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Protein Design by Sampling an Undirected
Graphical Model of Residue Constraints

John Thomas, Naren Ramakrishnan, and Chris Bailey-Kellogg

Abstract— This paper develops an approach for designing
protein variants by sampling sequences that satisfy residue
constraints encoded in an undirected probabilistic graphical
model. Due to evolutionary pressures on proteins to main-
tain structure and function, the sequence record of a protein
family contains valuable information regarding position-specific
residue conservation and coupling (or covariation) constraints.
Representing these constraints with a graphical model provides
two key benefits for protein design: a probabilistic semantics
enabling evaluation of possible sequences for consistency with
the constraints, and an explicit factorization of residue de-
pendence and independence supporting efficient exploration of
the constrained sequence space. We leverage these benefits in
developing two complementary MCMC algorithms for protein
design: constrained shuffling mixes wild-type sequences position-
wise and evaluates graphical model likelihood, while component
sampling directly generates sequences by sampling clique values
and propagating to other cliques. We apply our methods to design
WW domains. We demonstrate that likelihood under a model of
wild-type WWs is highly predictive of foldedness of new WWs.
We then show both theoretical and rapid empirical convergence
of our algorithms in generating high-likelihood, diverse new
sequences. We further show that these sequences capture the
original sequence constraints, yielding a model as predictive of
foldedness as the original one.

Index Terms— Protein design, residue coupling, graphical mod-
els, Markov chain Monte Carlo (MCMC)

I. INTRODUCTION

Protein engineering seeks to produce amino acid sequences
with desired characteristics, such as specified structure [2],
[6] or catalytic activity [9], [14]. This is a difficult problem
due to the complex relationship between the choices of amino
acid types and their impact on structure and function. Conse-
quently, a number of different general approaches have been
pursued. Homology-based approaches design new proteins to
satisfy patterns observed in existing proteins, such as sequence
motifs [11] or polar-nonpolar patterning [5]. Structure-based
approaches employ biophysical models to predict the energies
of possible amino acid substitutions, and develop sophisticated
optimization techniques to identify low-energy sequences [2],
[6], [9]. It is also possible to incorporate experimental mea-
surements of the effects of amino acid choices [8], [12], or to
work with entire sequential fragments rather than single amino
acids [14], [18], [22]–[24].
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Interactions between residues have always been at the heart
of structure-based design approaches, but most homology-
based design work has focused on conservation (common
amino acid types at particular residue positions), thus treating
different residue positions as independent. However, Ran-
ganathan and colleagues recently demonstrated convincingly
the importance of residue coupling (common pairs of amino
acid types at particular pairs of positions, also known as
correlated mutations or co-evolving residues). In designing
new, stably folded [19] and functional [17] WW domains, they
showed that accounting for residue coupling, in addition to
conservation, was to some extent both necessary and sufficient
for viability. Their approach ensures that the new sequences
have the same conservation statistics as wild-type ones, and
optimizes for reproducing the observed coupling statistics,
according to their ‘statistical coupling analysis’ measure [10].

There are some potential pitfalls one faces in generating
new sequences consistent with observed conservation and
coupling. Simply reproducing the overall conservation and
coupling statistics (as in the Ranganathan approach) may not
be sufficient to capture the characteristics of the underlying
protein family. In the multiple sequence alignment in Fig. 1,
observe that if we permute column 6 so that methionine is
replaced by threonine and vice versa, the permutation retains
the aggregate conservation and coupling statistics but the
residue combination of serine at position 3 and threonine at 6
has not been observed in the extant sequences and might be
violating some underlying constraint. (This might explain why
some of the designed sequences from [19] did not adopt the
native fold.) Thus it is desirable to ensure that the designed
sequences directly satisfy the underlying sequence constraints,
rather than indirectly display the same amount of conservation
and coupling.

Another possible issue involves “double counting” the statis-
tics. For example, in Fig. 1, positions 1, 7, and 8 are each
pairwise coupled. We can design residues at these positions to
satisfy all three pairwise constraints but it might be the case
that by satisfying just 1–8 and 7–8, we will also (mostly) sat-
isfy 1–7. Thus it might not be desirable to directly reproduce
all the observed pairwise statistics. By recognizing that the 1–7
coupling is mediated through residue 8, we can better explore
constrained sequence space, since the indirect 1–7 constraint
isn’t given undue influence by contributing both directly and
indirectly.

Contributions: This paper develops algorithms for protein
design using probabilistic graphical models to properly rep-
resent and exploit residue constraints. We formulate protein
design as a two-step process: learning an undirected graphical
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Fig. 1. Given an MSA (left), conservation and coupling constraints are inferred and summarized into a graphical model (middle) which captures conditional
independence relationships through its edges. Residues 3 and 6 are coupled—when residue 3 is small and polar (S), residue 6 is large and hydrophobic (M).
Likewise, when residue 3 is large and hydrophobic (F), residue 6 is small and polar (T). Through its clique potentials (not shown here), the model captures
probability distributions for subsets of residues. Sampling from the model (right) then yields new sequences that obey the underlying constraints.

model that captures the essential constraints underlying a
protein family, and using the model generatively to produce
new sequences. The first step, covered in our prior publication
in TCBB [20], provides a probabilistic basis for evaluating
the quality of new sequences with respect to satisfaction of
protein family constraints. While predicting protein folding
and activity from sequence alone remains beyond the state
of the art, by satisfying the learned constraints, we seek to
improve the “hit rate” of new sequences that are folded and
functional (as Ranganathan demonstrated). With this in mind,
protein design entails sampling high-likelihood sequences
from such a graphical model. While such sampling is difficult
in general (due to the presence of cycles and their possible
non-chordality), we develop two new sampling techniques
targeted to protein design, and show that they are good both
in theory and in practice. We prove theoretical convergence
of the algorithms, and, in application to design of new WW
domains, we demonstrate that they converge quickly while
generating new sequences that meet the modeled constraints
and are reflective of (but different from) the original sequences.

II. METHODS

A. Graphical Models of Residue Coupling

Our sampling methods take as input an undirected graphical
model, also known as a Markov random field or a log-linear
model, encoding the residue constraints that should be satisfied
in the designed sequences. We focus here on constraints
(conservation and coupling) inferred from the sequence record,
and we call the resulting graphical model a graphical model
of residue coupling (GMRC) [20]. It remains interesting future
work to integrate such a model with undirected graphical
models that capture energetics [4], as well as experimentally-
identified constraints (e.g., from mutagenesis and double-
mutant cycles). In fact, the proofs below for theoretical con-

vergence of our sampling methods do not depend on how the
graphical model was constructed.

Undirected graphical models have the form G = (V, E),
where vertices in V are random variables, one for each residue
position, and the edges in E encode independence relation-
ships between the random variables—a vertex is conditionally
independent of all other vertices, given its immediate neigh-
bors. (Throughout, random variables are represented using
uppercase letters and their values using lowercase letters;
sets of variables appear in bold.) G defines a probability
distribution function (pdf) p(V = r) on residue types r for V,
computed by combining scores (“potentials”) for the cliques
in the graph. We use p(r) as shorthand for p(V = r).

p(r) =
1
Z

∏
c∈C(G)

φc(rc) (1)

Here, C(G) is the set of all cliques (typically maximal cliques)
in G, Z is a suitable normalizing factor to ensure that p is
a pdf, and the φc are the potential functions. The potential
functions are not necessarily probabilities and are best thought
of as compatibility functions over the combinatorial space of
residue values. For the special case that G is a chordal graph
(also known as triangulated, recursively simplicial, or decom-
posable), the structure of the potential functions satisfies:∏

c∈C(G)

φc(rc) =
∏

c pc(rc)∏
a∈ cliqueadj(G) pa(ra)

(2)

In this case, the potentials are given by the product of
marginals defined over the cliques divided by the product of
marginals defined over the clique adjacencies a, which could
be nodes, edges, or general subgraphs [7]. Thus each potential
is either a conditional or a joint marginal distribution.

Given a multiple sequence alignment (MSA) S for a pro-
tein family, we use the following estimator for pc(rc), the
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probability of a set of amino acid types rc for a clique:

pc(rc) =
fc(rc) + ρ|S|

21|c|

|S|(1 + ρ)
(3)

Here fc(rc) is the frequency, in S, of the set of amino
acid types, |S| is the total number of sequences, |c| is the
cardinality of the clique, 21 arises from the 20 amino acid
symbols plus a ‘gap’ symbol, and ρ is a parameter that
weights the importance of missing data. Notice that when
ρ = 0, the estimator is completely determined by the data
in the MSA. Larger values of ρ accommodate unseen data,
enable factorization according to the Hammersley-Clifford
theorem [7], and support greater exploration of constrained
sequence space when sampling.

Techniques to learn GMRCs are covered elsewhere [20].
Briefly, these techniques employ conditional mutual infor-
mation to assess coupling and a greedy algorithm to factor
statistically-significant couplings into a graphical model.

B. Sampling a Graphical Model of Residue Coupling
Sampling from a directed graphical model, i.e., a Bayesian

network, is straightforward; a topological sort of the vertices
suggests the order in which values for the random variables
must be generated [1]. Similarly, for undirected graphical
models with chordal graphs (graphs where the maximal cliques
can be arranged to form a junction-tree), efficient sampling
procedures exist [16]. Sampling from an arbitrary undirected
graphical model is more difficult, however, due to the presence
of cycles and non-chordality (and thus no tree ordering).

Here, we present two MCMC (Markov Chain Monte
Carlo) methods for sampling GMRCs. To show that the sam-
pling methods systematically explore the constrained sequence
space, we show that the underlying Markov chains have
stationary distributions, i.e., they are irreducible, aperiodic,
and positive recurrent [3]. In the Markov chain for the first
method, the states correspond to MSAs, whereas in the second
they correspond to individual sequences. A Markov chain is
irreducible if it is possible to get from any valid state (a
state with nonzero likelihood) to any other valid state. A
chain is aperiodic if it does not systematically cycle; to prove
aperiodicity, it is sufficient to show that every state can self
loop (since any periodic cycle can be broken by adding such
a self loop). A chain is positive recurrent if each valid state
has a finite expected return time.

More formally, let Xk denote the state of the chain at time k.
Irreducibility requires that the probability of being in state j
at time n given that we are in state i at time 0 is positive for
some n:

p(Xn = j|X0 = i) > 0 (4)

The period k of the chain is given by:

k = gcd{n : p(Xn = i|X0 = i) > 0} (5)

where gcd is the greatest common divisor. k is 1 when the
chain is aperiodic. Finally, the chain is positive recurrent if all
states have an expected finite expected return time. Let Ti be
a random variable denoting the return time to state i:

Ti = min{n : Xn = i|X0 = i} (6)

Algorithm 1 ConstrainedShuffling(G, S)
Input: undirected graphical model G defined over MSA S

(involving m sequences of n residues)
Output: MSA S’ of sampled sequences

1: S’ ← column-wise permutation of S
2: v ← averages∈S′ p(s)
3: while not converged do
4: c← random column ∈ [1, n]
5: s, t← random rows ∈ [1,m] s.t. s 6= t
6: swap S ′[s, c] and S ′[t, c]
7: v′ ← averages∈S′ p(s)
8: if v′ < v then
9: undo the swap with probability 1− ev′−v

10: end if
11: end while

To be positive recurrent we need E[Ti] to be finite.
1) Constrained Shuffling: Our first algorithm generates a

small set of high-likelihood new sequences. It is a variant of
the procedure used by Ranganathan and colleagues [19] but
goes beyond simply recreating pairwise statistics and instead
seeks to generate a set of high-likelihood sequences, each
satisfying the constraints. Algorithm 1 gives the pseudocode.
It begins by independently shuffling the columns of an MSA.
A ‘move’ then entails swapping amino acids in two random
sequences at a single random column. Notice that a move
preserves the same amino acid composition as the original
MSA. A move is accepted if the average log likelihood of
the new sequences is improved. Otherwise, it is accepted with
probability proportional to the change in score. The procedure
continues until convergence; e.g., a user-specified number of
iterations is reached or the distribution of new sequences is
sufficiently good.

We now analyze the Markov chain induced by constrained
shuffling, in order to show that in some sense it “properly”
samples the distribution. A state in the chain corresponds to an
entire MSA. Intuitively, the Markov chain is irreducible since
we can get from any permutation of the MSA to any other
with the correct sequence of pairwise swaps, each of which
has a nonzero probability of being accepted. This nonzero
probability is also sufficient to ensure a finite expected return
time for each state, so the Markov chain is positive recurrent.
The Markov chain is aperiodic since each state can self loop
either by rejecting a move or by swapping two of the same
amino acids. Let us now more formally characterize these
properties.

Theorem 1: Algorithm 1 (ConstrainedShuffling) induces a
stationary distribution.

Proof: Each state in constrained shuffling corresponds
to a shuffled MSA. Let m be the number of rows and n be
the number of columns in the MSA. Also, let d be the largest
difference between the average log likelihood of two states
separated by one move. This term is important because a move
in constrained shuffling that reduces the average log likelihood
scores will still be accepted with probability dependent on
the change in average log likelihood score. Using d, the
probability of accepting a bad move is lower bounded by
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e−d. To show that each state is irreducible, we show that the
probability of moving from any state i to state j in time mn
is greater than 0 (see Eq. 4). One way to move from state i
to state j in time mn is to permute each column successively
until it is equal to columns in state j. If we do this, then the
probability of being in state j at time mn after starting at state
i at time 0 is

p(Xmn = j|X0 = i) ≥
n∏
c=1

m∏
r=1

1
n

1
m2
· e−d

=
e−dmn

nmnm2mn
> 0 (7)

so every state is irreducible. To show every state j is aperiodic,
we can simply show that every state can self-loop (see Eq. 5).
For ease of exposition, we assume that the there is at least
one column in the input MSA that has two of the same amino
acids—almost certainly true of any protein family. However,
even if this is not the case, each state is still aperiodic (the
proof involves showing that every state can return to itself in
both 2 and 3 steps). If there is a column with two of the same
amino acids, then one way for a state j to self-loop is to select
that column and then swap two of the same amino acids. The
probability of this happening is

p(X1 = j|X0 = j) ≥ 1
n
· 1
m2

> 0 (8)

so every state is aperiodic. Finally, we show that every state j
is positive recurrent by showing that its expected return time is
finite (see Eq. 6). The expected return time, E[Tj ] for state j
is

E[Tj ] =
∞∑
k=1

k · p(X1, . . . , Xk−1 6= j) · p(Xk = j)

≤
∞∑
k=1

k · p(X1, . . . , Xk−1 6= j)

Recall that no matter which state constrained shuffling is in at
time k, there is a nonzero probability that it will reach state j
at time mn (Eq. 7). Therefore,

E[Tj ] ≤
∞∑
k=1

k · p(X1, . . . , Xk−1 6= j)

≤
mn∑
k=1

k +
∞∑

k=mn+1

k · p(X1, . . . , Xk−1 6= j)

≤ mn(mn+ 1)
2

+
∞∑

k=mn+1

k ·
[
1− e−dmn

nmnm2mn

]k−mn
Since both m and n are finite, the first part of the sum is finite.
To show that the infinite summation is finite, we employ the
ratio test

lim
k→∞

(k + 1) ·
[
1− e−dmn

nmnm2mn

]k+1−mn

k ·
[
1− e−dmn

nmnm2mn

]k−mn
=
[
1− e−dmn

nmnm2mn

]
· lim
k→∞

k + 1
k

< 1 (9)

so the sum is finite and thus all states are positive recurrent.

2) Component Sampling: Constrained shuffling designs a
fixed number of sequences from a given, also fixed, pool
of amino acids. For protein design, we might desire to
generate all the sequences that meet the constraints encoded
by the model, using possibly new amino acid combinations
not encountered in the given pool. To achieve this goal, we
present our second algorithm: component sampling. At an
abstract level, component sampling is a Gibbs sampler [3]
with moves defined over cliques instead of vertices. At each
step in the algorithm, a move is generated from the current
state (a sequence) to a new state. The central question is
how to generate a move. A move that simply changes the
value for a single vertex can get stuck in a local minimum or,
worse, generate sequences that don’t conform to the model.
To avoid this problem, we must make moves at the level of
cliques. Unfortunately, changing the value of a single clique
can cause the clique values to be invalid for neighboring
cliques (cliques that contain one of the changed vertices).
The neighboring cliques must thus be given new values,
conditioned on the original clique value. These changes can
cause invalid values further downstream, so those cliques must
also be sampled, conditioned on all the values so far. This
process of fixing downstream clique values continues until
the entire connected component from the original clique has
been sampled. We named this approach component sampling
to reflect this propagation process.

This procedure is similar to the algorithms used to sample
undirected graphical models with chordal graphs [7]. However,
with chordal graphs, the order of the components is determined
since the clique relationships form a tree. To sample these
distributions, simply sample the cliques in the tree order. For
arbitrary graphs, however, the cliques can form cycles and thus
selections made early in a component may later be found to be
incompatible with ones chosen later. It is possible to make our
GMRCs chordal by “triangulating”, i.e., adding edges to non-
chordal cycles in order to make them chordal. The traditional
reason for such triangulation is to improve efficiency of infer-
ence by helping determine a suitable elimination ordering of
nodes. However, this approach introduces artificial constraints
into the model, which is bad both for learning the model and
for sampling from it. In particular, by seeking to satisfy the
extra constraints, the new sequences would be able to sample
only a subset of the sequence space that is valid under the
original model.

To avoid the problems discussed above, we randomly
determine the sampling order for each component. This is
equivalent to choosing a random tree for each sample. The
resulting sample can still be unsatisfiable, but since the tree is
determined randomly, systematic unsatisfiable situations don’t
arise and therefore the sampled distribution isn’t expected to
deviate significantly from the true underlying distribution.

Algorithm 2 provides the details of our component sampling
algorithm (observe that it takes as input any graphical model
of residue constraints, not just our GMRC). A single move
consists of sampling clique values in a connected component,
propagating to neighboring cliques breadth-first (in random
order from each clique). The process continues until conver-
gence, e.g., enough sequences are generated, or their distri-
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Algorithm 2 ComponentSampling(G)
Input: undirected graphical model G
Output: set of sequences sampled from G

1: S ← ∅
2: while not converged do
3: c← random clique from G, with equal probability
4: Sc ← random AA types rc, with probability p(rc)
5: Q← queue initialized as random permutation of cliques

neighboring c in G
6: while Q is not empty do
7: D ← dequeue from Q
8: A← vertices already assigned in D
9: if A 6= D then

10: SD−A ← random AA types rD−A with probability
pD−A(rD−A|rA)

11: enqueue onto Q a random permutation of cliques
neighboring D in G

12: end if
13: end while
14: output S
15: end while

bution is sufficiently good. Notice that the values for each
component are selected according to their likelihood under the
model. Since the components are conditionally independent of
each other, the likelihood of generating a whole sequence is
the product of the likelihood of each of its components.

In order to focus sampling on only the most representative
sequences, we assign zero probability to unobserved clique
values (using ρ = 0 in Eq. 3). Note that this does limit the
amino acid choices we have during design. This limitation
restricts the algorithm to generate only sequences with amino
acids we have seen in the MSA before. Unlike constrained
shuffling, this restriction does not leave us with a fixed pool
of amino acids to consider—choosing an amino acid for one
sequence does not preclude it being used again in another.
However, using zero probabilities for some clique values does
mean that the sampling procedure can get stuck, with no value
remaining for a clique that is consistent with the values chosen
so far. In this case, the move is rejected. To avoid being
systematically stuck, the order in which the cliques are visited
is randomized at each move. It still is possible to get stuck,
but the dead ends are not systematic and therefore are unlikely
to cause large deviations from the true distribution even when
the graph is not chordal.

A state in the Component Sampling Markov chain is an in-
dividual sequence. Intuitively, the Markov chain is irreducible
since we can get from any sequence to any valid one by
individually replacing each component, and there are nonzero
probabilities of choosing the components in the correct order
and selecting the correct values for each component (the new
sequence is valid so it has a positive likelihood). This nonzero
probability also guarantees that every state will have a finite
expected return time, so the Markov chain is positive recurrent.
The Markov chain is aperiodic since a state can self loop by
“replacing” a component with its original values.

Theorem 2: Algorithm 2 (ComponentSampling) induces a

stationary distribution.
Proof: Each state in component sampling corresponds to

a single sequence with positive likelihood. That is, a state j
represents a sequence sj where p(sj) > 0. Let C be the set
of all components in the graphical model G, t be the total
number of components, and Cl be the lth component. The
number of cliques in a component (or set of components) is
denoted | · |. Thus, |C| corresponds to the number of cliques
in G. To show that each state is irreducible we show that the
probability of moving from any state i to state j in some time n
is greater than 0 (see Eq. 4). One way to move from state i
to state j is by successively selecting each component Cl for
replacement and then choosing the values of sj(Cl) (amino
acid values corresponding to those in sequence sj) to replace
the current component. If we do this for each component, then
the probability of being in state j at time t after starting at
state i at time 0 is

p(Xt = j|X0 = i) =
t∏
l=1

|Cl|
|C|
· pCl

(sj(Cl))

=
t∏
l=1

|Cl|
|C|
·
t∏
l=1

pCl
(sj(Cl))

= p(sj)
t∏
l=1

|Cl|
|C|

> 0 (10)

so every state is irreducible. To show that every state j is
aperiodic we can simply show that every state can self-loop
(see Eq. 5). One way for a state j to self-loop is to select
the first component for replacement and choose sj(C1) as the
value to be replaced. If we do this, then the probability of
being is state j at time 1 given that we were in state j at
time 0 is

p(X1 = j|X0 = j) ≥ |C1|
|C|
· pC1(sj(C1)) > 0 (11)

so every state is aperiodic. Finally, we show that every state j
is positive recurrent by showing that its expected return time is
finite (see Eq. 6). The expected return time, E[Tj ] for state j
is

E[Tj ] =
∞∑
k=1

k · p(X1, . . . , Xk−1 6= j) · p(Xk = j)

≤
∞∑
k=1

k · p(X1, . . . , Xk−1 6= j)

Recall that no matter which state component sampling is in at
time k, there is a nonzero probability that it will reach state j
at time k + t (Eq. 10). Therefore,

E[Tj ] ≤
∞∑
k=1

k · p(X1, . . . , Xk−1 6= j)

≤
t∑

k=1

k +
∞∑

k=t+1

k · p(X1, . . . , Xk−1 6= j)

≤ t(t+ 1)
2

+
∞∑

k=t+1

k ·

[
1− p(sj)

t∏
l=1

|Cl|
|C|

]k−t
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Clearly, the first part is finite since t is finite. We show that
the infinite summation is finite by employing the ratio test

lim
k→∞

(k + 1) ·
[
1− p(sj)

∏t
l=1

|Cl|
|C|

]k+1−t

k ·
[
1− p(sj)

∏t
l=1

|Cl|
|C|

]k−t
=

[
1− p(sj)

t∏
l=1

|Cl|
|C|

]
· lim
k→∞

k + 1
k

< 1 (12)

so the sum is finite and thus all states are positive recurrent.

III. RESULTS

To demonstrate the power of our sampling methods we
consider a family of WW domains—small proteins that assist
in protein-protein interactions by binding to proline-containing
targets. These proteins were the object of previous protein
design studies by Ranganathan and colleagues [17], [19], who
provided the following:

1) An input dataset of 42 wild-type WW domains multiply
aligned to 39 residues;

2) A set IC of 43 new sequences designed by treating each
residue position independently, sampling from the amino
acid type distribution observed in the input WW dataset;
and

3) A set CC of 43 new sequences designed by accounting
for coupling in residue positions, by stochastically op-
timizing the sequences to match the coupling statistics
from the input WW dataset.

Of the 86 new sequences, only 12—all from CC—were found
to adopt the native fold [19].

Although our sampling methods will converge for any
undirected graphical model of residue constraints, here we
use models learned with our GMRC approach [20]. We first
show that the learned graphical model captures significant
constraints in the wild-type WW domains sequences and is
effective in distinguishing folded from unfolded sequences.
We then show that our sampling methods efficiently generate a
wide range of high-likelihood putative WW domain sequences
which may serve as hypotheses for further biological study.

A. Learning a Graphical Model

Using our learning algorithm [20] on the 42 wild-type
WW domains generates a GMRC containing 35 statistically
significant edges. The model consists of 33 cliques: seven 1-
cliques (independent residues), twenty-one 2-cliques, and five
3-cliques. Fig. 2 illustrates some of the cliques, such as the
3-clique 1–11–13, and its neighbor 2-cliques 1–5 and 13–
20. The model encodes many transitive coupling relationships,
including a 23–37 coupling mediated by 35. Some residues,
such as 14, remain independent of all other residues. Note
that the model is not chordal since the cycle 1–5–20–13 has
no chords. The model also contains four other non-chordal
cycles (not shown).

A key advantage of graphical models is that they provide
a mechanism for evaluating new sequences, by likelihood

20 13

5 1 1123 35 37

252714

Fig. 2. Parts of the graphical model of residue coupling learned from a
dataset of WW domains with 11 vertices and 11 edges. The complete model
is provided in Tab. I in the Appendix, and contains 28 more vertices and 24
more edges.
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Fig. 3. ROC curve for classification of IC and CC sequences according to log
likelihood under our graphical model. The false positive rate is the percentage
of sequences predicted to be of native fold that are not; the true positive rate
is the percentage of sequences predicted to be of native fold that are.

(Eq. 1). Since our model is not chordal, however, the likelihood
equation in Eq. 1 does not strictly hold. We still use Eq. 1
in the following as an approximation to the true likelihood,
to relatively assess sequences against each other and, in this
manner, broadly explore the “good” regions of constrained
sequence space.

To show that our likelihood approximation is useful, we
examined, over the IC and CC sequences, the enrichment
of folded sequences among the high-likelihood ones. It is
important to note that predicting foldedness is not the goal
of this paper; in fact, to do so perfectly would require solving
the protein folding problem. However, since high-likelihood
sequences should better satisfy the inferred constraints, we
expect an improved “hit rate” of folded and functional ones
among them. To formally quantify this result, we used the
log likelihood of each sequence as a classifier, and generated
an ROC curve (Fig. 3) by varying the threshold to separate
folded from not. The power of this classifier (area under the
ROC curve) is .80 (recall that power of 1 indicates perfect
discrimination while power of .5 corresponds to random
guessing). The fact that we can do this at all is especially
impressive for this dataset since the sequences we are testing
were designed to purposely “look like” the wild-type WW
domains and therefore have many of the constraints on which
our model is based.

These results suggest that our likelihood estimate is indeed
a reasonable objective function. We now study how well the
sampling methods are able to generate new, high-likelihood
sequences.
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Fig. 4. Progress of our sampling algorithms. (Top) Constrained shuffling.
Convergence of the average likelihood score of sequences generated by
constrained shuffling. Blue dotted line: final value (−34.69 with standard
deviation of 6.46); red dashed line: wild-type sequences (−32.65 with
standard deviation of 4.93). (Bottom) Component sampling. Evolution of
the total L2 distance (over all cliques) between the graphical model and the
sequences generated by component sampling.

B. Sampling a Graphical Model

1) Convergence: We applied our sampling methods to
sample new high-likelihood putative WW domain sequences
from our model. For the constrained shuffling method (Al-
gorithm 1), we generated a set of 42 new high-likelihood
sequences with amino acid types shuffled column-wise from
the input dataset. We ran our algorithm for 100,000 iterations.
Each iteration corresponds to a set of 42 putative WW domain
sequences. As our goal is to generate a set of high-scoring
sequences, we evaluated the convergence of the algorithm in
terms of the average log likelihood of the generated sequences
at each iteration. Fig. 4(top) plots the convergence. Although
the average log likelihood starts at only −86.52, after 100,000
iterations, it reaches −34.69 with a standard deviation of 6.46,
shown by the dotted line. This value is very close to the
average log likelihood of the wild-type sequences, −32.65
(with standard deviation 4.93), shown by the dashed line. After
100,000 iterations, constrained shuffling is able to generate a
new set of WW sequences with log likelihoods similar to those
of the wild-type WW domains.

For the component sampling method (Algorithm 2), after
a burn-in series of 88 moves (the number of moves it took

to sample each residue at least once) we generated a set
of 10,000 new putative WW sequences. The algorithm got
“stuck” (unable to make a move) 289 times; in these cases,
the move was rejected and sampling continued by selecting
another move. If sampling worked properly, we would expect
the distributions of amino acid types for sets of residues
in the generated sequences to match the distributions in the
model. In contrast to component sampling, our goal here
is to sample from the underlying distribution, and thus we
measure convergence in terms of the L2-distances between
clique distributions (pc(rc), Eq. 3) in the original sequences
vs. the generated sequences. Fig. 5 empirically illustrates that
three different residue sets from Fig. 2 have very similar
distributions to the model distributions. For the 2-clique 35–
37, the L2-distance is .0125, while for the 3-clique 1–11–
13, it is .0235. Even for the transitive relationship between
residues 23 and 37, component sampling still generates the
correct distribution; the L2-distance is only .0371. To measure
how quickly the sampling method converges to the model
distribution, we monitored at each iteration the sum of the L2
distances for all cliques. Fig. 4(bottom) shows that the total
L2 distance converges very quickly. After only 100 samples,
the total L2-distance is 1.04; it improves to .37 after 1000
samples and .15 (approximately .004 per clique) after 10,000
samples.

In both cases, our Matlab implementation of the sampling
algorithms required only minutes to converge.

2) Designed sequence likelihoods: For constrained shuf-
fling, we found that the average log likelihood score converges
to an average very close to those of the wild-type sequences.
To further inspect the distribution of likelihood scores gener-
ated using constrained shuffling, we selected the MSA with the
highest average log likelihood score (in this case the 100,000th
MSA generated). These sequences provide a range of log
likelihoods under the model, as shown in Fig. 6(a). These
designed sequences have excellent scores: a mean of −34.69
(with standard deviation of 6.46), best of −23.68 and worst
of −48.18. Similarly, component sampling generates high-
likelihood sequences, as shown in Fig. 6(c). The designed
sequences have excellent scores: a mean of −33.48 with a
standard deviation of 5.02.

Even the least likely sequence generated by our methods
(log likelihood −52.19, generated by component sampling) is
more likely than all but one of the 86 IC and CC sequences
(mean log likelihood −84.14 and standard deviation 15.12).
These designed sequences with high likelihoods are predicted
to be more likely to fold than their lower-scoring counterparts.

3) Designed sequence novelty: To ensure that our sampling
methods aren’t simply recreating the wild-type WW domains,
we measured the sequence identity between the designed
sequences and their closest natural neighbors. The sequence
identity between two sequences is calculated as the percent of
residue positions where they have the same amino acid. Thus,
a sequence is 100% identical to itself. Fig. 6(b) and (d) show
histograms of the designed sequence identities for constrained
shuffling and component sampling, respectively. The designed
sequences are quite different from the wild-type WW domains.
The mean sequence identity for sequences generated using
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Fig. 5. Probability distribution over sets of amino acid types according to
the graphical model (blue ‘o’s) and the sequences generated by component
sampling (red ‘×’s) for the 2-clique 35–37 (top), the 3-clique 1–11–13
(middle), and the transitive relationship between residues 23 and 37 (bottom).

constrained shuffling to their nearest wild-type neighbor is
60.56% with a standard deviation of 7.70%. For component
sampling, the identity is increased slightly with an average
identity of 65.14% with standard deviation 8.06%. This degree
of identity is similar to that of the IC and CC sequences, which
have a mean of 60.41% and a standard deviation of 6.21%.

The sequence generated by our methods with the highest
sequence identity to a wild-type WW domain has a sequence
identity of 89.74% (generated by component sampling). If our
methods had completely explored the space, we would have
generated at least one of the wild-type sequences, indicating
that there is still more sequence space unexplored. This is
not surprising however, since the space of protein sequences
(even those meeting all the constraints) is very large. To see
this, we note that the most unique sequence (also generated

by component sampling) has an identity of only 41.03% to
its nearest wild-type WW sequence; this indicates that even
sequences that meet the constraints can be very ‘far’ from
those previously seen.

In addition to measuring the identity of designed sequences
to their nearest wild-type sequences, we also measure their
average identity to the wild-type sequences. For the sequences
designed by constrained shuffling, the mean average identity to
the wild-type sequences is 44.95% with a standard deviation
of 4.92%. For the sequences designed by component sam-
pling, the mean average identity to the wild-type sequences is
45.18% with a standard deviation of 5.29%. These levels of
identity are again similar to those that we see in the IC and
CC sequences, which have a mean of 43.75% and standard
deviation of 4.09%.

Finally, by measuring the identity between designed se-
quences, we can see how diverse they are and how much
of the constrained sequence space we have covered. For
sequences designed by constrained shuffling, the average pair-
wise identity is 43.60% with a standard deviation of 9.69%.
For sequences designed by component sampling, the average
pairwise identity is slightly higher, 45.47% with a standard
deviation of 11.17%. These measures are again similar to
the level we see in the IC and CC sequences which have an
average pairwise identity of 43.05% with a standard deviation
of 8.10%. Thus we maintain the same level of novelty as pre-
viously designed sequences while increasing their likelihood
under the model.

C. Closing the Loop

If the generated sequences were in fact representative of
the wild-type sequences, we would expect them to generate
a similar model. We call this “closing the loop”—learning
a model of natural sequences and using it to generate new
sequences, and then learning a model of the new sequences
and using it to evaluate the original sequences. We chose to
test our ability to close the loop with the sequences generated
by constrained shuffling rather than by component sampling,
as constrained shuffling has the same degrees of freedom
(choices for amino acids) as the original MSA. Thus we
generate exactly as many amino acids as we had before, but
in different combinations, and we can evaluate how well the
modeling and sampling methods have represented and satisfied
the underlying sequence constraints.

We closed the loop by learning a model of the 42 sequences
from the constrained shuffling MSA with the lowest average
log likelihood score. The new model consists of 30 edges, of
which 25 are the same as those in the original model. The
5 different edges in the new model were actually encoded
as transitive relationships in the original model. The new
model is also able to discriminate folded from unfolded IC
and CC sequences, as shown in Fig. 7 (compare to Fig. 3).
The power of the new classifier (area under the ROC curve) is
.80, the same power as the original model. Thus the designed
sequences capture the original sequence constraints sufficiently
well that the graphical model learned from them is equally
predictive of foldedness as the original model. While not
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Fig. 6. The log likelihood distribution (a, c), and sequence identity to the nearest wild-type WW domains (b, d), for the 42 and 10,000 sequences generated
by constrained shuffling and component sampling, respectively.
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Fig. 7. The ROC curve of classification of IC and CC sequences according to
log likelihood under the graphical model learned from the sequences designed
by constrained shuffling.

providing any additional evidence for the validity of the model
beyond the initial tests of Fig. 3, this closing-the-loop test does
demonstrate that the sampling algorithm itself is correct in the
sense that it is consistent with the learning algorithm.

IV. DISCUSSION

We have formulated protein design in terms of first learning
constraints on sequences in a protein family to capture “what
it means” to be a member of that family, and then sampling
sequence space as constrained by what we have learned
about the family. The sampling methods presented converge
regardless of the graphical model used—even when the graph
is non-chordal. Here, we use one particular graphical model
which we learn from the sequence record of a protein family.
This graphical model factorizes conservation and coupling and
we demonstrated that the estimated likelihood of a sequence
under the learned model is predictive of foldedness even
among sequences previously designed to “look like” wild-type
sequences.

Our two sampling methods generate sequences that are of
high likelihood under a model, but yet new and different.
We showed the power of both approaches by learning and
sampling graphical models for a family of WW domains. The
sampling methods are complementary—component sampling
explores broadly the high-likelihood portion of sequence space
and can generate a large number of sequences, while con-
strained shuffling generates a fixed number of high-likelihood
sequences that adhere to a provided diversity constraint. An-
other way to characterize these methods is that constrained
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shuffling samples the MSA under constraint by the graphical
model (via likelihoods), while component sampling directly
samples the graphical model. Given a large enough MSA and
a consistent learning algorithm, these should yield identical
results. In the finite limit (here, only 42 sequences), they
provide distinctly different results.

The sampling procedures depend on the model provided
since the generated sequences will fit the constraints encoded
in the model. For our model, the constraints are learned from
a multiple sequence alignment and thus are dependent on the
quality of the alignment. The WW alignment we use was
manually aligned by experts. Unrepresentative alignments or
misalignments may cause incorrect constraints to be found or
crucial constraints to be omitted.

We reiterate that our work on protein design is neither
meant to address, nor requires solving, the protein folding
problem. Other works have used coupled residues to predict
inter-residue contacts [13] or interfaces of protein-protein
interactions [15]. Our results show that likelihood under our
model is predictive of whether or not a sequence will be
folded. Still, the sequences generated here will have to be
subjected to further considerations of thermodynamics, stabil-
ity, and kinetics. In fact, one direction for future work is to
augment our models of evolutionary constraints with energetic
constraints from structure-based models [4]. By combining
potential terms our methods would be able to sample novel
sequences that meet the evolutionary constraints and have
favorable predicted free energies. Likewise, we can incorporate
functional subclass information [20] in order to target the
designed sequences for particular activities.

Instead of sampling from the model, one could instead
seek to find the best designs, e.g., by using loopy belief
propagation with max-marginals [21]. We decided here to seek
a bigger picture of the constrained sequence space by sampling
broadly from the high-likelihood part of the distribution. This
is particularly appropriate for protein design, when the “best”
design might not actually be active (due in part to the incom-
pleteness of the model), and we must consider a diverse set
of possibilities. While we didn’t incorporate diversity directly
into the sampling approach (as was done by Zheng et al. for
recombination design [23], [24]), our results show that we do
indeed obtain a diverse set of high-likelihood sequences.

Currently, we assume that a designed sequence will be
constructed ab initio. One direction for future work is to
develop sampling algorithms that work under experimental
constraints such as site-directed recombination [14], [18], [22].
These experimental constraints restrict the degrees of freedom
available in order to simplify the experimental process or to
make it applicable on a larger scale.

Our software can be freely obtained for academic use by
request from the corresponding authors.
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APPENDIX

Tab. I lists edges in order of selection by the greedy
algorithm; earlier edges have a bigger impact on explaining
the observed coupling.

TABLE I
COMPLETE EDGE LIST FOR THE GMRC LEARNED FROM A DATASET OF

WW DOMAINS.

Edge number Residue 1 Residue 2
1 35 37
2 24 26
3 1 5
4 11 13
5 2 3
6 27 37
7 15 39
8 21 39
9 5 20
10 6 32
11 24 32
12 13 20
13 26 30
14 1 29
15 25 27
16 12 17
17 17 34
18 12 19
19 6 19
20 24 31
21 20 23
22 23 35
23 1 11
24 22 28
25 28 33
26 10 30
27 1 13
28 24 29
29 3 32
30 3 6
31 15 22
32 29 32
33 24 25
34 25 37
35 25 29


