattern sets should be exposed as couplings
in the new alignment. We have integrated ARMiCoRe with
the JalView [43] framework, which has a rich set of sequence
analysis tools. A typical workflow with ARMiCoRe is illus-
trated in Fig. 8. A user begins an experiment by loading an
initial alignment (see Fig. 9(a)). He or she can evaluate the
input alignment by measuring various scores with respect to a
reference alignment. Based on the evaluation, he or she may
decide to improve the alignment using the coupled pattern
mining module. The coupled pattern mining module facilitates
tuning various parameters prior to the pattern mining and gives
a set of significant coupled patterns as output. From the pool
of coupled patterns, a domain expert can choose meaningful
patterns (see Fig. 9(b)) and use them in the realignment
module. The realignment module gives a new alignment,
which can be evaluated in the evaluation module. A user may
repeat the realignment step by choosing different patterns or
the mining step by tuning the parameters.

I. Experimental Runtime

We compare ARMiCoRe against ClustalW and COBALT
based on experimental runtime on three benchmark datasets:
BaliBase, OXBench, and SABRE (see Table XIII). As ex-
pected ARMiCoRe takes more time than ClustalW and
COBALT but the runtime of ARMiCoRe is reasonable.

VI. DISCUSSION

Evolutionary constraints on genes and proteins to main-
tain structure and function are revealed as conservation and
coupling in an MSA. The advent of cheap, high-throughput
sequencing promises to provide a wealth of sequence data
enabling such applications, but at the same time requires
methods such as ARMiCoRe to improve the alignments and
inferred constraints upon which they are based. The alignments
obtained by ARMiCoRe can be leveraged to design or classify
novel proteins that are stably folded and functional [44], [45],
[41], as well as to predict three-dimensional structures from
sequence alone [40], [46]. Our work also demonstrates a

successful application of pattern set mining where the goal
is not just to find patterns but to cover the set of sequences
with discovered patterns such that an objective measure is
optimized. The ideas developed here can be generalized to
other pattern set mining problems in areas like neuroscience,
sustainability, and systems biology.
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